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Filter Design 
 Introduction 

 Filter – An important class of LTI systems 

 We discuss frequency-selective filters mostly: LP, HP, … 

 We concentrate on the design of causal filters. 

 Three stages in filter design: 

 Specification: application dependent 

 “Design”: approximate the given spec using a causal discrete-time system 

 Realization: architectures and circuits (IC) implementation 

 IIR filter design techniques 

 FIR filter design techniques 

 

Frequency domain specifications    

   Magnitude: )( ωjeH   ,      Phase: )( ωjeH∠  

  Ex., Low-pass filter: Passband , Transition, Stopband  
 Frequencies: Passband cutoff  ωp 
                      Stopband cutoff ωs 
                       Transition bandwidth  ωs -ωp 
                       Error tolerance δ1, δ2 
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 Analog Filters  
 Butterworth Lowpass Filters 

 Monotonic magnitude response in the passband and stopband 

 The magnitude response is maximally flat in the passband. 

For an Nth-order lowpass filter 

⇒  The first (2N-1) derivatives of 2|)(| ΩjH c  are zero at 0=Ω . 
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N: filter order 

    cΩ : 3-dB cutoff frequency (magnitude = 0.707) 

 Properties 

(a) 1|)(| 0 =Ω =ΩjH c    

(b) 2/1|)(| 2 =Ω Ω=Ω cjH c   or 707.0|)(| =Ω Ω=Ω c
jH c

  

(c) 2|)(| ΩjH c  is monotonically decreasing (of Ω ) 

(d) ∞→N   →Ω |)(| jHc ideal lowpass 
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 Poles 
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(a) 2N poles in pairs: kk ss −,  symmetric w.r.t. the imaginary axis; never on the 

imaginary axis. If N odd, poles on the real axis. 

(b) Equally spaced on a circle of radius cΩ   

(c) )(sHc  causal, stable  all poles on the left half plane 

 

 
 
 

 
 
 
 
 
 

 Usage (There are only two parameters cN Ω, ) 

Given specifications sp ΩΩ ,,, 2δε  cN Ω,  
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 Chebyshev Filters 
 Type I: Equiripple in the passband; monotonic in the stopband 

Type II: Equiripple in the stopband; monotonic in the passband 

 Same N as the Butterworth filter, it would have a sharper transition band. (A smaller N 

would satisfy the spec.) 

 Type I:   

)(1
1|)(|
22

2

c
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jH
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where )(xVN  is the Nth-order Chebyshev polynominal  

))(coscos()( 1 xNxVN
−= , 101)(0 <<<< xforxVN  

)()(2)( 11 xVxxVxV NNN −+ −=  

NxV xN allfor1|)( 1==  

 

<The first several Chebyshev polynominals> 

 N  )(xVN  

 0  1 

 1  x 

 2  12 2−x  

 3  xx 34 3−  

 4  188 24 +− xx  

 

 Properties (Type I) 

          (a) 

⎪⎩

⎪
⎨
⎧

+

=Ω =Ω even N  if   ,
1

1
odd N  if            ,1

|)(|
2

2
0

ε

jHc
 

(b) The magnitude squared frequency response oscillates between 1 and 
21

1
ε+

 within the 

passband: 

        
cc c

jH Ω=Ω
+

=Ω Ω=Ω at          
1

1|)(| 2
2

ε
 

(c) 2|)(| ΩjH c  is monotonic outside the passband. 
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 Poles (Type I) 

On the ellipse specified by the following:  

Length of minor axis = caΩ2 , 
⎟
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⎠

⎞
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11

2
1 αα  

     Length of major axis = cbΩ2 , 
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                   and 21 1 −− ++= εεα  

           (a) Locate equal-spaced points on the major circle and minor circle with angle  
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           (b) The poles are ),( kk yx : kckkck byax φφ sin,cos Ω=Ω=  

 
 
 
 

 
 
 
 
 
 
 
 
 



DSP  (Spring, 2007)                                                                                                                                 Filter Design                          

NCTU EE 6

 Type II: 
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             has both poles and zeros. 

 Usage (There are only two parameters cN Ω, ) 

Given specifications sp ΩΩ ,,, 2δε  cN Ω,  
             

pc Ω=Ω   
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 Elliptic Filters 
 Equiripple at both the passband and the stopband  

 Optimum: smallest )( ps Ω−Ω  at the same N 
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where )(xU N : Jacobian elliptic function (Very complicated! Skip!) 

 Usage (There are only two parameters cN Ω, ) 

Given specifications sp ΩΩ ,,, 2δε  cN Ω,  
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               where )(xK  is the complete elliptic integral of the first kind  
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Remark:  The drawback of the elliptic filters: They have more nonlinear phase response in 

the passband than a comparable Butterworth filter or a Chebyshev filter, particu-

larly, near the passband edge. 
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 Design Digital IIR Filters from Analog Filters  
 Why based on analog filters? 

 Analog filter design methods have been well developed. 

 Analog filters often have simple closed-from design formulas.  

    Direct digital filter design methods often don’t have closed-form formulas. 

 There are two types of transformations 

 Transformation from analog to discrete-time 

 Transformation from one type filter to another type (so called frequency transformation) 
 
 
 

 
 
 
 
 
 
 

 

 

 

 Methods in analog to discrete-time transformation 

 Impulse invariance 

 Bilinear transformation 

 Matched-z transformation 

 Desired properties of the transformations 

 Imaginary axis of the s-plane  The unit circle of the z-plane 

 Stable analog system  Stable discrete-time system 

(Poles in the left s-plane  Poles inside the unit circle)  

Analog 
lowpass 

Discrete-time
lowpass 

Analog 
highpass, 
bandpass, … 

Discrete-time
highpass, 
bandpass, … 

Analog to discrete-
time transform

Analog to discrete-
time transform

(Analog) 
frequency 
transform 

(Digital) 
frequency 
transform 
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 Steps in the design 

(1) Digital specifications  Analog specifications 

(2) Design the desired analog filter 

(3) Analog filter  Discrete-time filter 

 

 Impulse Invariance 

-- Sampling the impulse of a continuous-time system 

   
dnTtcd

dcd

thT
nThTnh

==

=

|)(        
)(][  

dT : Sampling period 

      Important: to avoid aliasing 

              Does not show up in the final discrete formula if we start from the digital speci-

fications, ... 

 Frequency response 

Sampling in time  Sifted duplication in frequency 
  ∑

∞

−∞=
+=

k dd
c

j k
T

j
T

jHeH )2()( πωω  

If )( ΩjHc  is band-limited and 
d

d Tf 1=  is higher than the Nyquist sampling fre-

quency (no aliasing) 

πωωω ≤= ||)()(
d

c
j

T
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     Remark: This is not possible because the IIR analog filter is typically not bandlimited. 

 
 
 

 

 Here are two approaches: 
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            Approach 1: Sampling ][nh   

            Approach 2: Map )(sH c  to )(zH  because we need )(zH  to implement a digital filter 

anyway. 
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            Essentially, factorize and map: 

      Analog pole  

               ⇓  

              Discrete-time pole 

Remarks:  (1) Stability is preserved:  

                        LHS poles  poles inside the unit circle 

(2) No simple correspondence for zeros 

 

 

Design Example:  Low-pass filter 

        Using Butterworth continuous-time filter 
Given specifications in the digital domain 
   “-1 dB in passband” and “-15 dB in stopband” 

       
πωπ

πω
ω

ω

≤≤≤

≤≤≤≤

||0.3               ,17783.0|)(|

2.0||0          ,1|)(|89125.0
j
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eH        
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Step 1:  Convert the above specifications to the analog domain 

(Assume “negligible aliasing”) 

πωωω ≤= ||)()(
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Step 2:  Design a Butterworth filter that satisfies the above specifications. That is, select 

proper cN Ω, . 
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 70474.0,8858.5 =Ω= cdTN   

 (Taking integer) 7032.0,6 =Ω= cdTN   

(Meet passband spec. exactly; overdesign at stopband) 

<Case 1: Assume 1=dT   ⇒  
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27032.0 −+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Nk
N

j

d
k e

T
s

π
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    Step 3:  Convert analog filter to discrete-time 

      Analog pole ks  

               ⇓  

Discrete-time pole  kse  

<Case 1: Assume 1=dT  ⇒  
⎥
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⎢
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They are identical!  (In general, this is true.) 
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630.0856.1           

370.0069.11
145.1143.2

695.0297.11
447.0287.0)(
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          Remark: (1) Impulse invariance method has a precise control on the shape of the time signal. 

(2) Except for aliasing, the shape of the frequency response is preserved. 
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 Bilinear Transform  

 Avoid aliasing but distort the frequency response – uneven stretch of the frequency axis. 
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Note: Ωj  axis on the s-plane  unit circle on the z-plane 

        LHS of the s-plane  Interior of the unit circle on the z-plane 

 

 

 

 

 

 How the Ωj  axis is mapped to the unit circle? 
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   Problem in design – nonlinear distortion in magnitude and phase 

 

 

 

 

 

 

 

 

 

 

 Steps in the design 

   (1) Digital specifications to analog specifications: prewarp 

(2) Design the desired analog filter 

(3) Analog filter to discrete-time filter: bilinear transform 
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Design Example:  Lowpass filter 

    Using Butterworth continuous-time filter 
Given specifications in the digital domain (same as the previous ex.) 

πωπ

πω
ω

ω

≤≤≤

≤≤≤≤

||0.3               ,17783.0|)(|

2.0||0          ,1|)(|89125.0
j

j
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Step 1:  Prewarp  
2
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⎠
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⎝
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Passband freq.    
2
2.0tan2
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⎠
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⎛=Ω

π

d
p T

 

Stopband freq.    
2
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⎟
⎠
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⎝
⎛=Ω

π

d
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Let 1=dT  since dT  will disappear after “analog to discrete”. 

 

Step 2:  Design a Butterworth filter -- select proper cN Ω, . 
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⎨
⎧
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⎪
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   ,30466.5=N   

   76622.0,6 =Ω= cdTN  

 (Meet stopband spec. exactly; exceed passband spec.) 
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Step 3:  Convert analog filter to discrete-time 
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⎠
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Remarks: (1) Bilinear transforms warps frequency values but preserves the magnitude. 

Therefore, the discrete-time Butterworth filter still has the maximal flat 

property; Chebyshev and Ellipic filters have equal ripple property. 

(2) Although we may obtain )(sH c in closed form, it is often difficult to find the 

locations of poles and zeros of )(zH  from )(sH c directly. 
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Bilinear Transform Design Example using 4 analog filters: 

    ( )
( )⎪⎩

⎪
⎨
⎧

≤≤≤

≤≤≤

πωπ

πω

ω

ω

0.6             ,001.0

4.0       ,01.199.0
j
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Butterworth: 14th order 

Chebyshev I and II: 8th order 

Elliptic: 6th order 
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 Frequency Transformation 

-- Transform one-type (often lowpass) filter to another type. 

Typically, we first design a frequency-normalized prototype lowpass filter. Then, use an 

algebraic transformation to derive the desired lowpass, high pass , …, filters from the 

prototype lowpass filter. 

<Prototype filter>                <Desired filter> 

Z                                        z 

              )( 11 −− = zGZ  

                           ( ) ( ) ( )zHZH
zGZlp →−− = 11

 

  Typically, this transform is made of all-pass like factors  
           ( ) ∏

=
−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

±=
N

K k

k

z
zzG

1
1

1
1

1 α
α  

         Remarks:  The desired properties of G(.) are 

(1) transforms the unit circle in Z to the unit circle in z,  

(2)  transforms the interior of the unit circle in Z to the interior of the unit circle in z,  

(3) G(.) is rational. 

  Example:  Lowpass to lowpass (with different passband and stopband frequency, but magni-

tude is not changed) 

1

1
1

1 −

−
−

−
−

=
z

zZ
α
α  

Check the relationship between θ  (the Z filter) and ω  (the z filter). α  is a pa-

rameter. Different α  offers different “shapes” of the transformed filters in ω . 
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( ) ⎥

⎦

⎤
⎢
⎣

⎡

++
−

=

−
−

=

−

−

−
−

θαα
θαω

α
α
ω

ω
θ

cos12
sin1tan

1

2

2
1

j

j
j

e
ee  

If pθ  is to be mapped to pω , then 

( )[ ]
( )[ ]2/sin

2/sin

pp

pp

ωθ
ωθ

α
+

−
=  
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 Various Digital to Digital Transformations 
 

Filter Type Transformation Associated Design Formulas 
Lowpass 

1

1
1

1 −

−
−

−
−

=
z

zZ
α
α  

.  
2

sin

2
sin

freqcutoffdesiredp
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⎠
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⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
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Highpass 
1

1
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−
−

+
+
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z
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α
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.  
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2
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⎠

⎞
⎜⎜
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⎞
⎜⎜
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ω

ωθ

ωθ
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Bandpass 

1
1

2
1
1

1
1

1
2
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+
+

−
+
−

+
−

+
+

−
−=

−−

−−

−

z
k

kz
k
k

k
kz

k
kz

Z α

α

 

.   
.   

2
tan

2
cot

2
cos

2
cos

2

1

12

12

12

freqcutoffupperdesired
freqcutofflowerdesired

k

p

p

ppp

pp

pp

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

=

ω

ω

θωω

ωω

ωω

α

 

Bandstop 

1
1
2

1
1

1
1

1
2

12

12

1

+
+

−
+
−

+
−

+
+

−
=

−−

−−

−

z
k

z
k
k

k
kz

k
z

Z α

α

 

.   
.   

2
tan

2
tan

2
cos

2
cos

2

1

12

12

12

freqcutoffupperdesired
freqcutofflowerdesired

k

p

p

ppp

pp

pp

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

=

ω

ω

θωω

ωω

ωω

α
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 Design of FIR Filters by Windowing 
 Why FIR filters? 

-- Always stable 

-- Exact linear phase 

-- Less sensitive to inaccurate coefficients 

<Disadvantage> Higher complexity (storage, multiplication) due to higher orders 
 Design Methods 

(1) Windowing 

(2) Frequency sampling 

(3) Computer-aided design 

Remark: No meaningful analog FIR filters 

 Windowing technique advantages 

-- Simple 

-- Pick up a “segment” (window) of the ideal (infinite) ][nhd  

-- Filter order = window length  = (M+1) 

         General form:   ][][][ d nwnhnh =  

          Filter impulse response = Desired response x Window 
         Example: Rectangular window     

           Window shape: 
⎩
⎨
⎧ ≤≤= otherwise,0

0,1][ Mnnw  

             
⎩
⎨
⎧ ≤≤= otherwise,0

0],[][ d Mnnhnh  

 Because the filter specifications are (often) given in the frequency domain )( ωj
d eH . 

We take the inverse DTFT to obtain ][nhd . 

         ( ) ω
π

ωπ

π
ω deeHnh njj∫− ⋅= dd 2

1][  

  or, ( ) nj

n

j enheH ωω −
∞

−∞=
∑= ][dd

 

Now, because of the inclusion of w[n],    
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( ) ( ) ( ) θ
π

θω
π

π

θω deWeHeH jjj )(
d2

1 −

−
∫ ⋅=   (A periodic convolution) 

That is, )( ωjeH  is “smeared” version of )( ωj
d eH . 

Why )( ωjeW  cannot be )( ωδ je ? (If so, )()( ωω j
d

j eHeH = !) 

 

Parameters (to choose): (1) Window size (order of filter) 

                                        (2) Window shape 

 

 

 

 

 

 

 

 Rectangular Window:  
⎩
⎨
⎧ ≤≤= otherwise,0

0,1][ Mnnw  

-- Narrow mainlobe 

-- High sidelobe (Gibbs phenomenon) 

-- Frequency response 

    ( )

⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ +

=

−
−

=

⋅=

−

−

+−
=

−∑

2
sin

2
)1(sin

1
1

1

2

)1(
0

ω

ω
ω

ω

ω

ωω

M

e

e
e

eeW

M
j

j

Mj

M

n

njj  
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-- Mainlobe ~ 
1

4
+M
π ,  ↑M , )()( ωω δ jj eeW →  

-- Peak sidelobe ~ -13 dB (lower than the mainlobe) 

    Area under each lobe remains constant with increasing M  

        Increasing M does not lower the (relative) amplitude of the sidelobe.  

(Gibbs phenomemnon) 

         Remarks:  For frequency selective filters (ideal lowpass, highpass, …), 

narrow mainlobe  sharp transition 

                                lower sidelobe  oscillation reduction 
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 Commonly Used Windows  

--  Sidelobe amplitude (area) vs. mainlobe width 

-- Closed form, easy to compute 
    Bartlett (triangular) Window: 

          

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤<−

≤≤

=

otherwise,0
2

,22
2

0,2

][ MnM
M
n

Mn
M
n

nw
 

         Hanning Window: 

          

⎪⎩

⎪
⎨
⎧ ≤≤⎟

⎠
⎞

⎜
⎝
⎛−=

otherwise,0

0,
M
n2cos5.05.0][ Mnnw

 

 
         Hamming Window: 

          

⎪⎩

⎪
⎨
⎧ ≤≤⎟

⎠
⎞

⎜
⎝
⎛−=

otherwise,0

0,,
M
n2cos46.054.0][ Mnnw

 

         Blackman Window: 

          

⎪⎩

⎪
⎨
⎧ ≤≤⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

otherwise,0

0,
M
n2cos08.0

M
n2cos5.042.0][ Mnnw
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 Comparison of Commonly Used Windows 

 
Window Type 

Peak Sidelobe 
Amplitude 
(Relative) 

 
Approximate 
Width of 
Mainlobe 

 
Equivalent 
Kaise Window 
β  

Transition 
Width of 
Equivalent Kai-
ser Window 

Rectangular  -13 4π /(M+1)  0 1.81π /M 
Bartlett  -25   8π /M  1.33 2.37π /M 
Hanning  -31   8π /M  3.86 5.01π /M 
Hamming  -41   8π /M  4.86 6.27π /M 
Blackman  -57 12π /M  7.04 9.19π /M 
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 Generalized Linear Phase Filters 

-- We wish )( ωjeH  be (general) linear phase. 

       <Window>  Choose windows such that 
                             MnnMwnw ≤≤−= 0  ],[][  

                           That is, symmetric about M/2 (samples) 

( ) ( ) 2
e

Mjjj eeWeW
ωωω −

⋅= , where ( )ωjeWe  is real. 

       <Desired filter> Suppose the desired filter is also generalized linear phase 

                                     ( ) ( ) 2
ed

Mjjj eeHeH
ωωω −

⋅=  

       <Filter> )( ωjeH  is a periodic convolution of )( ωj
d eH  and )( ωjeW  

                           

( ) ( ) ( )

( ) ( )
( )

2)(
ee

2
)(

2)(
ee

e

2
1

2
1

Mj

eA

jj

MjMjjjj

edeWeH

deeeWeHeH

j

ω
π

π

θωθ

π

π

θωθθωθω

ω

θ
π

θ
π

−

−

−

−

−
−−−

⋅⋅=

⋅⋅=

∫

∫

44444 344444 21

 

  ( )ωjeAe  is real.   

   Thus, )( ωjeH  is also generalized linear phase. 
 
 
  Example: Linear phase lowpass filter 

Ideal lowpass: ( )
⎪⎩

⎪
⎨
⎧

≤<
<=

−

πωω
ωω

ω
ω

c

c

Mj
j eeH

,0
,2

lp
 

                    Impulse response: 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

=

2

2
sin

][lp Mn

Mn
nh

c

π

ω  

Designed filter: 
][

2

2
sin

][ nw
Mn

Mn
nh

c

⋅
⎟
⎠
⎞

⎜
⎝
⎛ −

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

=
π

ω  
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                cω : 1/2 amplitude of ( )ωjeH  = cutoff frequency of the dieal lowpass filter 

                 Peak to the left of cω  occurs at ~ 1/2 mainlobe width 

                 -Peak to the right of cω  occurs at ~ 1/2 mainlobe width 

                 Transition bandwidth ωΔ  ~ mainlobe width- (smaller) 

                 Peak approximation error: proportional to sidelobe area 

                 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



DSP  (Spring, 2007)                                                                                                                                 Filter Design                          

NCTU EE 28

 
 Kaiser Window 

-- Nearly optimal trade-off between mainlobe width and sidelobe area 

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −−

=

otherwise,0

0,

)(1
][

0

212

0

Mn
I

nI
nw

β

α
αβ  

   where )(0 ⋅I : zeroth-order modified Bessel function of the first kind 

         α : M/2 

  β : shape parameter; 0=β , rectangular window 

↑β ,  mainlobe width ↑ , sidelobe area ↓     

               -- δ10log20 ⋅−≡A  

                   

⎪⎩

⎪
⎨
⎧

<
≤≤−+−

>−
=

210.0
5021),21(07886.0)21(5842.0

50),7.8(1102.0
4.0

A
AAA

AA
β

 

               -- ps ωωω −=Δ  (stopband – passband) 

ωΔ⋅
−

=
285.2

8AM   (within +-2 over a wide range of ωΔ  and A ) 
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Kaiser window example – lowpass 

Specifications: 001.021 == δδ  

         Ideal lowpass cutoff: π
ωω

ω 5.0
2

ps
c =

+
=  

         Select parameters: 
⎩
⎨
⎧

=

=
→

⎩
⎨
⎧

=−=

=−=Δ

37
653.5

60log20

2.0

10

ps

MA

β

δ

πωωω  

                                        5.182 == Mα  

          This is a type II, linear phase (odd M, even symmetry) filter. 

         Approximation error: ( ) ( ) |||| ωω jj
d eHeH −  

                   ( ) ( )
( )⎩

⎨
⎧

≤<−
<≤−

=
πωω

ωω
ω

ω
ω

s

p

,0
0,1

j
e

j
ej

A eA
eAeE     
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Kaiser window example – highpass 

Ideal highpass: ( )
⎪⎩

⎪
⎨
⎧

≤<

<≤
= −

πωω

ωω
ω

ω

c
2

c

hp
,

0,0
Mj

j

e
eH  

                                  

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=

2

2
sin

2

2
sin

][
c

hp Mn

Mn

Mn

Mn
nh

π

ω

π

π  

Specifications: 021.021 == δδ  

Highpass cutoff: 
2

5.035.0
2

ps
c

ππωω
ω +

=
+

=  

Select parameters: 
⎩
⎨
⎧

=

=
→

⎩
⎨
⎧Δ

24
6.2

MA
βω  

This is a Type I filter. 

 Check!  Approximation error = 0.0213 > 0.021!! 

Increase M to 25  Not good! This is a Type II filter: a zero at –1.  ( ) 0=πj
d eH  

But we want it to be 1 because this is a highpass filter. 

Increase M to 26.  Okay!   

 

 

 

 

 

 

 

 

 

 

 

 

                             M = 24                                                   M = 25 
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Kaiser window example – differentiator 

     Ideal differentiator: ~
td

d  

                 
( ) ( )

2diff

2
diff

2

2
sin

2

2
cos

][

   ,

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=

<<−⋅=
−

Mn

Mn

Mn

Mn
nh

ejeH
Mjj

π

ππ

πωπω
ωω

 

Note that both terms in ][nhdiff  are odd symmetric.  

Hence,                  ][][ nMhnh −−= . 

This must be a Type III or Type IV system. 

            <Comparison> 

    Case 1: M=10, 4.2=β    Type III   

 Zeros at 0 and –1.  Approximation is not good at πω = . 

Case 2: M=5, 4.2=β    Type III   

 Zeros at 0.  Approximation error is smaller. 

 

 

 

 

 

 

 

 

 

 

M = 10                                          M = 5 
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 Frequency Sampling Method  

 In frequency domain, matches (M+1) samples of the ideal frequency response. 

 Observe that  ( ) ∑
=

−⋅=
M

n

njj enheH
0

][ ωω  

If take samples, then ( ) ∑
=

⋅⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅⎟
⎠
⎞

⎜
⎝
⎛

+
=

⋅=
M

n

kn
M

j

k
M

j enheH
0

1
2

1
2 ][

π

πω
ω  

Now, take samples of the desired model as the target, 

                 ( )( ) MkeHkH kMj ,,1,0   ,)(~ )1(2
d L== +π  

The final filter impulse response is  

      

⎪⎩

⎪
⎨

⎧
=⋅

+= ∑
=

⋅⎟
⎠
⎞

⎜
⎝
⎛

+

otherwise,0

,,1,0,)(~
1

1
][

0

1
2

MkekH
Mnh

M

n

nk
M

j
L

π

 

 Take (M+1) samples of the desired ( )ωj
d eH  and then take the inverse Fourier trans-

form of these (M+1) samples to form h[n]. Consequently, the FT of h[n] ( ( )ωjeH ) 

would match the desired ( )ωj
d eH  at these (M+1) sample points, BUT ( )ωjeH  may not 

be adequate at the other points k
M 1

2
+

≠
πω . 

     Modify some of the ( )ωj
d eH  sampled values to change  ( )ωjeH .  Introduce the 

transition samples. 

    Remark: Adjust the number and the values of transition samples  an optimization 

problem. (Rabiner et al., “An Approach to the Appoximation Problem for Nonrecursive 

Digital Filters,” IEEE Trans. Audio Electroacoust., Vol.AU-18, June 1970, pp.83-106) 
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 Optimum Approximation of FIR Filters  
 Why computer-aided design? 

-- Optimum: minimize an error criterion 

-- More freedom in selecting constraints.  

    (In windowing method: must δδδ == 21 ) 

 Several algorithms – Parks-McClellan algorithm (1972) 

Type I linear phase FIR filter 

    Its symmetry property: ][][ ee nhnh −=  (omit delay) 

    Check its frequency response: 

                

( )

( )

( )( )

( )( )

ω

ωω

ω

ω

ω

cos

0

1
0

1
ee

ee

)(

cos

cos

cos][2]0[

][

=

=

=

=

−=

−

=

⋅=

⋅+=

⋅+=

⋅=

∑

∑

∑

∑

x

L

n

k
k

L

n

k
k

L

n

L

Ln

njj

xP

a

aa

nnhh

enheA

 

             Note that ∑= k
k xaxP )(  is an Lth-order polynominal. In the above process, we use a 

polynominal expression of cos(.), )(cos)cos( ωω nTn = , where )(⋅nT  is the nth-order 

Chebyshev polynominal. Thus, we shift our goal from finding (L+1) values of ]}[{ nhe  

to finding (L+1) values of }{ ka . 

( want to use the polynominal approximation algorithms.) 

        <Our Problem now> 

Adjustable parameters: }{ ka , (L+1) values 

Specifications: Kpp =
2

1,, δ
δωω , and L (L is often preselected) 

Error criterion: ( ) ( )[ ]ωωωω jj eAeHWE ed)()( −⋅=  

Goal: minimize the maximum error  

                  
{ }

( ))(maxmin
][e

ω
ω

E
Fnh L ∈

,  F: passband and stopband 

                  (Note: Often, no constraint on the transition band) 
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(Why choose this minimization target? Even error values!  
 

           Recall: In the rectangular windowing method, we actually minimize 

( ) ( )∫
−

−=
π

π

ωω ω
π

ε deHeH jj 2
d

2

2
1 . Although the total squared error can be small but errors 

at some frequencies may be large.) 
 
 
 
         <Alternation Theorem> 

PF : closed subset consists of (the union) of 
disjoint closed subsets of the real axis 
x 

Example, lowpass: 
],[],,0[ πωω sp
  

ωcos=x  
]1,[cos],cos,1[ sp ωω  

)(xP : rth-order polynominal  

∑
=

=
r

k

k
k xaxP

0
)(  

 

∑
=

=
L

k

k
kaP

0
)(cos)(cos ωω  

)(xDP : desired function of x continuous on 

PF  
ωcos

1,0
1,1)(

=
⎩
⎨
⎧

≤≤−
≤≤

=

x

xx
xxxD

s

p
P  

 
)(xWP : weighting: positive, continuous on 

PF  ⎩
⎨
⎧

≤≤−
≤≤

=
s

p
P xx

xxKxW
1,1

1,/1)(  

)(xEP : weighted error 
)]()()[()( xPxDxWxE PPP −=  

 
)]()()[()( xPxDxWxE PPP −=  

E : maximum error  
)(max xEE PFx P∈

=  
 

2δ=E  

     )(xP  is the unique rth-order polynominal that minimizes E  

 if and only if )(xEP  exhibits at least (r+2) alternations  

         Alternation: There exist (r+2) values ix  in PF  such that  

        )1(,,2,1,)()( 1 +=±=−= + riExExE iPiP L , where 221 +<<< rxxx L . 

 Remark: Two conditions here for alternation: value and sign. 
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Type I linear phase FIR filter 

(1) Maximum number of alternations of errors = (L+3) 

(2) Alternations always occur at pω  and sω  

(3) Equiripple except possibly at 0=ω  and πω =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Reasons) 

   (a) Locations of extrema: Lth-order polynominal has at most L-1 extrema. Now, in 

addition, the local extrema may locate at band edges sp ωωπω ,,,0= . Hence, at 

most, there are (L+3) extrema or alternations.  

      (Note: Because ωcos=x , 0)(cos
=

ω
ω

d
dP , at 0=ω  and πω = .) 
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    (b) If pω  is not an alternation, for example, then because of the +- sign sequence, we 

loose two alternations  (L+1) alternations  violates the (L+2) alternation 

theorem. 

 

 

 

 

 

 

 

    (c) The only possibility that the extrema can be a non-alternation is that it locates at 

0=ω  or πω = . In either case, we have (L+2) alternations – minimum re-

quirement.  
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      Type II linear phase FIR filter 

Its symmetry property: ][][ ee nMhnh −= , M odd  
Frequency response:  

       ( )

⎭
⎬
⎫

⎩
⎨
⎧

⋅⎟
⎠
⎞

⎜
⎝
⎛=

⎭
⎬
⎫

⎩
⎨
⎧

−⋅=

∑

∑

+

=

−

+

=

−

2)1(

1

2

2)1(

1

2

)cos(][~
2

cos

))2/1(cos(][

M

n

Mj

M

n

Mjj

nnbe

nnbeeH

ωω

ω

ω

ωω
 

 ( ) )(cos
2

cos2 ωωωω PeeH
M

jj ⎟
⎠
⎞

⎜
⎝
⎛=

− ,  

where ∑
=

=
L

k

k
kaP

0
)(cos)(cos ωω  

Problem:  How to handle ⎟
⎠
⎞

⎜
⎝
⎛

2
cos ω ? 

Transfer specifications! 

Let 
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤

≤≤
⎟
⎠
⎞

⎜
⎝
⎛==

πωω

ωω
ωωω

s

p

pd

,0

0,

2
cos

1

)(cosDeH j
 

 
Original New 

Ideal: )(cos
2

cos)(cos ωωω PD ⎟
⎠
⎞

⎜
⎝
⎛⇐  Ideal: )(cos

2
cos

)(cos ω
ω
ω PD

⇐
⎟
⎠
⎞

⎜
⎝
⎛

 

 
Thus,  

    
( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤≤⎟
⎠
⎞

⎜
⎝
⎛

≤≤
⎟
⎠
⎞

⎜
⎝
⎛

==

πωωω

ωω

ω

ωω

s

p
p

,
2

cos

0,2
cos

)(cos KWW
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 Parks-McClellan Algorithm 

<Type I Lowpass> 

According to the preceding theorems, errors 

( ) ( )[ ]ωωωω jj eAeHWE ed)()( −⋅=   has alternations at 2,...,1, += Liiω , if ( )ωjeAe  

is the optimum solution. 

 That is, let E=δ , the maximum error,  

( ) ( )[ ] 2,..,2,1,)1()( 1
ed +=−=−⋅ + LieAeHW ijj

i
ii δω ωω . 

Because L+++== ∑
=
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2
210 )(coscos1)(cos)( ωωωω , 

at 1ω : LL +++↔+++ 2
12110

2
12110 )(1)(coscos1 xaxaaaaa ωω  

at 2ω : LL +++↔+++ 2
22210

2
22210 )(1)(coscos1 xaxaaaaa ωω  

  … 

     Hence, 
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ω
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              Remark:  For Type I lowpass filter, pω  and sω  must be two of the alternation fre-

quencies }{ iω . 

            Now, we have L+2 simultaneous equations and L+2 unknowns, }{ ia  and δ .   

The solutions are 

                ( )
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Once we know }{ ia , we can calculate ( )ωjeAe  for all ω . 
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            However, there is short cut.  We can calculate ( )ωjeAe  for all ω  directly based on 

( )kj
dk eHW ωω ),(  and kω  without solving for }{ ia . 
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   -- How to decide M (for lowpass)?  (Experimental formula) 

                 ( )

ps

2110

324.2
13log10

ωωω
ω
δδ

−=Δ
Δ⋅

−−
=M  

       
Example: Lowpass Filter 

 

w 0.4π

δ2 = 0.001 

1 - δ1 = 1 – 0.01
1 

0.6π  

 

10
2

1 ==
δ
δ

K  

( )
ω

δδ
Δ⋅

−−
=

324.2
13log10 2110M   ⇒  M = 26 
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But the maximum errors in the passband and stopband are 0.0116 and 0.00116, respectively. 
⇒ M = 27 

 
Remark: The Kaiser window method requires a value M = 38 to meet or exceed the same 

specifications. 
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Example:  Bandpass filter 
Note: (1) From the alternation theorem 

⇒ the minimum number of alternations for the optimum approximation is L + 2. 
(2) Multiband filters can have more than L+3 alternations. 
(3) Local extrema can occur in the transition regions. 

 

 IIR vs. FIR Filters 

  Property FIR IIR 

Stability Always stable Incorporate stability constraint 

in design 

Analog design No meaningful analog 

equivalent 

Simple transformation from 

analog filters 

Phase linearity Can be exact linear Nonlinear typically 

Computation More multiplications and ad-

ditions  

Fewer 

Storage More coefficients Fewer 

Sensitivity to coefficient 

inaccuracy 

Low sensitivity Higher 

Adaptivity Easy Difficult 
 


