

Review of Discrete Fourier Transform

- x[n] - $\infty <_n <+\infty$
- Fourier Transform
- Z-transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

• If $x[n] \quad 0 \le n \le N-1$ (finite-duration sequence)

Discrete Fourier Transform (DFT)

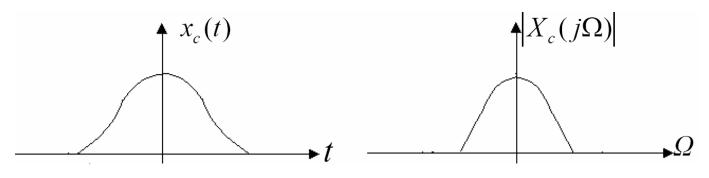
4 Forms of Fourier Transform

Symbol:

- $x_c(t)$ ----- aperiodic continuous signals
- $\widetilde{x}_c(t)$ ------ periodic continuous signals
 - $\Omega\,$ ----- analog frequency
 - ω ----- digital frequency "Sampled" frequency ($\omega = \Omega T$)
- t_p ------ period of periodic signals such as $x_c(t)$ $X(j \Omega)$ ------Fourier transform of CT signals $X(e^{j\omega})$ ------Fourier transform of sequences

Continuous-Time and Continuous-Frequency

$$\begin{cases} X_{c}(j\Omega) = \int_{-\infty}^{\infty} x_{c}(t)e^{-j\Omega t}dt \\ x_{c}(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} X_{c}(j\Omega)e^{j\Omega t}d\Omega \end{cases}$$

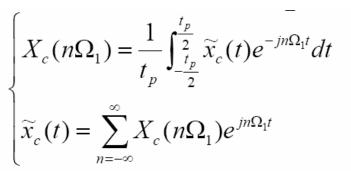


Continuous Aperiodic Continuous Aperiodic

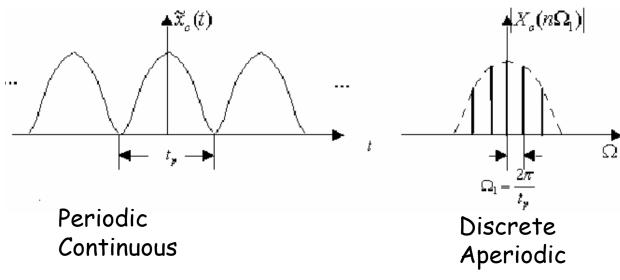
cwliu@twins.ee.nctu.edu.tw

Continuous-Time and Discrete-Frequency

where:

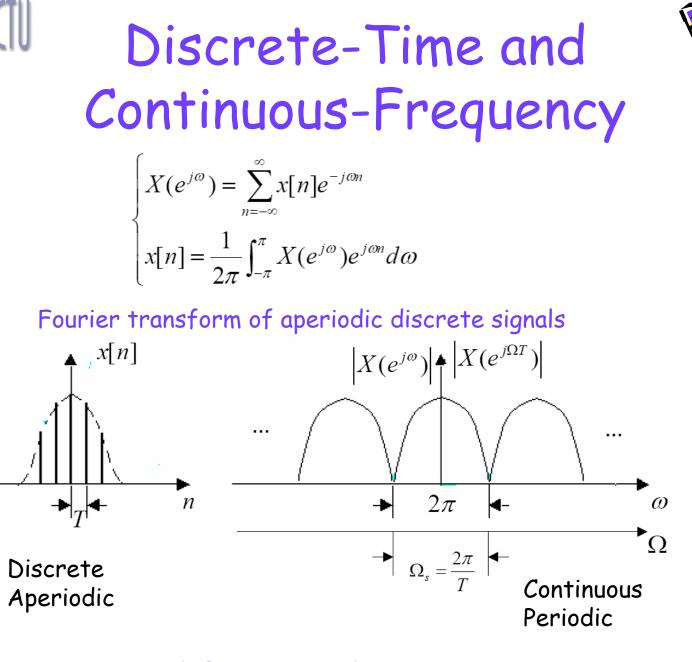


Fourier series of periodic continuous signals



cwliu@twins.ee.nctu.edu.tw

 $\Omega_1 = \frac{2\pi}{t_p}$

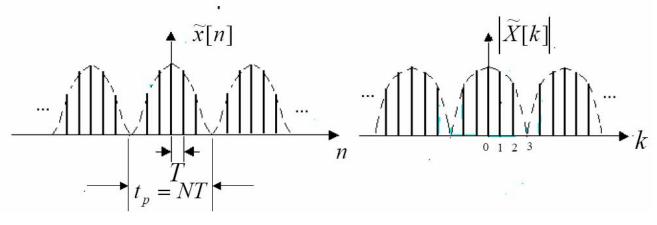


cwliu@twins.ee.nctu.edu.tw

Discrete Fourier Transform

time-domain: periodic, discrete

frequency-domain: discrete, periodic



• DFT is identical to samples of Fourier transforms

• In DSP applications, we are able to store only a finite number of samples

 \bullet we are able to compute the spectrum only at specific discrete values of ω

Discrete Fourier Transform

• Discrete Fourier transform (DFT) pairs

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, 1, \dots, N-1$$

N complex multiplications
N-1 complex additions
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad n = 0, 1, \dots, N-1,$$

where $W_N^{-kn} = e^{-j\frac{2\pi}{N}kn}$

DFT/IDFT can be implemented by using the same hardware
 It requires N² complex multiplications and N(N-1) complex additions

More About DFT

- Properties of Discrete Fourier Transform
- Linear Convolution and Discrete Fourier Transform
- Discrete Cosine Transform

Periodic Sequence

- Consider a periodic sequence $\tilde{x}[n]$ of period N
- The sequence can be represented by Fourier series $\widetilde{x}[n] = \frac{1}{N} \sum_{k} \widetilde{X}[k] e^{j(2\pi/N)kn}$
- The Fourier series for any discrete-time signal with period N requires only N harmonically related complex exponentials.

:
$$e_{k+lN}[n] = e^{j(2\pi/N)(k+lN)n} = e^{j(2\pi/N)kn} = e_k[n]$$

$$\therefore \quad \widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)kn}$$

cwliu@twins.ee.nctu.edu.tw

To obtain $\widetilde{X}[k]$ Apply the Orthogonality property, we have

$$\sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j(2\pi/N)rn} = \sum_{n=0}^{N-1} \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j(2\pi/N)(k-r)n}$$

Interchange the order of summation

$$\sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j(2\pi/N)rn} = \sum_{k=0}^{N-1} \widetilde{X}[k] \left[\frac{1}{N} \sum_{n=0}^{N-1} e^{j(2\pi/N)(k-r)n} \right]$$

Because:

$$\frac{1}{N}\sum_{n=0}^{N-1} e^{j(2\pi/N)(k-r)n} = \begin{cases} 1, & k-r = mN, m \in \mathbb{Z} \\ 0, & \text{otherwise} \end{cases}$$
$$\sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j(\frac{2\pi}{N})rn} = \widetilde{X}[r]$$

The coefficients are also periodic with period N

DFS Representation of a Periodic Sequence

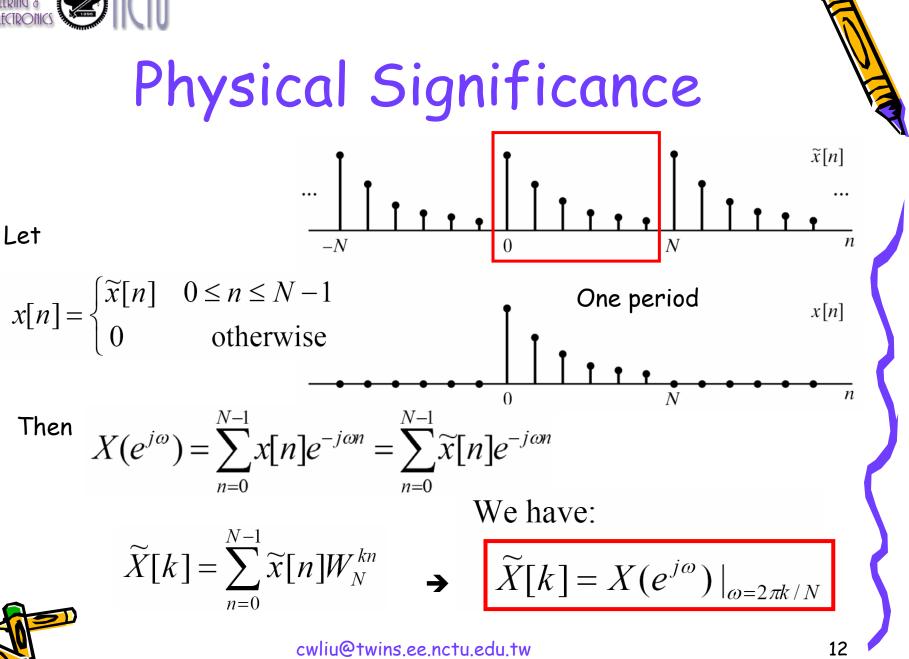
Synthesis equation

Analysis equation

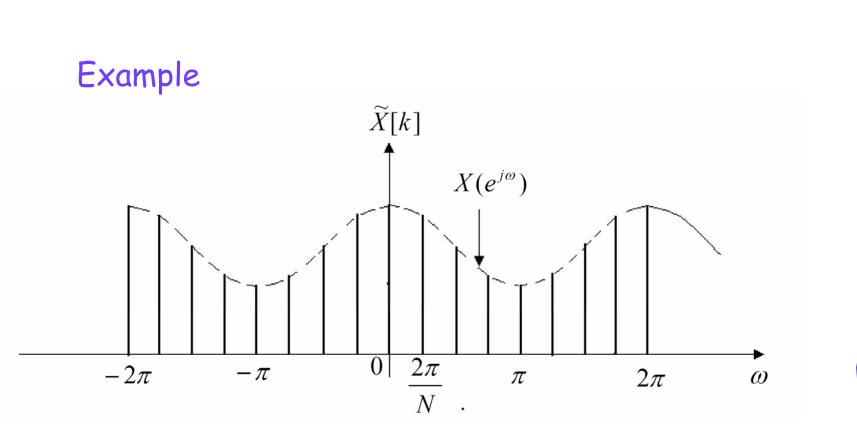
$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$

 $\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] W_N^{kn}$

 $\widetilde{X}[k]$ and $\widetilde{x}[n]$ are periodic sequence of period N



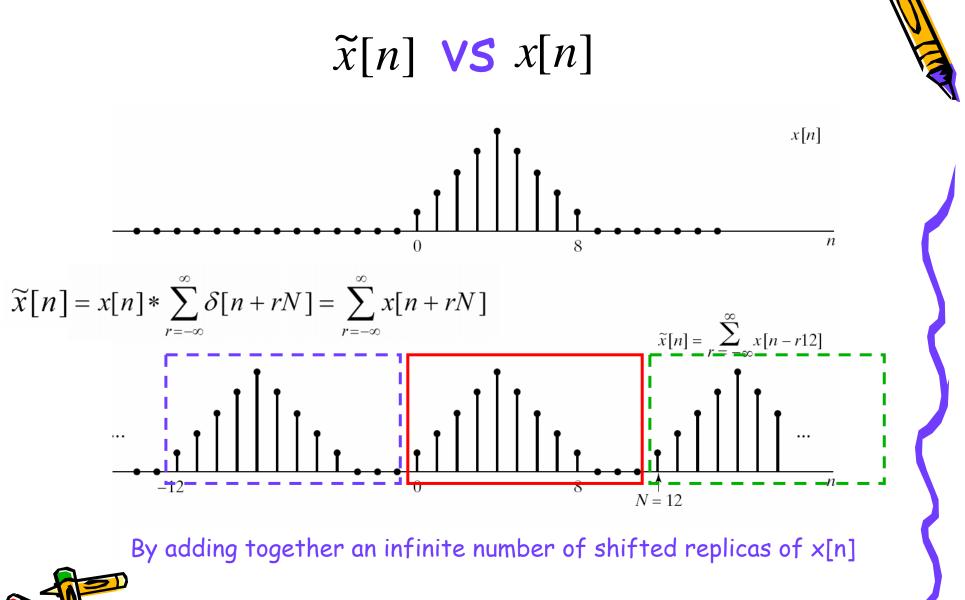
$\widetilde{X}[k]$ vs $X(e^{j\omega})$



cwliu@twins.ee.nctu.edu.tw

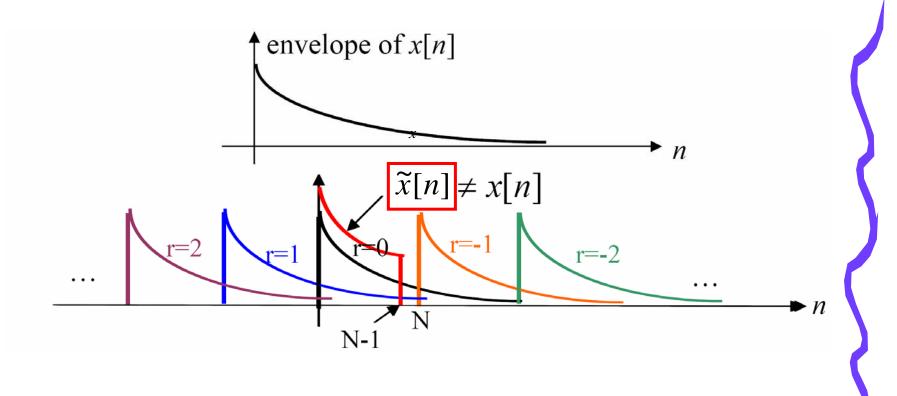
Sampling the Fourier Transform

Suppose
$$X(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m}$$
 exists
Then
 $\widetilde{X}[k] = X(e^{j\omega})|_{\omega=(2\pi/N)k} = X(e^{(2\pi/N)k})$
or $\widetilde{X}[k] = X(z)|_{z=e^{j(2\pi/N)k}} = X(e^{(2\pi/N)k})$
The sampling sequence is periodic with period N
Since $\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} \left[\sum_{m=-\infty}^{\infty} x[m]e^{-j(2\pi/N)km} \right] W_N^{-kn}$
 $= \sum_{m=-\infty}^{\infty} x[m] \left[\frac{1}{N} \sum_{k=0}^{N-1} W_N^{-k(n-m)} \right] = x[n] * \sum_{r=-\infty}^{\infty} \delta[n+rN]$
(wliu@twins.ee.nctu.edu.tw



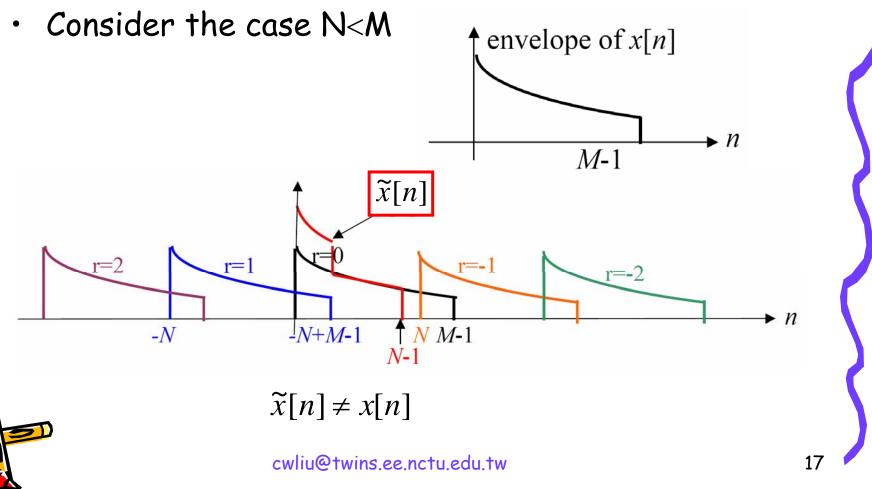
Aliasing Problem 1

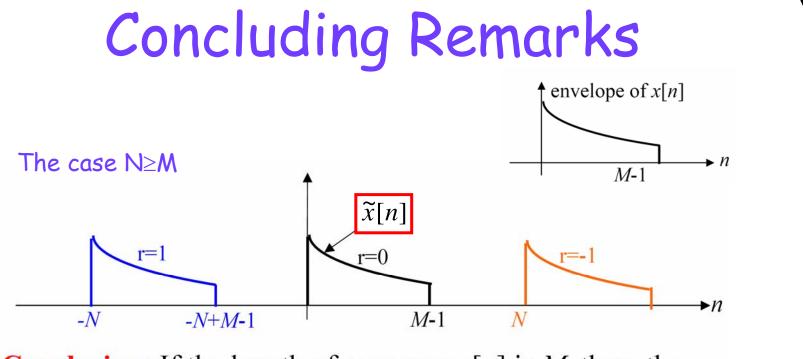
x[n] is infinite-length sequence



Aliasing Problem 2

• If x[n] is finite-length sequence, $0 \le n \le M-1$





Conclusion: If the length of sequence x[n] is M, then the sampling points N of its Fourier transform must be larger than or equal to M, otherwise ,we cannot recover x[n] from $\widetilde{x}[n]$, i.e. ($n \mod N$)

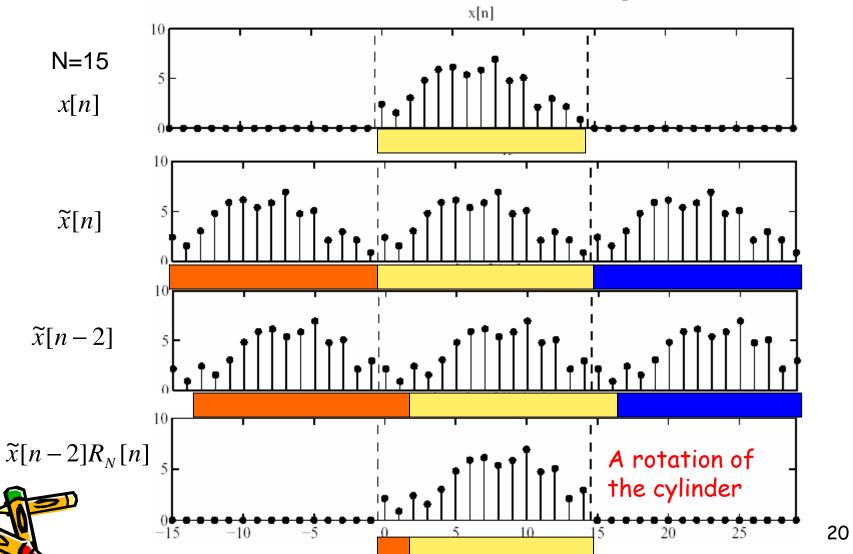
$$x[n] = \begin{cases} \widetilde{x}[n] & 0 \le n \le N-1 \\ 0 & otherwise \end{cases} \quad \text{or} \quad \widetilde{x}[n] = x[((n))]$$

• Linearity

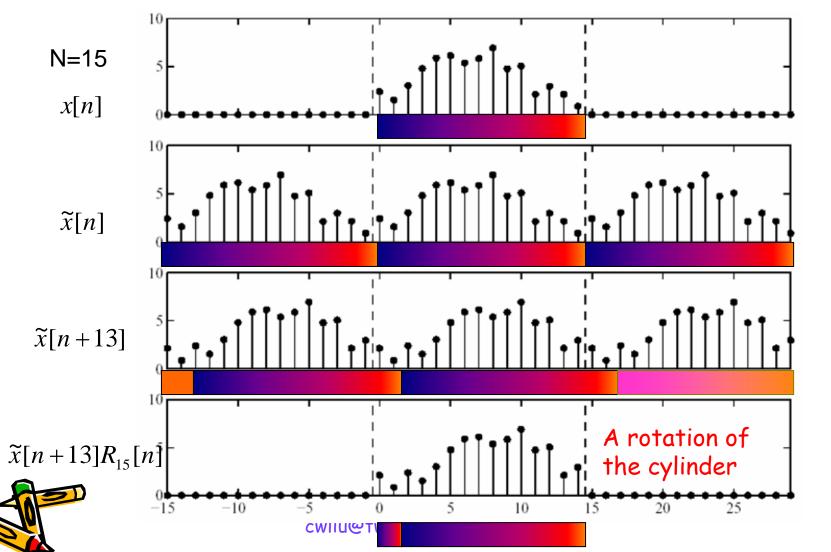
if $x_1[n] \xleftarrow{\mathcal{D}FT} X_1[k]$ of length N₁ $x_2[n] \xleftarrow{\mathcal{D}FT} X_2[k]$ of length N₂

then
$$ax_1[n] + bx_2[n] \xleftarrow{\mathcal{D}FT} aX_1[k] + bX_2[k]$$

of length $N_3 = max[N_1, N_2]$



Circular Shift of a Sequence



Property of DFT

Circular Shift

if
$$x[n] \xrightarrow{\mathcal{D}FT} X[k]$$
 of length N

then
$$x[((n-m))_N] \xleftarrow{DFT} e^{-j(2\pi k/N)m}X[k]$$

 $0 \le m \le N-1$ A rotation of the
sequence in the interval

that is
$$x[((n-m))_N] \xrightarrow{\mathcal{D}FT} W_N^{mk}X[k]$$

 $0 \le n \le N-1$

On the other hand

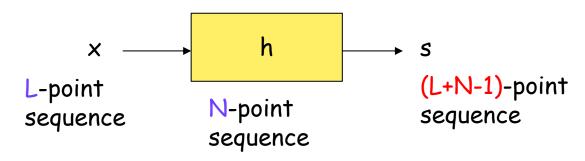
$$W_N^{-ln} x[n] \longleftrightarrow X[((k-l))_N] \quad 0 \le l \le N-1$$

- Duality
 - 8.6.3
- Symmetry - 8.6.4

More About DFT

- Properties of Discrete Fourier Transform
- Linear Convolution and Discrete Fourier Transform
- Discrete Cosine Transform

Review of Convolution



- Given two sequences:
 - Data sequence x_i , $0 \le i \le N-1$, of length N
 - Filter sequence h_i , $0 \le i \le L-1$, of length L
- Linear convolution

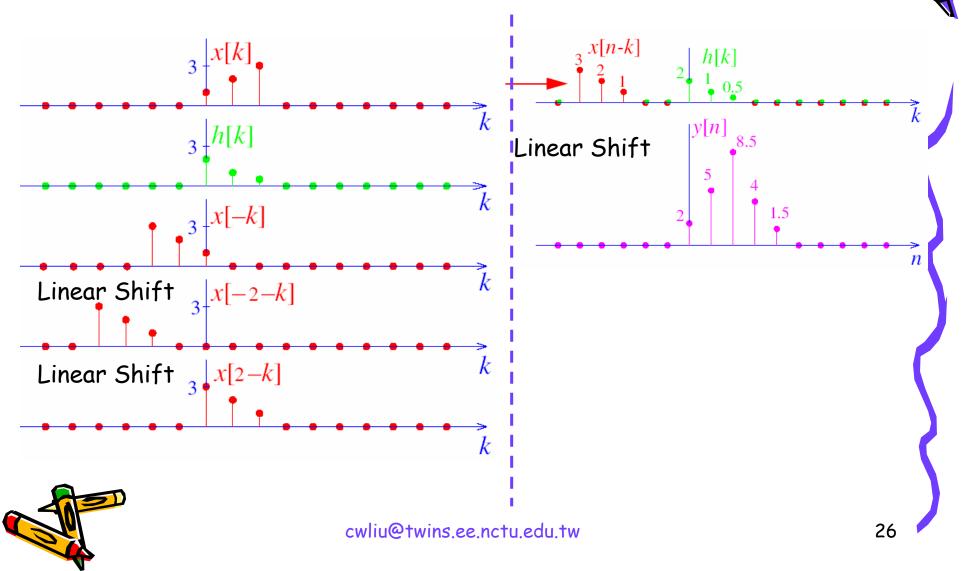
NL multiplications

 $y_i = x_i * h_i = h_i * x_i, i = 0, 1, \dots, L + N - 2$

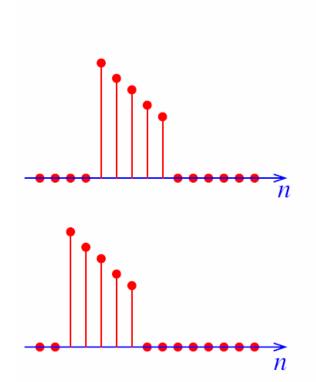
Direct computation, for example 2-by-2 convolution

 $\begin{vmatrix} s_0 \\ s_1 \\ s_2 \end{vmatrix} = \begin{vmatrix} h_0 & 0 \\ h_1 & h_0 \\ 0 & h_1 \end{vmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}_{\mu}$ require 4 multiplications and 1 addition

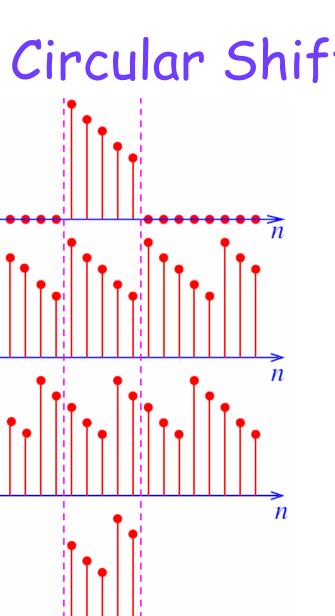
Linear Convolution



Linear Shift vs Circular Shift



Conventional shift (linear shift)

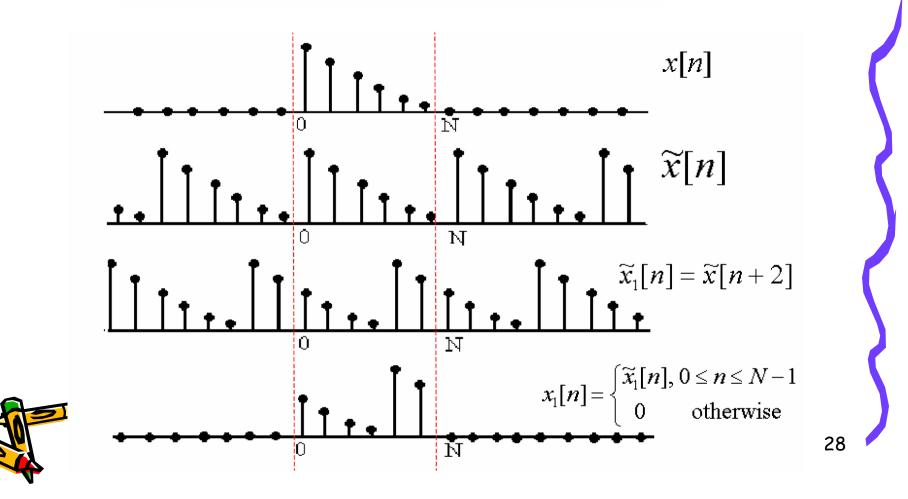


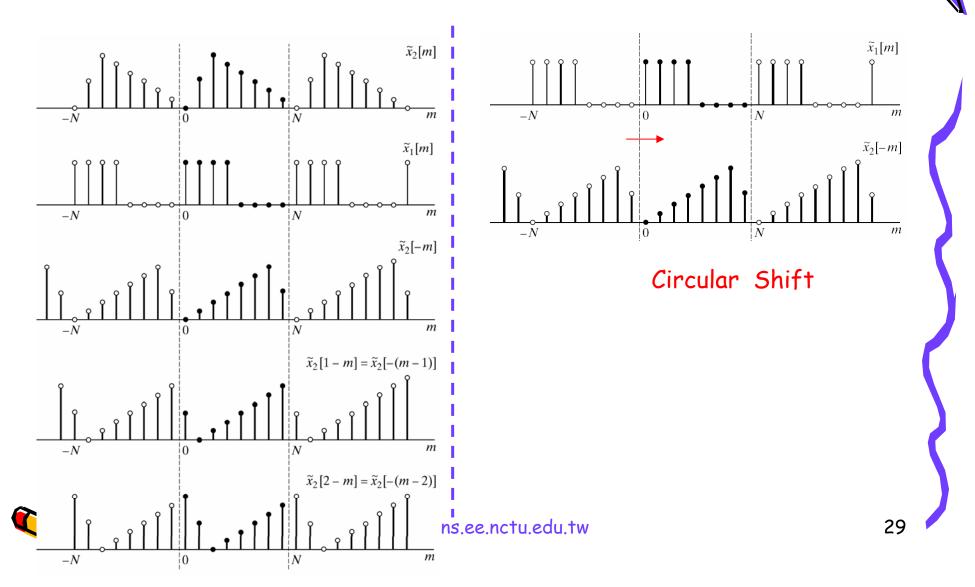
0

N

n

 $x_1[n] \stackrel{\Delta}{=} x[((n-m))_N] \quad (0 \le n \le N-1)$





 Suppose two finite-length duration sequences: $x_1[n]$ and $x_2[n]$ of length N

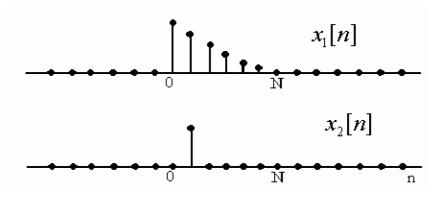
$$x_{3}[n] = \sum_{m=0}^{N-1} \widetilde{x}_{1}[m] \widetilde{x}_{2}[n-m] \quad 0 \le n \le N-1$$

or
$$x_{3}[n] = \sum_{m=0}^{N-1} x_{1}[((m))_{N}] x_{2}[((n-m))_{N}] \quad 0 \le n \le N-1$$

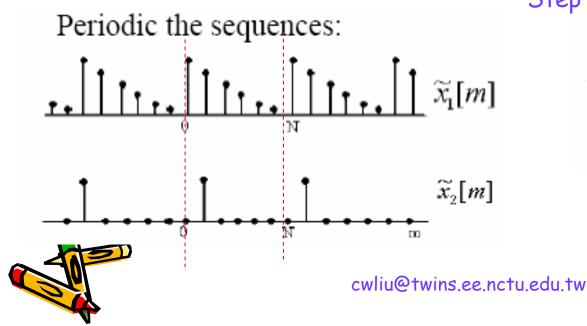
 $x_3[n]$ is also a finite-length duration sequences of length N

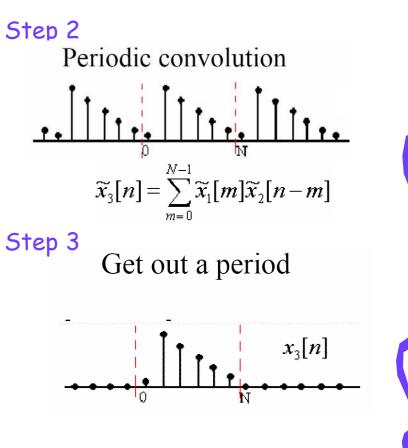
- 1. To period the two sequence with period N (large enough)
- 2. To compute the periodic convolution of the two periodic sequences
- 3. To get out the duration sequence between [0, N-1]

Example



Step 1





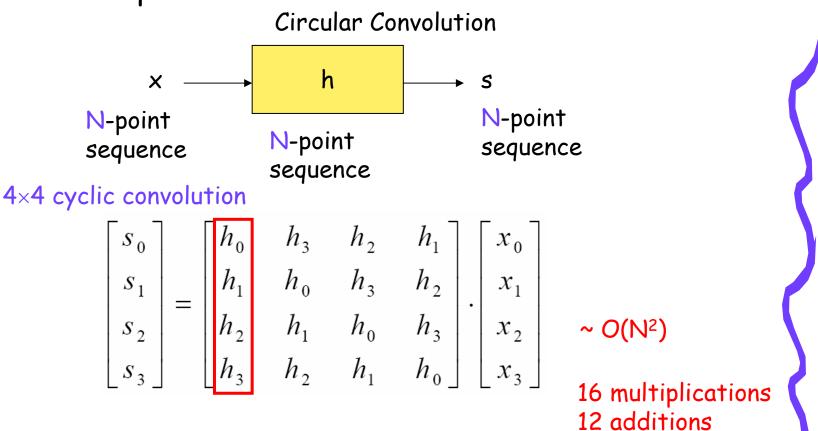
Circular Convolution Property

- Usually, we use the following notation to represent the circular convolution of length N $x_3[n] = x_1[n] \bigotimes x_2[n]$
- Circular convolution property

$$x_{1}[n] \bigotimes x_{2}[n] \xrightarrow{\mathcal{D}FT} X_{1}[k]X_{2}[k]$$
$$x_{1}[n]x_{2}[n] \xrightarrow{\mathcal{D}FT} \frac{1}{N}X_{1}[k] \bigotimes X_{2}[k]$$
$$\xrightarrow{N-1}$$

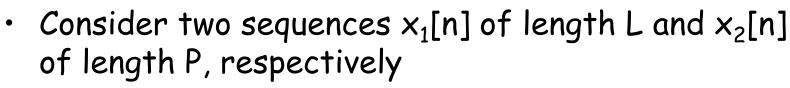
where
$$X_1[k] \otimes X_2[k] = \sum_{l=0}^{N-1} X_1[l] X_2[((k-l))_N]$$





cwliu@twins.ee.nctu.edu.tw

Using Circular Convolution to Implement Linear Convolution



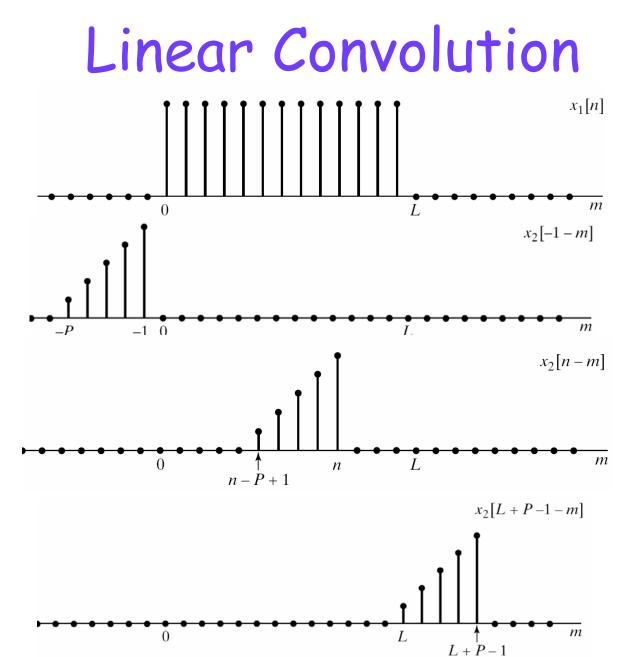
• The linear convolution $x_3 = x_1[n] * x_2[n]$

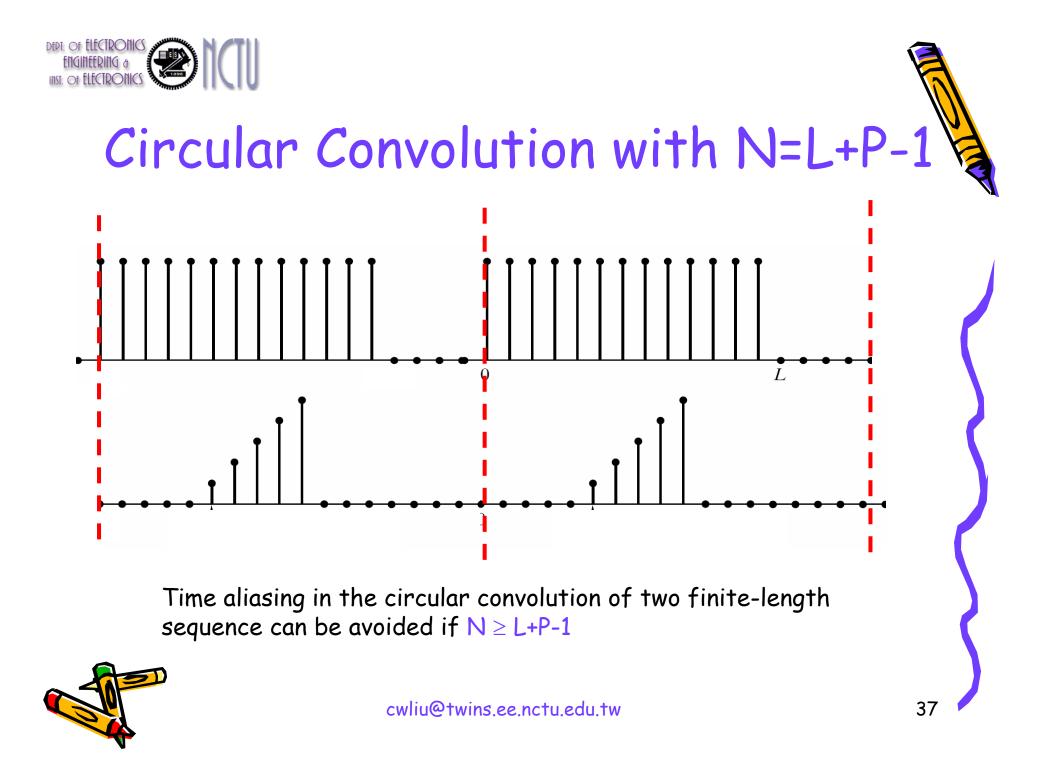
$$x_{3}[n] = \sum_{m=-\infty}^{\infty} x_{1}[m]x_{2}[n-m]$$

a sequence of length L+P-1

• Choose N, such that $N \ge L+P-1$, then

$$x_1[n]$$
 (N) $x_2[n] = x_1[n] * x_2[n]$

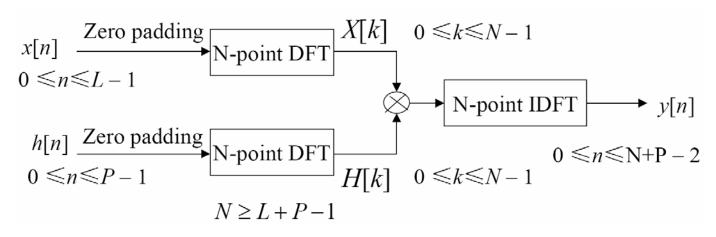






Concluding Remarks

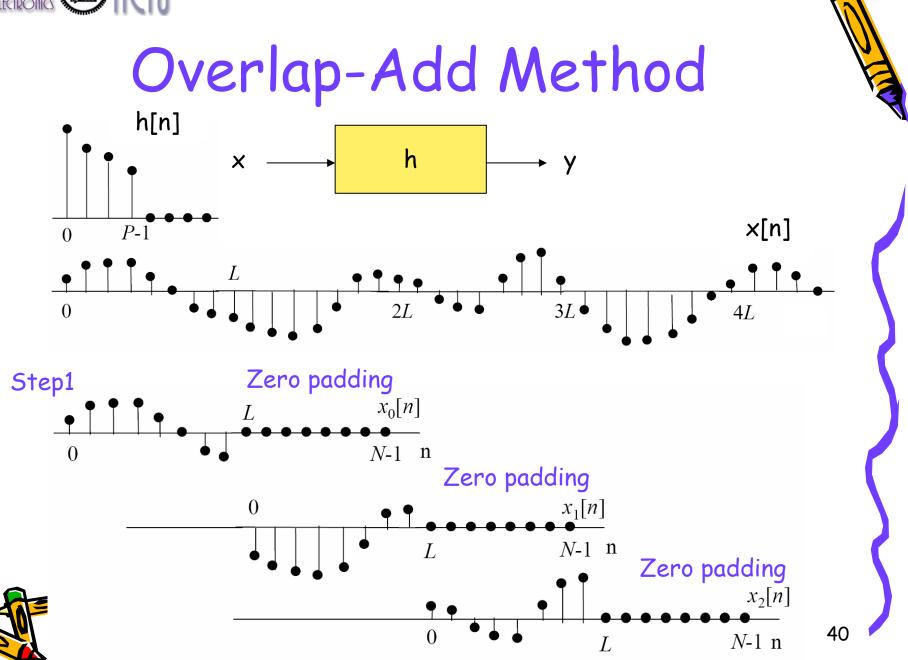
- The convolution of two finite-length sequences can be interpreted by circular convolution with large enough length
- Circular convolution can be implemented by DFT/FFT

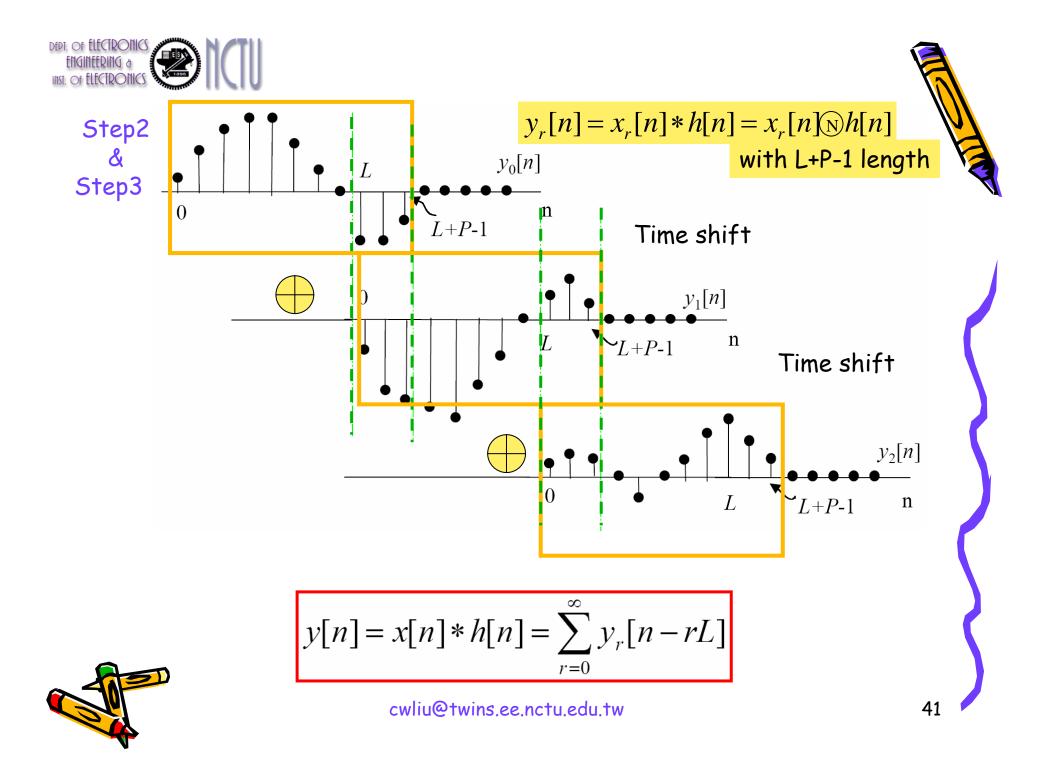


- However, in real applications....
 - For an FIR system, the input sequence is of indefinite duration
 - To store the entire input signal requires?
 - A large delay in processing
 - An indefinite memory
 - Block convolution

Block Convolution

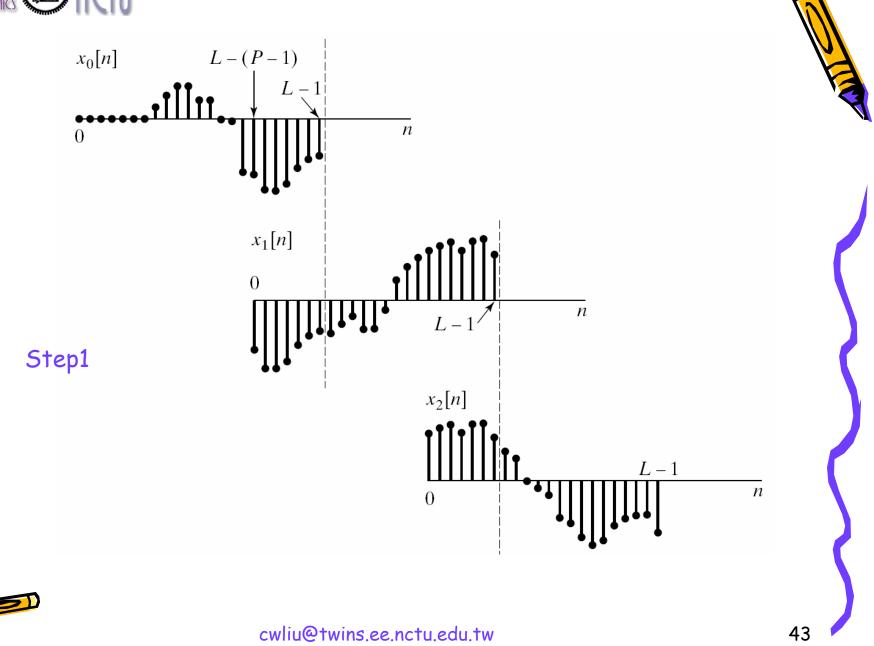
- Step1: To segment a sequence into sections of length L
- Step2: Each section is convolved with the finite-length impulse response of length P by using DFT/FFT of length N=L+P-1
- Step3: The filtered sections are fitted together in an appropriate way
- Overlap-add method
- Overlap-save method

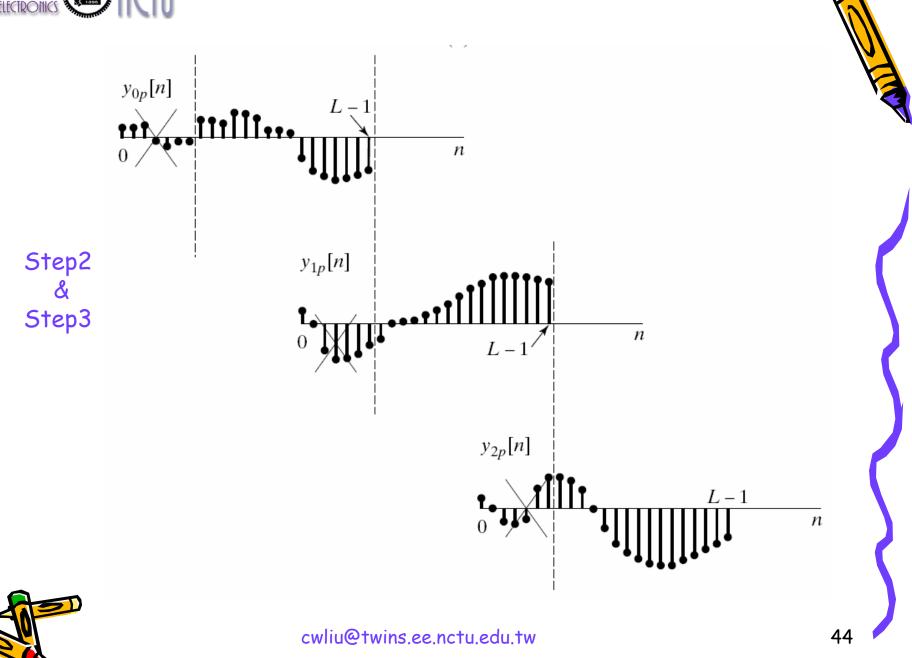




- Suppose L > P.
- Consider an L-point circular convolution of a P-point impulse response h[n] with an L-point input sequence x_r[n]
 - Due to aliasing problem, the first (P-1)-point of the result is incorrect
 - the remaining points [P, L-1] are identical to those that would be obtained by linear convolution
- Step1: To segment a sequence into sections of length L such that each section overlaps the preceding section by (P-1) points
- Step2: Each section is convolved with the finite-length impulse response of length P by using DFT/FFT of length L
- Step3: The first (P-1)-point of each filtered sequence must be discarded. The remaining samples from successive

sections are then abutted to construct the final output.





Fast Convolution with the FFT

- Given two sequences x_1 and x_2 of length N_1 and N_2 respectively
 - Direct implementation requires N_1N_2 complex multiplications
- Consider using FFT to convolve two sequences:
 - Pick N, a power of 2, such that $N \ge N_1 + N_2 1$
 - Zero-pad x_1 and x_2 to length N
 - Compute N-point FFTs of zero-padded x_1 and x_2 , one obtains X_1 and X_2
 - Multiply X_1 and X_2
 - Apply the IFFT to obtain the convolution sum of x_1 and x_2
 - Computation complexity: $2(N/2) \log_2 N + N + (N/2) \log_2 N$

- A sequence x[n] of length 1024
- FIR filter h[n] of length 34
- Direct computation: 34×1024=34816
- Using radix-2 FFT: 35840 (N=2048)
- Using overlap-add radix-2 FFT:
 - x[n] is segmented into a set of contiguous blocks of equal length 95
 - Apply radix-2 FFT of length 128
 - Each segment requires 1472 multiplications
 - This algorithm requires total 16192 multiplications

