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Review of Discrete Fourier Transform
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4 Forms of Fourier Transform

“Sampled” frequency
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Continuous-Time and 
Continuous-Frequency

Continuous
Aperiodic

Continuous
Aperiodic
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Continuous-Time and 
Discrete-Frequency

Fourier series of periodic continuous signals

Periodic
Continuous

Discrete 
Aperiodic
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Discrete-Time and 
Continuous-Frequency

Fourier transform of aperiodic discrete signals

Discrete
Aperiodic Continuous

Periodic 
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Discrete Fourier Transform

• DFT is identical to samples of Fourier transforms
• In DSP applications, we are able to store only a finite 
number of samples
• we are able to compute the spectrum only at specific 
discrete values of ω
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Discrete Fourier Transform
• Discrete Fourier transform (DFT) pairs
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• DFT/IDFT can be implemented by using the same hardware
• It requires N2 complex multiplications and N(N-1) complex 
additions

N complex multiplications
N-1 complex additions
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More About DFT
• Properties of Discrete Fourier 

Transform
• Linear Convolution and Discrete 

Fourier Transform
• Discrete Cosine Transform
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Periodic Sequence
• Consider a periodic sequence         of period N
• The sequence can be represented by Fourier 

series

• The Fourier series for any discrete-time signal 
with period N requires only N harmonically related 
complex exponentials.
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Apply the Orthogonality property, we have

Interchange the order of summation

The coefficients are also periodic with period N    
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DFS Representation of a 
Periodic Sequence

Synthesis equation Analysis equation

[ ] [ ] NnxkX  period of sequence periodic are ~ and ~
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Physical Significance 

Let

One period

Then
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vs][~ kX )( ωjeX

Example
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Sampling the Fourier Transform

N
π2

unit circle 

Then

or

The sampling sequence is periodic with period N

Suppose exists

Since 
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vs][~ nx ][nx

By adding together an infinite number of shifted replicas of x[n]
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Aliasing Problem 1
• x[n] is infinite-length sequence

][~ nx

x



cwliu@twins.ee.nctu.edu.tw 17

Aliasing Problem 2
• If x[n] is finite-length sequence, 0≤n≤M-1
• Consider the case N<M

][][~ nxnx ≠

][~ nx
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Concluding Remarks

][~ nx

The case N≥M

or



cwliu@twins.ee.nctu.edu.tw 19

Property of DFT
• Linearity

if

then

of length N1

of length N2

of length N3=max[N1 , N2]
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Circular Shift of a Sequence
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Circular Shift of a Sequence
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0 ≤ n ≤ N-1

Property of DFT
• Circular Shift

if of length N

then

A rotation of the 
sequence in the interval

m

that is

0 ≤ l ≤ N-1
On the other hand
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Other Properties of DFT
• Duality

– 8.6.3

• Symmetry
– 8.6.4
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More About DFT
• Properties of Discrete Fourier 

Transform
• Linear Convolution and Discrete 

Fourier Transform
• Discrete Cosine Transform
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Review of Convolution

• Given two sequences:
– Data sequence xi, 0 ≤ i≤ N-1, of length N
– Filter sequence hi, 0 ≤ i≤ L-1, of length L

• Linear convolution

• Direct computation, for example 2-by-2 convolution
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Linear Convolution

Linear Shift

Linear Shift

Linear Shift
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Linear Shift vs Circular Shift

Conventional shift
(linear shift)



cwliu@twins.ee.nctu.edu.tw 28

Circular Shift Example
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Periodic/Circular Convolution

Circular  Shift
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Circular Convolution Definition
• Suppose two finite-length duration sequences: 

x1[n] and x2[n] of length N

x3[n] is also a finite-length duration sequences of 
length N
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Computation for Circular 
Convolution

1. To period the two sequence with 
period N (large enough)

2. To compute the periodic convolution 
of the two periodic sequences

3. To get out the duration sequence 
between [0, N-1]
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Example

Step 1

Step 2

Step 3



cwliu@twins.ee.nctu.edu.tw 33

Circular Convolution Property
• Usually, we use the following notation to 

represent the circular convolution of length N

• Circular convolution property
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Circular Convolution 
Implementation

• Direct Implementation

hx s
N-point 
sequence N-point 

sequence

N-point 
sequence

4×4 cyclic convolution

16 multiplications
12 additions

Circular Convolution

~ O(N2) 
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Using Circular Convolution to 
Implement Linear Convolution 

• Consider two sequences x1[n] of length L and x2[n] 
of length P, respectively

• The linear convolution x3=x1[n] ∗x2[n]

• Choose N, such that N≥L+P-1, then

a sequence of length L+P-1
The same concept related 
to Winogrand Algorithm
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Linear Convolution
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Circular Convolution with N=L+P-1

Time aliasing in the circular convolution of two finite-length 
sequence can be avoided if N ≥ L+P-1
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Concluding Remarks
• The convolution of two finite-length sequences can be 

interpreted by circular convolution with large enough length
• Circular convolution can be implemented by DFT/FFT

• However, in real applications….
– For an FIR system, the input sequence is of indefinite duration
– To store the entire input signal requires ?

• A large delay in processing
• An indefinite memory 

– Block convolution
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Block Convolution
• Step1: To segment a sequence into 

sections of length L
• Step2: Each section is convolved with the 

finite-length impulse response of length P 
by using DFT/FFT of length N=L+P-1

• Step3: The filtered sections are fitted 
together in an appropriate way

• Overlap-add method
• Overlap-save method
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Overlap-Add Method
hx y

x[n]

h[n]

Step1 Zero padding

Zero padding

Zero padding
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Step2
&

Step3  

Time shift

][  ][][][][ N nhnxnhnxny rrr =∗=
with L+P-1 length

Time shift
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Overlap-Save Method
• Suppose L > P. 
• Consider an L-point circular convolution of a P-point impulse 

response h[n] with an L-point input sequence xr[n]
– Due to aliasing problem, the first (P-1)-point of the result is 

incorrect
– the remaining points [P, L-1] are identical to those that would 

be obtained by linear convolution

• Step1: To segment a sequence into sections of length L such 
that each section overlaps the preceding section by (P-1) 
points

• Step2: Each section is convolved with the finite-length 
impulse response of length P by using DFT/FFT of length L

• Step3: The first (P-1)-point of each filtered sequence must 
be discarded. The remaining samples from successive 
sections are then abutted to construct the final output.



cwliu@twins.ee.nctu.edu.tw 43

Step1 
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Step2 
&

Step3 
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Fast Convolution with the FFT
• Given two sequences x1 and x2 of length N1 and N2

respectively
– Direct implementation requires N1N2 complex 

multiplications
• Consider using FFT to convolve two sequences:

– Pick N, a power of 2, such that N≥N1+N2-1
– Zero-pad x1 and x2 to length N
– Compute N-point FFTs of zero-padded x1 and x2, one 

obtains X1 and X2
– Multiply X1 and X2
– Apply the IFFT to obtain the convolution sum of x1 and 

x2
– Computation complexity: 2(N/2) log2N + N + (N/2)log2N
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Example
• A sequence x[n] of length 1024
• FIR filter h[n] of length 34

• Direct computation: 34×1024=34816
• Using radix-2 FFT: 35840  (N=2048)
• Using overlap-add radix-2 FFT:

– x[n] is segmented into a set of contiguous blocks of 
equal length 95

– Apply radix-2 FFT of length 128
– Each segment requires 1472 multiplications
– This algorithm requires total 16192 multiplications


