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The z-Transform 
 Introduction 
 Why do we study them? 

 A generalization of DTFT. 

    Some sequences that do not converge for DTFT have valid z-transforms. 

 Better notation (compared to FT) in analytical problems (complex variable theory) 

 Solving difference equation.  algebraic equation. 

 

 Fourier Transform, Laplace Transform, DTFT, & z-Transform 
Fourier Transform 
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To encompass a broader class of signals: 
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z-Transform 

 

 Eigenfunctions of discrete-time LTI systems 
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Remark:  
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DTFT can be viewed as a special case: 
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 z-Transform 

 (Two-sided) z-Transform (bilateral z-Transform) 

    Forward: 
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     From DTFT viewpoint: 
zre

n
jnxrFnxZ


 ]}[{]}[{    

     (Or, DTFT is a special case of z-T when jez  , unit circle.) 

    Inverse: ])([)(
2

1
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      Note: The integration is evaluated along a counterclockwise circle on the complex z plane 

with a radius r.  (A proof of this formula requires the complex variable theory.) 

   

 Single-sided z-Transform (unilateral) – for causal sequences 
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 Region of Convergence (ROC) 

The set of values of z for which the z-transform converges. 

 

 Uniform convergence 

If jrez   (polar form), the z-transform converges uniformly if nrnx ][  is absolutely 

summable; that is, 

  






n

nrnx |][|  

 In general, if some value of z, say 1zz  , is in the ROC, then all values of z on the circle 

defined by |||| 1zz   are also in the ROC.     ROC is a “ring”. 

 If ROC contains the unit circle, |z| =1, then the FT of this sequence converges. 

 By its definition, X(z) is a Laurent series (complex variable) 

    X(z) is an analytic function in its ROC 

          All its derivatives are continuous (in z) within its ROC. 
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 DTFT v.s. z-Transform 

--  n
n
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nx c ,
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  Not absolutely summable; but square summable 

    z-transform does not exist; DTFT (in m.s. sense) exists. 

--  nnnx ,cos][ 02   

  Not absolutely summable; not square summable 

    z-transform does not exist; “useful” DTFT (impulses) exists. 

--  nanuanx n ,1||],[][3  

              z-transform exists (a certain ROC); DTFT does not exist. 

 

 Some Common Z-T Pairs 
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 Properties of ROC for z-Transform 
 Rational functions 

        
)(

)(
)(

zQ

zP
zX   

    Poles – Roots of the denominator; the z such that )(zX  

    Zeros – Roots of the numerator; the z such that 0)( zX  

 Properties of ROC 

(1) The ROC is a ring or disk in the z-plane centered at the origin. 

(2) The F.T. of ][nx  converges absolutely  its ROC includes the unit circle. 

(3) The ROC cannot contain any poles. 

(4) If x[n] is finite-duration, then the ROC is the entire z-plane except possibly 0z  or 

z . 

(5) If x[n] is right-sided, the ROC, if exists, must be of the form maxrz   except possi-

bly z , where maxr is the magnitude of the largest pole. 

(6) If x[n] is left-sided, the ROC, if exists, must be of the form minrz   except possi-

bly 0z , where minr is the magnitude of the smallest pole. 

(7) If x[n] is two-sided, the ROC must be of the form 21 rzr   if exists, where 1r  and 

2r are the magnitudes of the interior and exterior poles. 

(8) The ROC must be a connected region. 

 

         In general, if )(zX  is rational, its inverse has the following form (assuming N poles: }{ kd ) 
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nonzero sample. 

           The nth term in the z-transform is 
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            This sequence converges if 






1

|| 1

Nn

n
krd  for every pole Nk ,,1 .  In order to 

be so, Nkdr k ,,1|,|||  . 
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 Pole Location and Time-Domain Behavior for Causal 

Signals 
Reference: Digital Signal Processing by Proakis & Manolakis 
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 The Inverse z-Transform 
      Inverse formula: 
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      This formula can be proved using Cauchy integral theorem (complex variable theory).   

 Methods of evaluating the inverse z-transform 

(1) Table lookup or inspection 

(2) Partial fraction expansion 

(3) Power series expansion 

 Inspection (transform pairs in the table) – memorized them 

 Partial Fraction Expansion 
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             Hence, it has M zeros (roots of  kM
k zb  ), N poles (roots of   kN

k za ), and (M-N) 

poles at zero if M>N (or (N-M) zeros at zero if N>M). 

             
)1()1(

)1()1(
)( 11

10

11
10









zdzda

zczcb
zX

N

M



  ;  kc , nonzero zeros; kd , nonzero poles. 

 Case 1: NM  , strictly proper 

Simple (single) poles: 
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          where  
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Multiple poles:  Assume id  is the sth order pole. (Repeated s times) 
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 Case 2: NM   
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          impulses      single-poles    multiple-pole 

 Power Series Expansion 
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 Case 1:  Right-sided sequence,  ROC:  maxrz   

     It is expanded in powers of 
1z .    

Ex. ||||,
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 Case 2:  Left-sided sequence,  ROC:  minrz   

 It is expanded in powers of z . 

 Ex. ||||,
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 Case 3:  Two-sided sequence,  ROC:  21 rzr   

     )()()( zXzXzX    

converges for 1|| rz         converges for 2|| rz   

       ][][][ nxnxnx    

       causal sequence           anti-causal sequence 
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 z-Transform Properties 

     If ][][ zXnx   and ][][ zYny  ,  ROC: YX RR ,  

 

 Linearity:  )()(][][ zbYzaXnbynax        

       ROC: YX RRR '  -- At least as large as their intersection; larger if pole/zero can-

cellation occurs  

 

 Time Shifting: )(][ 0
0 zXznnx n        ROC:   0 '  orRR X  

 

 Multiplication by an exponential seqence:    

     )(][ azXnxan             ROC: 
XRaR '  -- expands or contracts 

 

 Differentiation of X(z):   
dz

zdX
znnx ][ ,       ROC: XRR '  

 

 Conjugation of a complex sequence:  *)(*][* zXnx  ,        ROC: XRR '  

 

 Time reversal:  *)/1(*][* zXnx  ,   

       ROC: XRR /1'   (Meaning: If LRX rzrR  ||: , then RL rzrR /1||/1:'  . 

Corollary: )/1(][ zXnx   

 
 Convolution: )()(][][ zYzXnynx   

       ROC: YX RRR '  (=, if no pole/zero cancellation) 

 

 Initial Value Theorem: 

If  x[n]=0, n<0,  then )(lim]0[ zXx
z 
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 Final Value Theorem: 

If  (1) x[n]=0, n<0,  and 

 (2) all singularities of )()1( 1 zXz  are inside the unit circle, 

then )()1(lim][ 1

1
zXzx

z




  

Remarks: (1) If all poles of X(z) are inside unit circle,  nnx as0][  

(2) If there are multiple poles at “1”,  nnx as][  

(3) If poles are on the unit circle but not at “1”, nnx 0cos][   

 

 

<Supplementary>  

 z-Transform Solutions of Linear Difference Equations 

Use single-sided z-transform: 
   ]1[)(]}1[{ 1   yzYznyZ          

]2[]1[)(]}2[{ 12   yyzzYznyZ    

]3[]2[]1[)(]}3[{ 123   yyzyzzYznyZ  

For causal signals, their single-sided z-transforms are identical to their two-sided 

z-transforms. 

 

   Ex., Find y[n] of the difference eqn. 

][]1[5.0][ nxnyny     with 0,1][  nnx , and 1]1[ y  

(Sol)   Take the single-sided z-transform of the above eqn. 
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          Take the inverse z-transform  

           nny )5.0(5.02][  ,  0n                                                 


