DSP (Spring, 2015) Filter Design

Filter Design

< Introduction
Filter — An important class of LTI systems
We discuss frequency-selective filters mostly: LP, HP, ...

We concentrate on the design of causal filters.

Three stages in filter design:

B Specification: application dependent

B “Design”: approximate the given spec using a causal discrete-time system
B Realization: architectures and circuits (IC) implementation

IR filter design techniques

® FIR filter design techniques

Frequency domain specifications
Magnitude: | (ei~) ,  Phase: ZH (el”)
Ex., Low-pass filter: Passband , Transition, Stopband
Frequencies: Passband cutoff wp
Stopband cutoff s

Transition bandwidth s -op
Error tolerance 81, 82
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Figure 7.2 (a) Specifications for effective frequency response of overall system

in Figure 7.1 for the case of a lowpass filter. (b} Corresponding specifications for
the discrete-time system in Figure 7.1.
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< Analog Filters
® Butterworth Lowpass Filters
B Monotonic magnitude response in the passband and stopband
B The magnitude response is maximally flat in the passband.
For an Nth-order lowpass filter

= The first (2N-1) derivatives of | H.(jQ) |? are zero at 2 = 0.
1
14 (2

1Q2

| H(IQ) =

c

N: filter order

Q. : 3-dB cutoff frequency (magnitude = 0.707)

B Properties

@ | H, (jQ) |oo=1
(b) | H, (j©) Paza, =1/2 or | Ho (JQ) |g_q = 0.707

© | H.(J) |2 is monotonically decreasing (of €2)

(d) N >0 =2 | H_(jQ)|—ideal lowpass

[ H.(j)l

Figure B.2 Dependence of Butterworth
magnitude characteristics on the

e Q  order N.
B Poles
1
H, (s)H, (=) = ——
1+ (%)ZN
192,
1 .
= j——(2k+N-1)
Roots:s, = (-1)2N (jQ.)=Q.e N , k=01....2N -1
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Filter Design

(@) 2N poles in pairs: S, ,—S, symmetric w.r.t. the imaginary axis; never on the imag-

inary axis. If N odd, poles on the real axis.

(b) Equally spaced on a circle of radius QC

(c) H,(s) causal, stable € all poles on the left half plane

dn
y s-plane

Figure B.3 s-plane pole locations for a
third-order Butterworth filter.

W Usage (There are only two parameters N, 2. )

Given specifications £,Q,,6,,9Q, 2> N,Q,

. 1 1
[H(iQ) "= =

1+ ()N 1+ gz(g)m
Q, Q,

- 1 — Q
| Q 2 0O=0 = 0
&

At Q=0 |[H(jQ)l5, =65 =

® Chebyshev Filters
B Type I: Equiripple in the passband; monotonic in the stopband

Type I1: Equiripple in the stopband; monotonic in the passband

Iog[(;)z 1]

1
N=—2
Q Q
1+52(%2p)2’“ 2log( %%)

B Same N as the Butterworth filter, it would have a sharper transition band. (A smaller N

would satisfy the spec.)
B Typel:
1

1+ 63} (%c)

| H(IQ) =
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where V (x) is the Nth-order Chebyshev polynominal

V() = cos(N cos ™ (x)), 0<V, (x) <1 for0< x <1

Vi (X) = 2xVy (%) =V 1 (%)
Vy(X)|,.,=1forall N

<The first several Chebyshev polynominals>

VN(X)

1

X

2x2-1
4x3-3x
8x*4-8x2+1

A lw (N |k |Oo|z

B Properties (Type I)

1, if Nodd
@ | H (jQ) =1 1

7’
1+ &2

if Neven

1
1+ &2

(b) The magnitude squared frequency response oscillates between 1 and within the

passband:

. 1
| H (JQ) [o-q, = > at Q=0
1+¢

(C) | H,(j€)|* is monotonic outside the passhand.

[ H (j)l

Figure B.4 Type | Chebyshev lowpass

), 2 filter approximation.
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B Poles (Type I)
On the ellipse specified by the following:

1
Length of minor axis = 2aQ) , g = 1(0{N —a
2

Z|-
N——

1 1
Length of major axis = 2bQ) ., j — 1[aN n aNJ
2

and ¢ = g +1+72

Filter Design

(a) Locate equal-spaced points on the major circle and minor circle with angle

o, =T+ KT g1 N1
27 N

(b) The poles are (x,,y,): X, =aQ,Ccosg,, Yy, =bQ,sing,

Figure B.5 Location of poles for a
third-order type | lowpass Chebyshev
filter.

B Typell:

—

HGF= O

B Usage (There are only two parameters N, Q)
Given specifications &£,Q,5,,Q,% N,Q,
Q,=Q,

log[(y1- 62 +1- 52 (1+ %)) /6]

Clogl@,/Q,) +4/(Q,/Q,)2 1]

_ cosh™(5/¢) 5. 1
- cosh™(Q,/Q,) 2

N

V1+ 62

NCTU EE
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® Elliptic Filters
B Equiripple at both the passband and the stopband

B Optimum: smallest (Q, —€) at the same N

1
1+£U5(YQ,)

| H. (1) =

where U  (x) : Jacobian elliptic function (Very complicated! Skip!)

B Usage (There are only two parameters N, Q )
Given specifications ¢,Q,5,,Q > N,Q,
N K(Q,/Q)K{1-(°/6%)) [5 :1]
K (2/8)K (y1-(Q, /Q,)°) 2 1+s?
where K (x) is the complete elliptic integral of the first kind

dé
NJ1-x2%sin%0

K (x) =j;’/2

[ H(j02)

Figure B.6 Equiripple approximation
in both passband and stopband.

Remark: The drawback of the elliptic filters: They have more nonlinear phase response in
the passband than a comparable Butterworth filter or a Chebyshev filter, particu-

larly, near the passband edge.
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< Design Digital IR Filters from Analog Filters

® \Why based on analog filters?
B Analog filter design methods have been well developed.
B Analog filters often have simple closed-from design formulas.
<€ Direct digital filter design methods often don’t have closed-form formulas.
® There are two types of transformations
B Transformation from analog to discrete-time

B Transformation from one type filter to another type (so called frequency transformation)

Discrete-time
lowpass

Analog
lowpass

\ 4

Analog to discrete-
time transform

:(Analog) (Digital) :
:frequency frequency :
itransform transform

Analog to discrete-
time transform

Discrete-time
highpass,
bandpass, ...

Analog
highpass,
bandpass, ...

\ 4

® Methods in analog to discrete-time transformation
B Impulse invariance
B Bilinear transformation
B Matched-z transformation
® Desired properties of the transformations
B Imaginary axis of the s-plane = The unit circle of the z-plane
B Stable analog system = Stable discrete-time system

(Poles in the left s-plane = Poles inside the unit circle)

NCTU EE 7
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® Steps in the design
(¢D)] Digital specifications = Analog specifications
2 Design the desired analog filter

3) Analog filter > Discrete-time filter

® Impulse Invariance
-- Sampling the impulse of a continuous-time system
h[n] = Tyh,(nT,)
= Tahe (t) |-,
T4 - Sampling period
v' Important: to avoid aliasing
v" Does not show up in the final discrete formula if we start from the digital speci-
fications, ...
B Frequency response
Sampling in time =» Sifted duplication in frequency
HE™) = 3 7+ 1270

If H_(jQ) is band-limited and f, = % is higher than the Nyquist sampling fre-
d

quency (no aliasing)

HE™) =H(2) |okx
Td

Remark: This is not possible because the 1IR analog filter is typically not bandlimited.

'| iz

I - - e ey ~~.  Figure 7.3 lllustration of aliasing in
T 2 ' 27 @ {he impulse invariance design technique.

NCTU EE
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Approach 1: Sampling h[n]

Approach 2: Map H (s) to H(z) because we need H(z) to implement a digital filter

anyway.
N
A
H.(s) =
©=2"
A S t
hc(t) = kZ::
0, t<0
A =T,h, (AT,
“T 3 A u)
= 3 (T, A)E™) uln]
H (Z) = Zil esde Z—l

Essentially, factorize and map:
Analog pole
Discrete-time pole
Remarks: (1) Stability is preserved:
LHS poles = poles inside the unit circle

(2) No simple correspondence for zeros

Design Example: Low-pass filter

Using Butterworth continuous-time filter
Given specifications in the digital domain
“-1 dB in passband” and “-15 dB in stopband”

0.89125 <| H(e'”) |< 1, 0<w|<0.27
|H(e!”)|<0.17783, 037 <w|l<x

NCTU EE 9
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Step 1: Convert the above specifications to the analog domain
(Assume “negligible aliasing”)
HE) =H(2) el
Td
089125< H(jQ) K1,  0<Qf O-Z%d

| H(jQ) |< 0.17783, 0-3% 4Q< %
d d

Step 2: Design a Butterworth filter that satisfies the above specifications. That is, select

proper N, €2, .

.0.2x7
H
| H:(] T

) [> 0.89125

d

| Hc(jo_'l_?ﬂ) < 0.17783

d

2 1
H.(JQ)|'=—F——
| H (1) | 1+(%C)2N

2N 2
L. (027 _( 1 j
Thus, T,Q, 0.89125

2N 2
0.3z ( 1 j
1+ =
T,Q, 0.17783

> N =58858 T,Q, =0.70474

= (Taking integer) N =6, T,Q, =0.7032
(Meet passband spec. exactly; overdesign at stopband)

i (2k+N-1)
<Case 1: Assume T, =1 = S, = Qe 2N

0.7032Je I (2keN -

d
0.12093
(s +0.365s + 0.495)(s? +0.995s + 0.495)(s” +1.359s + 0.495)

<Case 2: Assume T,#21=> S = [

Hc(s) =

NCTU EE 10
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Step 3: Convert analog filter to discrete-time

Analog pole S,

Discrete-time pole €

<Case 1: Assume T, =1= Z, = eXp{O.?OBZ ejm(2k+N1):|

<Case 2: Assume T, =1 = Z, = eXp{Td (().7032]61%1(%:“)}
Td

They are identical! (In general, this is true.)
0.287 —0.44777* —2.143+1.145z71
H(z) = ] 2T ] 2
1-1.29721+0.695272 1-1.069z7*+0.370z
.\ 1.856 —0.630z*
1-0.997z71 +0.257272

Group Delay

Remarks: (1) In some filter design problems, a primary objective maybe to control some
aspect of the time response. = design the discrete-time filter by impulse in-
variance or by step invariance.

(Note: Designs by impulse invariance and by step invariance don’t lead to the

same discrete-time filter!)

NCTU EE 11



DSP (Spring, 2015) Filter Design

(2) Impulse invariance method has a precise control on the shape of the time signal.
Except for aliasing, the shape of the frequency response is preserved.

(3) Impulse invariance technique is appropriate only for bandlimited filters.

® Bilinear Transform

B Avoid aliasing but distort the frequency response — uneven stretch of the frequency axis.

S et 2 P z—1+ST%
= ~ =
Ty \1+2

1- ST%

2 (1-z"
H.(s) > H(z) = HC(Td [1+ Z_ln

Note: jQQ axis on the s-plane = unit circle on the z-plane

LHS of the s-plane - Interior of the unit circle on the z-plane

i s-plane Tm z-plane
Image of
5 = €1 (unit circle)

” < "
Image of

left half-plane

® How the jQ axis is mapped to the unit circle?

2 (1-z71
S=—|——7
Ty \1+2

2 (1-e7?
2= T 1+

= intan a)j or a)=2tanl(Qde
T, (2 2

NCTU EE 12
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ar
w = 2 arctan (TA

0
i e
S 1]
|
[l
I
i
o g I
= = !
£ = I
Al ale
:I‘;“ = A
\
\
Sl=—nn(£]
e 2
= . P = |
(S L JC i
i d
= _ [ |
1] ; } m w
I |
|
[He™)] |
I |
I
L |
|
N
(A
A
[
; Y]
———
| RN
0w, o T @

Hie)

B Steps in the design

(1) Digital specifications to analog specifications: prewarp

(2) Design the desired analog filter

(3) Analog filter to discrete-time filter: bilinear transform

NCTU EE
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Design Example: Lowpass filter

Using Butterworth continuous-time filter
Given specifications in the digital domain (same as the previous ex.)

0.89125 <| H(e') |< 1, 0<w|<0.27
|H(e')]<0.17783, 037wk x

Step 1: Prewarp , _ Ztan(w
Td

N
AN —

Passband freq. Q,-2 tan(O.ZH')

Stopband freq. , _ 2 (0.3;;}

Let Td =1 since Td will disappear after “analog to discrete”.

Step 2: Design a Butterworth filter -- select proper N, Q) .

H,(j2tan(0.17)) > 0.89125
IH,(j2tan(0.157)) < 0.17783

Because e 1
H Q) =———x
v %)
> 1. 2tan(0.17) ) _( 1Y
Q, - 10.89125
1+[2tan(0.15;z)J2N :( 1 jz
Q. 0.17783
2 N =5.30466,

> N=6 T,Q, =0.76622

(Meet stopband spec. exactly; exceed passband spec.)

0.20238

Filter Design

Hc(s) =

NCTU EE
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Step 3: Convert analog filter to discrete-time

H,(s) > H(2) = H{{l‘zjn
1+7z

H(z) = 0.0007378(1+z1)°®
(1-1.26862 7 +0.7051z ?)(1-1.0106z * + 0.35832 %)
y 1
(1-0.9044z7" +0.21552 %)

dB

| 1
027 b [IE:F4 (LB

Radian frequency (w

(n)

Amplitude

Samples

[ 02z 04z

[T 0.8

Radian frequency (o)

Remarks: (1) Bilinear transforms warps frequency values but preserves the magnitude.
Therefore, the discrete-time Butterworth filter still has the maximal flat
property; Chebyshev and Ellipic filters have equal ripple property.

(2) Although we may obtain H . (s) in closed form, it is often difficult to find the

locations of poles and zeros of H(z) from H (s) directly.

NCTU EE 15
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Bilinear Transform Design Example using 4 analog filters:
passband edge frequency @, = 0.5z

NCTU EE

stopband edge frequency o, =0.67
maximum passband gain =0dB

minimum passband gain =-0.3dB
maximum stopband gain = -30dB

Butterworth: 15" order

10

T T T
n L -
-10 f &
S 20t
B [ mosaminim st it et s o e e I S i e e e §
40 + -
=50 . i .
0 w4 w2 3n/d w
Frequency, w
(a)
s
-~
Fo98
<
0.96 +
] w4 w2 w4 ™
Frequency, o
(b)

Samples

15" order zero

] w4 w2 3wl T
Frequency, w
(c)
Tm z-plane

X unit circle
x

X

X

5

8 Re

X

X

X

x
x
(d)

Filter Design
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Chebyshev I and II:

7™ order

w2

Amplitude

w4 3mi4 T
Frequency, o
(a)
T

1] w4 w2 3mid -
Frequency, w
(b)
20 [ 1
g 15T 1
-
E 10F 1
5 4
0
i w2 3wl 4
Frequency, o
(e)
Im z-plane
e unit circle
7™ order zero
x
> =
x
x
A
(d)

NCTU EE

Filter Design

w2

w4 3mi4 T
Frequency, o
(a)
T T - T
. 1
o
=
2
So9st
<
096
1] w4 2 3mid -
Frequency, w
(b)
0 1
g 15T 1
-
E 10} 1
5 4
0
i w2 3wl 4
Frequency, o
(e)
z-plane

unit circle

(d)

17
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Elliptic: 5™ order

10
0
-10
£ -2
=40+
-50 : .
1] w4 w2 3wl T
Frequency,
(a)
T T T
T B e R TR
=
2
=
<
0 w4 w2 3mld -
Frequency. o
(b)
20 1
] 151 1
B
E 10 1
-
0
1] w4 w2 3wl ]
Frequency, o
(e)
Im z-plane
* unit circle

(d)

NCTU EE
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® Frequency Transformation
-- Transform one-type (often lowpass) filter to another type.
Typically, we first design a frequency-normalized prototype lowpass filter. Then, use an
algebraic transformation to derive the desired lowpass, high pass , ..., filters from the
prototype lowpass filter.
<Prototype filter> > <Desired filter>
Z > z
-1 _ G(Z—l)
H(Z), g1y~ H()
Typically, this transform is made of all-pass like factors

ole)-<11 2%

l1-a,z

Remarks: The desired properties of G(.) are
(1) transforms the unit circle in Z to the unit circle in z,
(2) transforms the interior of the unit circle in Z to the interior of the unit circle in z,
(3) G(.) is rational.
Example: Lowpass to lowpass (with different passband and stopband frequency, but magni-
tude is not changed)
27t -«

Z1 =
1—az™?

Check the relationship between & (the Z filter) and @ (the z filter). & is a pa-

rameter. Different ¢ offers different “shapes” of the transformed filters in @ .

1-0e™”
> tan-! (1-a?)sino
- 20+ (1 +a?)cosd

NCTU EE 19
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If 9p is to be mapped toa)p , then

L sin|(@, -, )/ 2]
sin[(ﬁp +a)p)/2J

o
7+ o _'l_
2
=1 a=0
A i
_______ f /1
2
~ ! !
0 f, T T 0
2

B Various Digital to Digital Transformations
TABLE7.1  TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
OF CUTOFF FREQUENCY ¢, TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Associated Design Formulas

Filter Type Transformations

. Bp—wp)
, sin (%w—P}
Low ) s vy
owpass = — sjn( ) ")
wp = desired cutoff frequency
o .
| s
I+ o= —COS T
| +az (f)
wp = desired cutoff frequency

Highpass

wpltwy]
~ 3 )

cos (

o =
e |
cos (‘f

=2 2wk _—1 £
Bandpass Z !l=_— N k] wp1 — @ 9
P k=l 2 Jak.—1 k = cot (P—"] tan (Tp)

wp) = desired lower cutoff frequency
wpy = desired upper cutoff frequency

e_'upf--i-wpl A
cos (‘T

= O gy =i
cos (-""‘fpl)

=2 2o -1
S AR e 2 f
1+k L+k @p2 — @pi fp
k =tan — g tan >

Bandstop z 1= T T T
TEL gt ] 2
wpy = desired lower cutoff frequency

wpy = desired upper cutoff frequency

NCTU EE
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< Design of FIR Filters by Windowing

® Why FIR filters?
-- Always stable
-- Exact linear phase
-- Less sensitive to inaccurate coefficients

<Disadvantage> Higher complexity (storage, multiplication) due to higher orders
® Design Methods

(1) Windowing
(2) Frequency sampling
(3) Computer-aided design
Remark: No meaningful analog FIR filters
® Windowing technique advantages
-- Simple
-- Pick up a “segment” (window) of the ideal (infinite) h,[n]
-- Filter order = window length = (M+1)
General form: h[n] = h,[n]w{n]

Filter impulse response = Desired response x Window
Example: Rectangular window

Window shape: yy{n] = {1, 0<n<M

0, otherwise
h,[n], 0<n<M
> _
h[n] {0, otherwise

® Because the filter specifications are (often) given in the frequency domain H , (e j‘“) :
We take the inverse DTFT to obtain h,[n].

h,[n] = zlﬁj_’; H, (e ) el dw

or, Hd(ejw): ihd[n]e_jwn

NCTU EE 21
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Now, because of the inclusion of w[n],
iw)_ 17 - (- A periodic convolution)
H(e )= [H,(e") w(e)“ g (Aperio
)= L ) wlere o)

Thatis, H (e!”) is “smeared” version of H,(e').

WhyW(ej“’) cannot be 5(eiw)? (If so, H(ej“’) =H, (ejw)!)

Parameters (to choose): (1) Window size (order of filter)

(2) Window shape
Wi(ellw=)
i A
/ |\ — Hy(el") /I\
| |
| |
| |
~ olu ™ 2‘}" I 0
(a)
H(e ™)
/
7 — = — X1 | = — 5N |
! | ! |
|
| ' : |
~—~ P = ~ Zlur D—

0<n<M

® Rectangular Window: W[n]={%)' therwt
, otherwise

-- Narrow mainlobe
-- High sidelobe (Gibbs phenomenon)
-- Frequency response

, M .
W(e“"): >1-et"
;_:f e—ja)(M +1)

(M +1)}
2

M Sin|:(0

NCTU EE
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isin (w(M +1)2)|
sin (e/2) |

M=T7)

Peak sidelobe

|

2T

T 27 @

(M)

(M+1) Figure 7.20 Magnitude of the Fourier
—-| Aw,, i-— Mainlobe transform of a rectangular window
l width (M=7).
- Mainlobe ~ _47_ M T, w(e) - 5(e)
M +1

-- Peak sidelobe ~ -13 dB (lower than the mainlobe)

Area under each lobe remains constant with increasing M

—> Increasing M does not lower the (relative) amplitude of the sidelobe.

(Gibbs phenomemnon)
Remarks: For frequency selective filters (ideal lowpass, highpass, ...),
narrow mainlobe - sharp transition

lower sidelobe = oscillation reduction

e Commonly Used Windows
-- Sidelobe amplitude (area) vs. mainlobe width

-- Closed form, easy to compute
Bartlett (triangular) Window:

2n M
—, 0<n<—
M ) y 2
n
nN=<{2-—, —<n<M
win] w2 <"
0, otherwise

Hanning Window:

0.5—0.5005[?\:], 0<n<<M

0, otherwise

win] =

NCTU EE
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Hamming Window:

wln] =

Blackman Window:

NCTU EE

wln] =
0,

08
0.6

04

0.54 - 0.46cos[i/r|]j,, 0<ns<M
0,

otherwise

Filter Design

0.42 —O.5cos(2n) + 0.0Bcos(zn), 0<n<M
M M

otherwise

20 logy, IWie ™)l

20 g, IW (e )

20 logq IW{e)!

Wiek)l

20 log,,

W (e

20 log,

)

win] HRectangular
i Hamming
N ———— Hann
~ i
: "\\.. =——+=— Blackman
| \ =c=s= Rartleit
I
\ .
I B
|
|
I
I
F |
| O
K ! L
# I
i | SN
M M
7

02w 04 0.6 08w w

02w D4z e e
Radian frequensy (o)
(b}

-}

100
L]

02e Odw 06w [T w
Radian frequency (w)

i)

1 L
027 04z (i3 0w =
Radinn frequency (w)

(d)

NAAA

0l dw 0far [F
Radisn frequency (m)

(e)

Rectangular

Barlett

Hanning

Hamming

Blackman

24
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TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logy 6 Window, Kaiser
Window (Relative) Main Lobe (dB) i Window
Rectangular —13 dr /(M +1) —=21 0 181z /M
Bartlett —25 8t/M —=25 1.33 23In/M
Hann =31 St/M —44 3.86 5.0l /M
Hamming —41 8w/M -53 4.86 6277 /M
Blackman —57 12m/M =74 7.04 9197 /M

® Generalized Linear Phase Filters

-- We wish H (e'”) be (general) linear phase.

<Window> Choose windows such that
win]=w[M —-n], 0<n<M

That is, symmetric about M/2 (samples)
. M
W(ej“’)zwe(ej“)- e "2 where We(ej“’) is real.
<Desired filter> Suppose the desired filter is also generalized linear phase
. . —jwM
Hd(eJ”)z He(e“”)-e 2

<Filter> H (e ) is a periodic convolution of H,(e!?) and W (e'”)

. 1% . - oM _je-0)m
He) = o H,(e)w,(e“?)e " 2e 2 do
_ LT ) w0 e e

2

Ale")

Ae(ej“’) is real.

Thus, H(e!) is also generalized linear phase.

NCTU EE 25
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Example: Linear phase lowpass filter

: . —jo—
Ideal lowpass: Hlp(e,a,): e 2, |oj<wo

0, o, < \a)\ <z
; M
Impulse response: Sln{a)c(n _ ZH

hlp[n] = ( M j
ln——
2

; M
Designed filter: sm{wc(n _ ZH
h [n] = . W[n]

=

@, . 1/2 amplitude of H (e o ) = cutoff frequency of the dieal lowpass filter
Peak to the left of @, occurs at ~ 1/2 mainlobe width

-Peak to the right of @ occurs at ~ 1/2 mainlobe width

Transition bandwidth A@ ~ mainlobe width- (smaller)

Peak approximation error: proportional to sidelobe area

A, (e/)

H,(e*)

W, (e/lw-8))

\//\\/ - \//\\./_\‘*—' ;

Figure 7.23 lllustration of type of approximation obtained at a discontinuity of
the ideal frequency response.
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® Kaiser Window

-- Nearly optimal trade-off between mainlobe width and sidelobe area

-] ]

1,()

0, otherwise

win] = 0<n<M

where |, (-): zeroth-order modified Bessel function of the first kind
a: M2
[ : shape parameter; /3 = 0, rectangular window

p T, mainlobe width T sidelobe area »L

- A = _20 * Ioglo 5
0.1102(A-8.7), A > 50
S =10.5842(A—21)** +0.07886(A—21), 21< A<50
0.0 A<21

- Ao =0, -0, (stopband — passband)

_ A-8 (within +-2 over a wide range of A@ and A)
2.285-Aw

NCTU EE
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1.2
D =
09 P O
ya AN
L+
E v AN N B=0
= 06— - —— =
o / \ N B=3
g / / N * —_————p=6
4 * / AY AN
VA \ .
’ ’ NN
0.3 —_/ J \ .\
il AN
Pe ~
e | | | ~
Q 5 10 15 20
Samples
(a)
4]
~
\\
£
25 I
VRN A e\ 5
= L ﬁ\ A I } . [+ -
sor [TNRE N VYT VY] =
i \ ‘||\\ I\\ ———=—p=0
Y ERY / 7
N . [} IRV AV \Wa W
st Y VA
] |1 ‘l
_100 LI |.| | | i
0 027 047 0.6 0.87 T
Radian frequency (w)
(b)
4]
\
\
25—
1
Vo
1
- n \ B M =10
g S0k "‘f\t-'"r\f‘ ——M=20
) M-
' l","l"\r M =40
Y
75 !
H
L
~100 1
0 027 0.4 0.6 0.8 kil
Radian frequency (w)
(e)

Approximation error vs, Transition width [* = fixed windows, 0 = Kaiser (j8 = integer)]

T YL T T T T T T T T
20 ey 1
Kaigec! Q-_ #* Bartleu
-3p b Kaiser2 Q.. .
— K;niwr;'Q
240+ *. -
- “
= Kaiserd B, #* Hanning
E S0 . 1
= KaiserS W% Hamming
E 60| % -
E Kaiser6
.E ‘t‘
5 -0 Kaiscr?'q 1
2‘ '-_. * Blackman
=80 | KaiserS+Q -
",
90 Kai:\'cr‘f‘o. i
1 1 1 1 1 1 1 1 ‘s 1 1
0 01w 0.2 0.3 047 0.57
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Kaiser window example — lowpass
Specifications: 5, = 0, =0.001

w, +w

Ideal lowpass cutoff: w, = % =057

Select parameters: {Aa) =0, -w, =027 N {,3 =5.653

A=-20log,, 0 =60 M =37

o= '\% ~185

This is a type I, linear phase (odd M, even symmetry) filter.

Approximation error: | H (e o )| —|H (e Jo )l

EA(ej‘”)z{l_A‘*(ejw)' O<w<wo,

O—Ae(ej“’), O, <0<

0.4
v
o]
E“ 02—
) ] X
( PYSIN A1 1t e
AT 3 ll Jl Y Bl
02 : ‘ .
0 10 20 30 40
Sample number (n)
(a)
20
0
20—
=] —40
—60 —
—80 —
100 ‘ ! :
0 027 0.4 0.6 0.8 7
Radian frequency (w)
(b)
0.0010
0.0005 —
N f\
: /\V/\ AWAWA
5 V U U V V'V
—0.0005 —
~0.0010 ! : !
0 027 0.4 0.6 0.8 T

Radian frequency (w)

()
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Kaiser window example — highpass

. _ 0, 0<|w|<w
Ideal high : i c
eal highpass th(e‘ ) {

= _jeM

e 2, o <lo<r

. M . M
sm;r(n—zj sma)c(n—zj
hhp[n] =

IR

Specifications: ¢, =6, =0.021
0 + @, 0.357+0.57
2 2

Select parameters: Aw N p=26
A M =24

This is a Type I filter.

Highpass cutoff: w, =

Check! Approximation error = 0.0213 > 0.021!!
Increase M to 25 > Not good! This is a Type Il filter: a zero at-1.-> H 4 (e i ) =0
But we want it to be 1 because this is a highpass filter.

Increase M to 26. Okay!
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Kaiser window example — differentiator

ldeal differentiator: ~i

dt

.M
—jo—

Hdiff(ejw)z(ja))‘e 2 —m<w<nm

-2 snlr-3)
cosz|n——| sinzn——
2 2

hyie [N] = -

BT

Note that both terms in hdiﬁ [n] are odd symmetric.
Hence, h[n] = -h[M —n].

This must be a Type 111 or Type IV system.
<Comparison>
Case 1: M=10, f =2.4 > Type lll
Zeros at 0 and —1. Approximation is not good at @ = 7.
Case 2: M=5, f =2.4 > Type IV

Zeros at 0. Approximation error is smaller.
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< Optimum Approximation of FIR Filters

® \Why computer-aided design?
-- Optimum: minimize an error criterion
-- More freedom in selecting constraints.
(In windowing method: must 0; = 0, = 0)
® Several algorithms — Parks-McClellan algorithm (1972)
Type I linear phase FIR filter
Its symmetry property: h,[n] = h,[-n] (omit delay)
Check its frequency response:

Ale”)= ihe[n]-e’j"’”

n=-L

=h,[0]+ ZL: 2h,[n] - cos(an)

n=1

~a,+ Y3, - (cos(w))

n=1

-, (cos(w))
=P,
Note that P(x) = Z a, xX is an Lth-order polynominal. In the above process, we use a
polynominal expression of cos(.), cos(wn) =T, (cos @), where T | (+) is the nth-order
Chebyshev polynominal. Thus, we shift our goal from finding (L+1) values of {h,[n]}
to finding (L+1) values of {a, }.

( want to use the polynominal approximation algorithms.)

<Our Problem now>

Adjustable parameters: {a, }, (L+1) values
Specifications: 0. _ 1 ,and L (L is often preselected
p @y, 0, %2 =K ( p )

Error criterion: E(w) =W () - lH d (e o )— A, (e 1 )J

Goal: minimize the maximum error
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min (max\E(a))
{he[n]}" to<F

(Note: Often, no constraint on the transition band)
(Why choose this minimization target? Even error values!

), F: passband and stopband

Recall: In the rectangular windowing method, we actually minimize
&2 = 21 ”Hd(ejw)_ H (ejwfdw. Although the total squared error can be small but errors
7[—71'

at some frequencies may be large.)

<Alternation Theorem>

Fp: closed subset consists of (the union) of Example, lowpass:
disjoint closed subsets of the real axis [0, ,],[@;, 7]
X >X=C0Sw~>
[Lcosw,],[cosw, 1]
P(X): rth-order polynominal
r L
P(x) = a,x" P(cosw) = > a, (cosw)*
k=0 k=0
D, (X): desired function of x continuous on Dy (X) = {1, X, <x<1
FP 0, —-1<x<x
X = COS @
: eighting: positive, continuous on <x<
W, (X) weighting: positiv inuou W, (x) = /K, x,<x<1
Fp 1, —-1<x<x
Ep(X): weighted error
Ep (X) =Wp (X)[DP (x) = P(x)] Ep (X) =W; (X)[Dp (x) - P(X)]
HEH; maximum error
|E[|=maxE, (x) E]= 5,
&€Fp

P(X) is the unique rth-order polynominal that minimizes HEH
if and only if EP (X) exhibits at least (r+2) alternations
Alternation: There exist (r+2) values X; in FP such that

Ep (X;) =—Ep(X.1) = £[E

i =12+, (r+1), where X, <X, <-+-<X,,,.

i+1

Remark: Two conditions here for alternation: value and sign.
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148,
1 =8

X008

Wi} Epix)
A :
: ! | v Wi
| © cosa, | ow=c 1\ Al AVATET T
Type I linear phase FIR filter
(1) Maximum number of alternations of errors = (L+3)
(2) Alternations always occur at @, and @,
(3) Equiripple except possiblyat @ =0 and @ = 7
L=7 <
L+3
L+2
L+2
L+2
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(Reasons)
(a) Locations of extrema: Lth-order polynominal has at most L-1 extrema. Now, in

addition, the local extrema may locate at band edges w = 0, 7, @ ,, @, . Hence, at

p 1
most, there are (L+3) extrema or alternations.

(Note: Because X = cos @, dP(COs@) _ gatw=0and w =7
dw

(b) If @ 0 is not an alternation, for example, then because of the +- sign sequence, we
loose two alternations - (L+1) alternations €= violates the (L+2) alternation the-

orem.

L1 L N L N
U' ml w5 w,l".‘ er r111 W Wy \ﬂ; (i)

(c) The only possibility that the extrema can be a non-alternation is that it locates at
@ =0 or @ = 7. In either case, we have (L+2) alternations — minimum re-

quirement.
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Type Il linear phase FIR filter

Its symmetry property: h,[n] =h,[M —n], M odd
Frequency response:

Hel® =e_jw% (M+l)/2n- s(w(n—-1/2
i) > bin] - cos(e(n ~1/2))

L A (RN
=e 2 cos(zj{ > b[n].cos(a)n)}
n=1
. —ja)M )
2 H(eJ“’):e 2 cos(sz(cosw)’

L
where p(cose) = > a, (cosw)"
k=0
Problem: How to handle Cos[a)j?
2

Transfer specifications!

Let ' )
Hd(e“")z D, (cosw) = cos(z)]

Original New

- D(cos
Ideal: D(cosw) < cos((;jP(cos ) Ideal: D(C0S®) < P(cosw)

{3)

Thus,

W(w)=W,(cosw) =5 K s@=ao
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® Parks-McClellan Algorithm

<Type | Lowpass>
According to the preceding theorems, errors
E(w) =W (o)- lH ; (eja’ )_ Ae(ej“ )J has alternations at @, ,i =1,...,L + 2, if Ae(ej“’)
is the optimum solution.

That is, let & = HE _the maximum error,

W (o) [Hq (e )- A [ )= (~D™s5, i=12.,L+2.

. L
Because a (el) = a, (cosw)* = a,1+a, cosw +a, (COs@)? +---
k=0

at @;: a,1+a,Cosm, +a,(Cosm; )’ +-- <> agl+ax +a,(x) +-

at W, ayl+a, COSw, +a,(CoS@,)* +++ <> ayl+aX, +a,(X,)* +--

Hence,

_ L

1 % X2 X
W(a)l) B H ja)l

1 X, X5 - Xy a, H (eio
W(a’z) ST i

1 x x2 W (-n-*? 0 Hd(ejww)

L+2 L+2 7 L+2
L W(‘Uuz)_

Remark: For Type | lowpass filter, @, and @ must be two of the alternation fre-
quencies {a)i }.
Now, we have L+2 simultaneous equations and L+2 unknowns, {ai} and 0.

The solutions are

L+2

kZkad(ej“’k) L2 q
5 = :1—’ b =
Lizbk (_1)k+1 ‘ ll:ll (Xk — X )
S ik
k=1 W(wk)

Once we know {a,}, wecan calculate Ae (e Jo ) forall @.
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Filter Design

However, there is short cut. We can calculate A, (e Jo ) for all @ directly based on

W(w, ), Hy (ej“’k ) and @, without solving for {a, }.

where ¢, =H, (eiwk)

NCTU EE

A?(ej“’): P(cosw)

L+1 1

d = []

> o))

_ k=1

_ Li‘f[dk (X=X )}

k=1

_(D*s
W (wy)

ik (X —X;)

Initial guess of
(L + 2) extremal frequencies

Changed

r

Calculate the optimum
& on extremal set

}

Interpolate through (L. + 1)
points to obtain A (e/*)

!

Calculate error E(w)
and find local maxima
where |[E(w)l = &

More than
(L +2)
extrema?

Retain (L + 2)
largest
extrema

y

Check whether the

extremal points changed

* Unchanged

Best approximation
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0.14

012

0.10

=
=
[s.a)

0.06

0.04

Passband or stopband ripple

0.00 ' ' '
0.0 027 047 00w 0.8 7

Passband cutoff ()

-- How to decide M (for lowpass)? (Experimental formula)

M = -10log,,(6,5,)—13
2.324-Aw
Aw = o, — o,

Example: Lowpass Filter

A
1 -
1-81=1-0.01
52=0.001 — | |
0.471: 0.61‘5 g W
K= o =10
52
M = _10|0910(§152)_13 = M=26
2324 - Aw
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Amplit
T

—

—
e
. .
E
—
.

dB

Amplitude

10

----------

Filter Design

But the maximum errors in the passband and stopband are 0.0116 and 0.00116, respectively.

=>M=27

NCTU EE

0.5

04—

03—

Amplitude
=
>
I

01~
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-0.1
0

|
10 20
Sample number (1)
(a)

30

20

=20

dB

—40

=60

-80

-100
0

047 0.6m 0.87
Radian frequency ()
(h)

0.010

0.005

Amplitude

-0.005

=0.010
0

LAV A

0.2m

0.4m 0.6m 0.8
Radian frequency (@)

(c)
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Remark: The Kaiser window method requires a value M = 38 to meet or exceed the same
specifications.
Example: Bandpass filter
Note: (1) From the alternation theorem
= the minimum number of alternations for the optimum approximation is L + 2.
(2) Multiband filters can have more than L+3 alternations.
(3) Local extrema can occur in the transition regions.

-"-N.’-*,.u;.r.wl‘rlil‘

]'L‘le',;u.iu,w-:.——

® |IR vs. FIR Filters

Property FIR IR
Stability Always stable Incorporate stability constraint
in design

Analog design No meaningful analog equiv- | Simple transformation from an-
alent alog filters

Phase linearity Can be exact linear Nonlinear typically

Computation More multiplications and ad- | Fewer
ditions

Storage More coefficients Fewer

Sensitivity to coefficient | Low sensitivity Higher

inaccuracy

Adaptivity Easy Difficult
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