DSP (Spring, 2015)

Discrete-Time Signals and Systems

< Introduction

® Signal processing (system analysis and design)

B Analog

W Digital

History

Before 1950s: analog signals/systems

W 1950s: Digital computer

W 1960s: Fast Fourier Transform (FFT)

MW 1980s: Real-time VLSI digital signal processors

Discrete-time signals are represented as sequences of numbers
A typical digital signal processing system
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< 2.1 Discrete-time Signals: Sequences

Continuous-time signal - Defined along a continuum of times: x(t)

Continuous-time system — Operates on and produces continuous-time signals.

Discrete-time signal - Defined at discrete times: x[n]
Discrete-time system — Operates on and produces discrete-time signals.
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Remarks: Digital signals usually refer to the quantized discrete-time signals.

® Sampling: Very often, x[n] is obtained by sampling x(t). “the nth sample of the se-

quence” That is, x[n]=x(nT), T: is the sampling period. But T is often not important in
the discrete-time signal analysis.
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® Basic Sequences:

B Unit Sample Sequence
1! = Oy
o=y " ‘
0, n=0.

Remark:

It is often called the discrete-time impulse or simply impulse. (Some books
call it unit pulse sequence.)
B Unit Step Sequence

1, n>0,
| ]
0, n<o0.

Note 1: u[0]=1, well-defined.

Note 2: u[n] = Z;}w o[m]; accumulated sum of all previous impulses

o[n]=u[n]-u[n-1]
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B Exponential Sequences
X[n]=Aca" Aand o are real numbers

-- Combining basic sequences:

x[n]:{oA“” ”nioo,.) x[n] = Aa"u[n]

B Sinusoidal Sequences

x[n]= Acos(w,n+¢)  foralln

A: amplitude, «, =24f,: frequency, ¢: phase

» It can be viewed as a sampled continuous-time sinusoidal. However, it is not
always periodic!
> Condition for being periodic with period N: x[n] = X[n+ N]
Thatis, Acos(@,n+¢)= Acos(m,(n+N)+¢)
or, w, (n + N ) = w,N + 27K , where k, n are integers (k, a fixed number; n, a
running index, —o0 <N < o0).
2> o,N =27K 2 w,=2K/N.
Hence, f, must be a rational number.

»  One discrete-time sinusoid corresponds to multiple continuous-time sinusoids of
different frequencies.
x[n]= Acos(w,n + ¢)
= Acos((w, + 22r)n+ @) foralln

where r is any integer

Typically, we pick up the lowest frequency (r=0) under the assumption that the
original continuous-time sinusoidal has a limited frequency value, 0< @, <27

or — < w, <. Thisis the unambiguous frequency interval.
0 g q y
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B Complex Exponential Sequences
x[n]= A", A=|Ae’, and a =|ale’

Hence,

x[n]=|Ala|"e! " =| A" cos(wyn + @) + j|Ale| sin(won + ¢)

< 2.2 Discrete-Time Systems

® A discrete-time system is defined mathematically as a transformation or operator that
maps an input sequence with values X[N] into an output sequence with values y[n].
y[n] =T {x[n]}
B Ideal Delay
yIn]=x[n—-n,], —wo<n<oo,

where Ny is a fixed positive integer called the delay of the system.
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B Moving Average

M,

1
nl=———— X[n—k

® Memoryless: If the output y[n] at every value of n depends only on the input x[n]

at the same value of n.

® Linear: If it satisfies the principle of superposition.
(a) Additivity: T {x,[n]+X,[n]} =T {x,[n]}+ T {x,[n]}
(b) Homogeneity or scaling: T {ax[n]} =arl {x[n]}

® Time-invariant (shift-invariant): A time shift or delay of the input sequence causes a

corresponding shift in the output sequence.

y[n]
- T » delay — » y[Nn-no]
x[n]
X[n-no]
——| delay /———= T = Yun]

e.g. y[n] = x[an] is not time-invariant.
® Causality: Forany N, the output sequence value at the index 1N = N, depends only

on the input sequence values for N < N,

® Stability in the bounded-input, bounded-output sense (BIBO): If and only if every

bounded input sequence produces a bounded output sequence.
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< Linear Time-invariant (LTI) Systems

® Alinear system is completely characterized by its impulse response.

o0
(1) Sequence as a sum of delayed impulses: X[n] = Z X[m]S[n—m]

Mm=—o0
(2) An LTI system due to S[N] input
X[n] = o[n] yields y[n]=h[n] (impulse response)

(3) x[n]= i x[m]S[n—m] vields y[n]= i X[m]h[n —m]

M=—o0o0 Mm=-—o0

® Convolutionsum: f,[n]= i f,[m]f,[n—m]= f,[n]=* f,[n]

M=—o0

B Procedure of convolution
1. Time-reverse: h[m] > h[-m]
2. Choose an n value
3. shift h[-m] byn: h[n—m]
4. Multiplication:  X[n]-h[n—m]
o0
5. Summation overm:  Y[N] = Z X[m]h[n—m]
M=—o0

Choose another n value, go to Step 3.
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I Xpla] = x[0]8[n] I T yola] = x[0)4]n]

x3[n] = x{3]é[n - 3] vi[n] = x[3)h[n - 3]

x[n] = x_s[n] + xg[n] + xsfn] Vnl = yoaln] + yoln] + vs[n]

| |

<> Properties of LTI Systems

® The properties of an LTI system can be observed from its impulse response.
® Commutative: x[n]*h[n]=h[n]=*x[n]
® Distributive: x[n]=(h,[n]+h,[n]) = x[n]*h,[n]+ x[n]*h,[n]
® Cascade connection:  h[n]=h[n]=*h,[n]
® Parallel connection:  h[n]=h,[n]+h,[n]
® BIBO stability: If h[n] is absolutely summable, i.e.,
S |h[K] = S <o
k=-o0

® Casual sequence - Causal system: h[n]=0, n<0
® Memoryless LTI: h[n]=kd[n]
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® Some frequently used systems:

-- Ideal Delay
y[n]=x[n-n,] h[n]=6[n-n,]
-- Moving Average
= . 3 K 1 m<nsm
= vz, 2K b=, MM
' ‘ - 0, otherwise
-- Accumulator
y[n]= Zn: x[k] h[n] = u[n], unit step

k=—o0

® Finite-duration Impulse Response (FIR):
Its impulse response has only a finite number of nonzero samples.
-- FIR systems are always stable.
® Infinite-duration Impulse Response (1IR):
Its impulse response is infinite in duration.

® [nverse System:

aln] |——

x[n] y[n] x[n]

_ Jln[m]

\ 4

System g[n] is the inverse of h[n]
h[n]*g[n] = &[n]
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< Linear Constant-Coefficient Difference Equations
B An important class of LTI system is described by linear constant-coefficient equation.

® Difference Equation: (general form)
N M
> a,y[n—k]= Y b,x[n-m]
k=0 m=0

First-order system: y[n]=ay[n—1]+ bx[n]
Solution:

y[n]=yp[n]+ yn[n]= particular solution + homogeneous solution

Homogeneous solution: i a y[n-k]=0 (x[n]=0)
k=0

Particular solution: (experience!)

< Frequency-Domain Representation
® Eigenfunction and eigenvalue
What is eigenfunction of a system T{.}?
Cf[n]=T{f[n]} , where C is a complex constant, eigenvalue.
The output waveform has the same shape of the input waveform.

The complex exponential sequence is the eigenfunction of any LTI system.

X[n]:eja)n — | LTI h[n] I y[n]:H(eja))eja)n

H(e”)= 3 h[KJe '™

k=—c0
Magnitude: ‘H (ej“’)‘ Phase: ZH (€'*)
® H(e!”) is periodic.

® The above eigenfunction analysis is valid when the input is applied to the system at

N =—o00,
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<> Fourier Transform of Sequences

B [nterpretation: Decompose an “arbitrary” sequence into “sinusoidal components” of dif-

ferent frequencies.
® DTFT: Discrete-time Fourier Transform

Analysis: X (1) = > x[n]e " = F{x[n]} -z<w<x

N=—o0
Synthesis: x[n]:zir X (e')e!"dw=F{X (e!)}
72' =TT

x[n] <> X (€') Discrete-Time Fourier Transform pair
Remarks: Fourier transform is also called Fourier spectrum.
Magnitude spectrum: | X (1) |
Phase spectrum: X (€1%)
X (e1°) is continuous in frequency, @ .
X (e1°) is “periodic™ with period 277 .

® Does every x[n] have DTFT?
Convergence conditions: “error”’—>0 as N (samples)—> o0
(A) Absolutely summable

i x[n] <o (uniform convergence)

N=-o0

(B) Finite energy (square-summable) =—> mean-square error -0

i \x[n]\z <o (mean-square convergence)

N=—o0

Gibbs phenomenon
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® DTFT of Special Functions
-- Impulse
o[lnje1

S[n—n,] <> e
-- Constant

le i 276 (e + 27r); An periodic impulse train.

r=—oo

Note: This is the analog impulse (delta) function.
-- Cosine sequence

cos(@yn+0) <> 3 76?5 (@ — @y + 27K) + €S (e + w, + 27K) |
k=—o0
-- Complex exponential
" & > 278 (w - w, — 2a)

-- Unit step

_jw

] > — o+ S 5(w + 2a1)

=—00

< Symmetry Properties of Fourier Transform
Any (complex) x[n] can be decomposed into x[n] = xe[n] + xo[n]
where  Conjugate-symmetric part: x,[n] = (x[n]+ x*[-n])/2
Conjugate-antisymmetric part: X,[n] = (X[n]—x*[-n])/2
Remark: x[n] is conjugate-symmetric if x[n]= Xx*[-n]

x[n] is conjugate-antisymmetric if X[n] = —x*[-n]

On the other hand, X (€') = Re[X (€'*)]+ j Im[X (e'*)]
Keyl: x[n]<>Re[X(e!)], x,[n]<«> jIm[X(e!*)]

Similarly, X(ej‘“) can be decomposed into
X (') = X, (e') + X, (e')
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where Xe(ej“’) is the conjugate-symmetric part and

X, (el”) is the conjugate-antisymmetric part
Key2: Re[x[n]]< X.(e"), jIm[x[n]]«< X,(e!*)
Special case 1: If x[n] isreal, X (ejw) IS conjugate symmetric

(magnitude —even, phase — odd)

Special case 2: If x[n] is conjugate-symmtric, X (ej“’) is real.

o
!
k=
! Real
g
<
Radian frequency (w)
(a)
2
S
T 1k
£ o0 N Imaginary
< — -
1
- ! 1 1
- _T 0 T T
2 2
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(b)
5
o 3
B 3
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E P
1
0 1 1 1
- iy 0 T T
2 2
Radian frequency (@)
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1.0
S .
A Phase
2 05| DS s
o
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-7 T T T
-7 0 5

Radian frequency (w)
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TABLE2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM
Sequence Fourier Transform
x[n] X (el™)
1 x*[n] X¥(e™1®)
2. x*[—n] X* (el ™)
3. Relx[n]} X o(e!™)  (conjugate-symmetric part of X (e/*))

4. jIm{x[n])

w

. Xe[n] (conjugate-symmetric part of x[n])

6. xy[n] (conjugate-antisymmetric part of x[n])

X o(e/™)  (conjugate-antisymmetric part of X (¢/%))
X p(el®) = Re(X (e/))

jX;(:.J'”] = jIm({X (el™))

The following properties apply only when x[n] is real:

. Any real x[n]
8. Any real x[n]
9. Any real x[n]
10. Any real x[n]
11. Any real x[n]
12. xe[n] (even part of x[n])

13. xa[n]  (odd part of x[r])

X (el™) = X*(e™ 1)y (Fourier transform is conjugate symmeltric)

Xp(e/™) = Xgp(e /) (real part is even)

Xy(el®) = —X;(e”J®) (imaginary part is odd)
X (e =X (e77™)| (magnitude is even)
LX /¥y = —LX (¢77*) (phase is odd)

X pled®)

JXe?™)

< Fourier Transform Theorems

-- Linearity
If x[n] & X(') and
then ax[n]+by[n] <
-- Time Shift
If  xn <
then x[n—-n,] <
-- Frequency Modulation
If x[n] <
then e”"x[n]
--Time Reversal
If  x[n] >
then x[-n] <
-- Differentiation in frequency

If xn] <«

then nx[n] <« ]
dw
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-- Convolution

If xn] < XE) and h[n] << H(e?)

then  x[n]*h[n] < X (e1”)H (e!*)

-- Multiplication
If x[n] < XE*) and wn] < W)

then  x[n]w[n] & ij” X (e1)W (e1“-Yde
2m
-- Parseval’s Theorem
If x[n] <« X(E*)

el 1 ¢» :
then E-= x[n11?=—[" | X(e*)]* d
> Ix[n]| zﬂLJ e'“) do

N=-—o0

TABLE2.2 FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform
x[n] X (e®)
vlnl Y (e)
1. ax[n]+ by[n] aX (eJ®) + bY (ed®)
2. x[n —ngl (ng aninteger) e 1A X (el
3. (;ﬂﬂn”_l-[”' X ({,jia.-—t.d“]}
4, x[—n] X (e~ @)
X*(el”) if x[n] real.
- dXx (ed®)
3. nx|[n] J o
6. x[n] * y[n] X (e/)Y (e/®)
1 T "
7. x[n]y[n] = X (/)Y (/=) do
2n J-x

Parseval’s theorem:

o0 1 T .
8. Z |x[n]l = 5 |X (e!™) 2dw
< J—7

n==nc

0o | - _
9. Z x[n]y*[n] = ;f X (&Y *(e!dew
- b4

n=—0c

NCTU EE
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TABLE2.3 FOURIER TRANSFORM PAIRS
Sequence Fourier Transform
1. 8[n] 1
2. 8[n — ng] e~ Jomn
o0
3.1 (—oc < n < o0) Z 28w + 27k)
k==0c
1
4. a"uln] (lal < 1) _
1—ae ¥
1 o0
5. unl ]—e-_'a"" + Z m8(w + 2mk)
k=—nc
1
6. (n4 Da"uln] (lal <1) _—
[n]  (lal 1 —ac—Jo)7?
" sin 1 1
7. L"(”H“M (Irl < 1) _ -
sin wp 1 = 2rcoswpe /@ + rle—Jj2w
Sinwen ; I, |o| < w..
Sin@cn jory =
8 Tn X !0. we < |wl <7
9. x[n] = 1, 05::§M Sin[a{(M+l]/218_ij’,3
0, otherwise sinfw/2)
) o0
10, efewon Y 28w — wq +21k)
k==oc
o s i
11. cos(wyn + ¢) Z [mel? 5w — w( +27k) + te 15w + w( + 2rk)]

k=—mx
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