DSP (Spring, 2007) Structures for Discrete-Time Systems

Structures For Discrete-Time Systems

e Realization (implementation) of digital filters
e Structures of IIR and FIR filters, their advantages and disadvantages — efficiency and error

b, + b,z

Example: Given H(2) = :
l1-az-

2> [a]

= h[n]=b,a"u[n]+ba"*u[n-1 1R
It is not possible to implement the system by discrete convolution!
= y[n]=ay[n —1]+ byx[n] + b, x[n —1]

Actually, an unlimited variety of computational structures result in the same rela-
tion between y[n] and x[n]!

When the numerical precision is limited
= different structures may have vastly different behavior.

() Finite-precision representation of the system coefficients
(if) Truncation or rounding of intermediate computations.

Block Diagram and Signal Flow Graph

e Three elements in LTI discrete-time systems:

Block diagram Signal flow graph

X ‘q > Y Xq O o %O
o]

Adder X2\T/

Scalar (Multiplication by X a y

N X y
a constant) g 0 > O
_ -1
Unit delay Xinl_[",-1] Xn-1l (0] z X[no—l]

e Nodes and branches are keys in a signal flow graph
Source node: No entering branches
Sink node: Only entering branches
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<> Basic Structures for IR Systems

e Direct Forms
(1) Direct Form |

ibkzik M
H(z)=—"—— < y[n]- Zaky[n k]=>bx[n-k]
1_Zakz k=1 k=0
z) _ H,(z)
OO

H(2) = H,(2)H,(2) = ((
yn

Y(2)=H,(zN(2) &
X(2)=V(z)/Hy(z)
H,(z)X(z) <> v[n]=> b x[n k]
> b X (k)z™

>aY(@2) " =V(z)
V(z)+XaY(z)

J-Xay(h-k)=vn]

\Y
\
Y

z

z

(2)
(2)
(2)-
(2)

<

z

Figure 6.3 Block diagram
representation for a general Nth-order
difference equation.
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Figure 6.14  Signal flow graph of direct form I structure for an Nth-order system.
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Structures for Discrete-Time Systems

(2) Direct Form Il (Canonic form)

- Interchange 1% and 2" “segments” and merge the delay lines (Z_l)

-- Number of delay = max(N,M) < “Canonic”

wn]

by

()
x| p

'

ay by

win = 1]

wln-N+1]

wn-N]

wn] by

(+)
Aot v[n]

Figure 6.4 Rearrangement of block
diagram of Figure 6.3. We assume for
convenience that N = M. IEN # M,
some of the coefficients will be zero.

v|n] (Y

!

b vln]

hy_y

iy

Figure 6.5 Combination of delays in
Figure 6.4.
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e Cascade Form
-- Serial connection of 1% order and 2™ order factors

N -1 -2

1y P+ by + by 2
-1 -2

w1 l-a, 2 —ayz

Remark: Each factor is a Direct Form II.

H(z)

wy[n] viln] wa ] valn) wiln] valn|

= & by !,'" ) by _"," "Y by ¥ 4
v[n] l 2] + [ | | 3! l vin|
I’—”” by, ! a I° bia I 1« | b !
| —a- ?—<—¢—>—<P T—--ﬂ-—-?—»—?

& 1| =5
| s ! ha I | an T by | | aay I by |

Figure 6.18 Cascade structure for a sixth-order system with a direct form Il
realization of each second-order subsystem.

If there are Ns second-order sections
= (Ns!)? different pairings and orderings!

N, -1 -2 . - -
o by +by 2" +b,2 " needs 5 constant multipliers for each section.
a1 l-a, 27t —a,z”

NX

1+b,z " +b, 27 T :
* ] k 2k needs 4 constant multipliers for each section.
0 -1 -2
v l—-a, 27 —a,z

The 5-multiplier sections are commonly used when implemented with fix-point arith-

metic.

e Parallel Form
-- Parallel connection of 1% order and 2" order factors

N N 1
H(z):ickz‘k+ P T
k=0

a
al-ay 2 —ayz

-2

Cy

wiln] ey ¥in]

wilil ey 2l

¥lm)

] 2

wiln] ey yalnl

a3 Fi3

an

Figure 6.20 Parallel-form structure for sixth-order system (M = N = 6) with
the real and complex poles grouped in pairs.
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e Feedback in IR Systems
-- Basic formula of a feedback system (negative feedback)
H(z)=— &)
1+ F(2)B(z2)
-- If a system has poles, a corresponding block diagram or signal flow graph will have
feedback loops.
(BUT neither poles in the system function nor loops in the network are sufficient for
the impulse response to be infinitely long.)
-- A delay element is necessary in the feedback loop; otherwise, it is noncomputable.
(The structure should be modified to eliminate the noncompuable loops.)

xfn| v[n]

Figure 6.23 (a) System with feedback
loop. (b) FIR system with feedback loop.
(c) (c) Noncomputable system.

e Transpose Forms
-- Transposition of a flow graph is reversing the directions of all branches in the network
while keeping the branch transmittances (as they were) and reversing the roles of the
input and output (so that source nodes become sink nodes and vice versa).
-- Flow Graph Reversal Theorem
For single-input, single-output systems, the transposed flow graph has the same sys-
tem function as the original graph if the input nodes and output nodes are inter-

changed.
wln] by z ‘,L“i.cu:’

‘(')[”_' l T 3 i _.-l,:J] . \|J'r] :_ 1_ . T "I“'
[« [ Lo o]
] BREE

 E £ |
| il i. b, L_ by T iy |

Figure 6.27  Direct form Il structure for Example 6.8. Figure 6.28 Transposed direct form Il structure for Example 6.8,
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<> Basic Structures for FIR Systems

e Direct Form
-- Transversal filter or tapped delay line

M -
y[n]= 3 bx[n—k] - convolution
k=0

x|n]

h[M-1]

h[M)

»——o  Figure 6.31

Structures for Discrete-Time Systems

Figure 6.32 Transposition of the network of Figure 6.31.

e Cascade Form
-- Serial connection of 1% order and 2™ order factors

H@)-T]
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k=1

(bok +h, 27+ b2kz’2)

Remark: Each factor is a Direct Form.

by by
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Figure 6.33 Cascade-form realization of an FIR system.

Direct-form realization of
¥[7l anFIR system.
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e Linear Phase FIR Filters
B Take the advantage of the symmetry property of the impulse response

h[M —n]=h[n]
h[M —n]=-h[n]

yIn]= z h{k X[n - k]

B Type | or I11: M even (order odd)

yIn]= Mk/i:h[k]x[n_k]+hpﬂx[n_“;'} _Z::h[k]x[n—k]
- %Z_‘jh[k](x[n K] xfn—M = K]+ {%Hn _%}

=~
i

0

B Type Il or IV: M odd (order even)
M -1

] = kioh[k](x[n Kl xn-M k)

——
x[n]
- — —— |
2 1 T =1
h[2 - ) )
121 hIMI2-1] THIMI2]  Ejgyre 6.34  Direct-form structure for
o . ——— an FIR linear-phase system when M is
. an even integer.

7 -1 -1
ko] JHHI I'.-‘rlll I-‘riw—;}-’E] h{(M-1)/2)
]

¥in]

Figure 6.35 Direct-form structure for an FIR linear-phase system when M is an
odd integer.

B Linear-phase FIR filters can also be implemented as a cascade of 1%-order, 2"-order, and
4"_order real-coefficient systems. (The 4™-order system is formed by grouping the
conjugate and the conjugate reciprocal zeros together.)

- Figure 6.36 Symmetry of zeros for a
o linear-phase FIR filter.
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< Finite-precision Numerical Effects

NCTU EE

Due to finite-precision (finite-word length) of computational and/or storage devices.
-- Parameter quanitization
-- Round-off error
-- Limit cycle (IIR) < zero input!
Number Representation -- Two’s complement number representation
X = xm(— by +ibi2ij
((1<x,<1)
- X, <X<X,

A=X, 2"

X = Qg[X]: quantized value of x

)'ZB : normalized quantized value of x; normalized value of X
A : quantization stepsize

b, : sign bit; b0 =0, if x is non-negative; b0 =1, if x is negative.
Quantization error e = Qgz[x] - x

1) Overflow: if x > X . This can be a serious problem if, for example, 01111000,

and we don’t check it first. (This is natural overflow.) We first clip the input. It
becomes saturation.

2 -- Rounding: nearest integer _ A A
() g g A <e< A

-- Truncation: smaller integer —A <e <0

Figur bd Towiumplomens rsending. (2 Mawurad sverflow (b Saruranee
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e Quantization in implementing systems

1
H(Z)=——+
l-az
—{ oD -—»(x{n] + }—> o D/C >
x.(1) T “-/ i ] T .".-6)
T z! T
L
(a)
P x[n] 05, | x[n] . v[n] o 05, y[n] o oo
x.(n T T y(6)
T Qp 7 T
[ a I 5=Qs[“]
(b)
A on Ve WL 1L PY
(1) T 1 V()
T {'r;{"] T

ealn]

(c)

Figure 6.39 Implementation of discrete-time filtering of an analog signal.
(a) Ideal system. (b) Nonlinear model. (c) Linearized model.
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<~ Effects of Coefficient Quantization

e Coefficient Quantization in IR Systems
-- depends on the filter structure
B Direct form

ibkz‘k
L A

&
— k0
1-Yaz* 1-Yaz*
k=1

1

b,z

2

M
k=0

Alz)

Note: 4, =a, +Aa,; b, =b, +Ab,

Effect on pole locations
(—> affect frequency response and stability)

N N

Compare |a(z)=1-Ya,z* = H(l— Z z’l)
k=1 j=1

Az)=1-Yaz" =]]k-2,2")

The change of pole location: 2, =2,+Az;, j=1,.,N

Az,  isaffected by all {Aa, }.

N .
Az, zZ[aZ' jAak, i=12,.,N
k=1\ 08y

Remark: This formula is approximately true when Aak and Az, are small.

Note that if OZi is large, then a small Aa, leadsto alarge Az, . If so, this is a sen-
oa,

sitive system. (Undesirable)

(8A(z)] oz, _oA2)

0z, ~da,  0a \Z_Z
Onestep further, o7, ~ zM* . ( U - U )
o ﬁ(z—z-) 1
j=1, j=i I . H(l_zi_ 'ZJ) Zi_k

i#]

Thatis, if (z, — Z;) is small, then 9z; is large; for example, narrow bandwidth
oa,

lowpass and bandpass filters which have clustered poles.
Remark: The preceding analysis can be applied to zeros.

NCTU EE 10
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B Parallel and cascade forms
-- consists of 1%-order and 2"-order sections.

Errors in a particular pole pairs (section) are independent of the other poles (sections).
This is also true for zeros in cascade form. =» In general, both the cascade form

and the parallel form are less sensitive to coefficient quantization (because zeros

are often widely distributed the unit circle).
Example: Bandpass IIR elliptic filter
0.99<|H(e™)| <1.01 037<w<04r
[H(e™)|<001 (-40dB) ©<0.297
[H(e™)|<001 (-40dB) 04lr<w<r

TABLE 6.7 UNQUANTIZED CASCADE FORM COEFFICIENTS FOR A
1 2TH-ORDER ELLIFTIC FILTER

k a5 ay by, by, by

1 0738409 — 0850835 0135841 0.026265 0.135543
2 0.960374 —QR6D000 0278501 —444300 0278501
3 0.A29449 —091j460  0.535773 ~(.24924% 0535773
4 1116458 —0.940429 0697447 - 0.891543 0457447
5 015782 —0.9%3693 0773083 —=0429920 0773043
[ 1173078 —0986166 0517937 - 1.122226 0917937

TABLE 6.2  SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS FOR A
12TH-ORDER ELLIPTIC FILTER

k @ asg Bo bk by

1 24196 x 2% 27880 x 27'5 17805 x 2°V7 343 x2°7 17805 %2717
2 34TOx 2 28180 x 2715 18278 x 27 —29131 x 27" 18278 x 2 1*
3 20626 x 27! ~30522 x 27! 17556 x 27'% 8167 x2'% 1755 %2 B
4 18202 x 2™ 30816 x 271 22854 x 2715 2021421 22854 x 2 1°
S O19831 x 2715 —32234x 278 25333x271% 13957 x 2715 253332 1°
6 19220 x 21 32315 x 2715 15039 x 27 18387 x2 M 15039 <2 M

1.02
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e Second-order Section
(1) Direct form
Poles: (rejg,re‘jg)
1 ~ 1
(1— rej‘gz’1X1— re’jgz’l) 1-2rcos@zt +r2z?

(=2
x[n] v[n]
2rcos # 1
Figure 6.41 Direct-form
implementation of a complex-conjugate
pole pair.
in Z-plane

< Realizoble pole positions

0z5 | . \\‘ \.\\ll H\llllx
T R \JM )|

[ lll
A
; I
o EY¥ES GES] C75 100 fe

a}

T
z=plare

: o Figure 49 Poie {ocativns for the

’ L . i secand-order 1TR direct form system of
G 0.5 .G Qe Fig 648 (a) 4-bit quantization of
(b} coeificienty. (k) T-bit quantzetion
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(2) Coupled form
Poles: (rejg,re‘j'g)
Y, =X +rcos@z 'Y, —rsinfz 'Y
Y =rsin@z'Y, +rcos@zlY
=Y, =(z-rsin0zY)1-rcosoz*

Y (rsing)z™
X 1-2rcos@zt+r2z72

[

x[n)] [ j
| rcost l: 7!

—rsin n\

/1 ;
reoso} 17! Figure 6.43 Coupled-form
\-'D implementation of a complex-conjugate

pole pair.

Am
2-plane

o Reghizoble pore positigns

5 Uit circle
.

Z-plane

Figure 651 Pole locations for coupled
Torm second-order TR sysiem af Fig.
£.50. (a) &-bit quantization ol
coeflicients. (b} 7-bit quantZation

{h]

=>» The pole location distribution is even.
€ The price: The number of multiplications is doubled!
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e Coefficient Quantization in FIR Systems
B Direct form

Zh[n]z - H(z)=>Y h[n]z
=H(z)+ AH( )
ZAh nlz™"

AH(2) = iAh[n]z‘”

Effect on the zero locations
The sensitivity function of this form is similar to that of the direct form I IR filter. That
is, if the zeros are tightly clustered, their locations will then be highly sensitive to
quantization errors. However, for most linear phase FIR systems, the zeros are

more or less uniformly spread in the z-plane.
Effecton H(e!*)

After scaling, each h[n] is represented by (B+1) bits 2’s complement number; i.e.,
—27®M < Ah[n] < 2.

AH(e?)= iAh[n]e’j‘””

i < Z\Ah[n]He’j“’“‘

<(M +1)27
S TE

worst case!

aH (e ) = >

Effect on linear phase

Not affect the linear phase property as long as h[n] = h[M —n].

Example: Linear Phase Lowpass Filter
0.99<|H(e™)|<1.01 0<w<04r
[H(e")<0.001 (-60dB) 06r<w<rz

TABLE6.3 UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM FIR
LOWPASS FILTER (M = 27)

Coefficient Unquantized 16 bits 14 bits 13 bits 8 bits
h|0] = h|27) 1.359657 x 1073 45 x 2~} 1121 6x2°12 0x27
M1 =h[26]  —1.616993 x 10} —53x2°1%  —13x2°1 —7x2°R2 0x2"
M2]=h[25]  —7738032x 1073 -254x2°% —63x27H _32x27R —1x27
n3]=hl24]  —2.686841 x 1077 —88x 2715 22,27 —11 x 2712 0x27
h|4] = h[23] 1.255246 % 1072 411 x 278 103 x 271 51 x 2"f 2x27
h[5] = h|22 6.591530 x 1077 216 x 2719 54 %213 27x2°12 1x27’
h6] = h[21]  =2217952x 1072 727 x 279 —182x27% -91x2°1F 3x27
7] =h20]  —1.524663 x 102 500 x 2715 —125x 271 g2 x 2712 -2x277
h|8] = h[19] 3.720668 x 1072 1219 x 215 305 x 271 152 x 271 5w 27!
h[9] = h[18] 3.233332 x 1072 1059 x 215 265 x 2713 132x 271 4x27
W10] = #[17]  -6.537057 x 1072 —2142%x 2715 536 x271% —268x 271 ~-8x 2"
W11]) = h{16] —7.528754 x 1072 —2467 x 2717 —617x 27" —308x 2 fl —10 % 2
h[12] = h[15] 1.560970 x 107! 5115x2°F 1279271 639 x 2712 20x27
h|13] = h{14] 4394094 % 1077 14399 x 2715 3600 x2°1F 1800 x 27! 56%277
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Figure 6.46 FIR quantization example.
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Figure 6.47 Effect of impulse response quantization on zeros of H(z). (a) Un-
Quantized. (b} Sixteen-bit quantization. (c) Thirteen-bit guantization. (d) Eight-bit
guantization.

Figure 6.46 (continued)

{d) Approaimation error for 14-ba
quantization. (8) Approximation error jor
13-bet quantization. (f) Approximation
arrof Tor 8-bit quantization.
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B Cascade form
-- less sensitive because it isolate the quantization errors from the other sections.
-- To preserve linear phase each section is linear phase.
@) Conjugate 2"-order sections for conjugate zero pairs on the unit circle.
(l+azt+z7?)
(b) Real zero 2"-order sections for a real zero inside the unit circle and its re-
ciprocal (outside the unit circle).
(©) Zeros at +1.
(d) 4"-order sections for conjugate zero pairs inside the unit circle and their as-
sociated reciprocals (outside the unit circle).

A
“

x[n ;
(] ’ }—Ercmﬂ Ir-
> ol > > o
I h
= {'w }—Zr cos r
P

Figure 6.48 Subnetwork to implement fourth-order factors in a linear-phase FIR
system such that linearity of the phase is maintained independently of parameter
quantization.

]
vin]
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