DSP (Spring, 2007) Sampling of Continuous-time Signals

Sampling of Continuous-time Signals

® Advantages of digital signal processing, e.g., audio/video CD.
® Things to look at:

B Continuous-to-discrete (C/D)

B Discrete-to-continuous (D/C) — perfect reconstruction
B Frequency-domain analysis of sampling process
[

Sampling rate conversion

< Periodic Sampling

® Ideal continuous-to-discrete-time (C/D) converter

X X[n]

Continuous-time signal: X, (t)
Discrete-time signal: X[N] = X.(NT), —o0 <N < oo, T: sampling period
In theory, we break the C/D operation into two steps:
(1) Ideal sampling using “analog delta function (impulse)”
(2) Conversion from impulse train to discrete-time sequence
Step (1) can be modeled by mathematical equation.
Step (2) is a “concept”, no mathematical model.
In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D

operation. This circuitry is one piece; it cannot be split into two steps.

s(t)
Conversion from
impulse train
6% » to discrete-time >
N,
X (1) X, () sequence X[n]

NCTU EE 1



DSP (Spring, 2007) Sampling of Continuous-time Signals

® Ideal sampling

Xc (t) XS (t)

— | Sampling ——

Ideal sampling signal: impulse train (an analog signal)

S(t) = i 5(12 —nT ) T: sampling period

N=-—o0

Analog (continuous-time) signal: X, ('[)

Sampled (continuous-time) signal: Xg ('[)

x,(t) = x. (t)s(t) = x, (t)n:if(t _nT)
_ zx (t)5(t—nT)= zx (nT)o(t=nT)

< Frequency-domain Representation of Sampling

s(t) s(jQ)ZZT” S 5(Q-kQ,) where Q = 27/T

Remark: €2 : analog frequency (radians/s)

@ : discrete (normalized) frequency (radians/sample)

Q:Q)/T; —T<w<T, —$<QS$

Step 1: Ideal Sampling (all in analog domain)

X,(10)= = X.(9)+5(0) = = X(i0)* Y5@-ka,)

k=—c0

3 x(19)rs@-k)= SX.(i0-Kk,)

_1
T
The sampled signal spectrum is the sum of shifted copies of the original.

Remark: In analog domain,
x)yt) <« X(f)*Y(f)

— X (DY (0)
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DSP (Spring, 2007) Sampling of Continuous-time Signals

Step 2: Analog Impulses to Sequence (analog to discrete-time)
No mathematical model. The spectrum of Xg (1), X (JQ), is the same as the
jQt

spectrum of X[N], X (€ ). (See the Appendix at the end.)

Now, X (e'7) :'I% i X.(j(Q-kQy))

k =—o0

Thus, x(ejw):_lj_' ixC(J('T')_Z'?ij

k=—0

Remark: In time domain, X (t) and x[n] are two very different signals but they
have the “same” spectra in frequency domain.
Two Cases:
(1) no aliasing: €2, > 2€2, and
(2) aliasing: €2 < 2Q), where {2 is the highest nonzero frequency compo-
nent of X.(J€2).
After sampling, the replicas of X (JQ) overlap (in frequency domain). That is, the

higher frequency components of X c ( jQ) overlap with the lower frequency com-

ponents of Xc(j(Q—QS)).

t N t
T
U FT U FT
$ X(iQ) 4 Xs(iQ)

v
@)

QN Qs
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DSP (Spring, 2007) Sampling of Continuous-time Signals

m Nyquist Sampling Theorem:
Let x(t) be a bandlimited signal with X _(JQ) =0 for | Q[> Q. (i.e., no com-

ponents at frequencies greater than QN ) Then X, (t) is uniquely determined by its

samples X[N] =X, (NT),n=0,£1,%2,...,ifQ_= 2 203, - (Nyquist,
ST

Shannon)

-- Nyquist frequency :QN , the bandwidth of signal.

-- Nyquist rate =22 N » the minimum sampling rate without distortion. (In some books,
Nyquist frequency = Nyquist rate.)

-- Undersampling: Q, < 2Q

-- Overdampling: (2 > 2Q)

<> Fourier Series, Fourier Transform, Discrete-Time

Fourier Series & Discrete-Time Fourier Transform

® Fourier Series
X(t): periodic continuous-time signal with period T,

X(t) b Xk

complex
valued

= il

-

To

. t
© o jekt =
x() =Y Xe =) Xek
k=-o0 k=-o0

— 1 - jkQot —
X, _T—OjTO x(t)e g, Q,==

. 1 2 - 2
Power: P, :ﬁLJX“)' dt=>|X,]

k=-o0
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DSP (Spring, 2007) Sampling of Continuous-time Signals

® [ourier Transform
X(t): continuous-time signal

x() ([0);

complex
//l valued

X(t) = i [" x(je 0
X(jQ)=[ x(t)e dt
Energy: P, = [ [x(o[dt= % [ Ix (o
Remark: (1) Other Notations
x(t) = % [ X (wye™dw {x(t) = 7 x(f)e"df

X(w) = j: X(t)e"j‘”‘dt X(f)= J': X(t)eszﬂﬂdt

(2) Relationships between F.S. & F.T.

o e

= | t

U FS. J FT.
Xk X(io)
Kk ‘ *Q
Power Spectrum Energy Spectrum
X, == x(t)e 't i ” -jot
== X(j0) = [~ x(tye ™t
0

Ty

ToX —== X (jQ) = lim (T, X, )
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DSP (Spring, 2007) Sampling of Continuous-time Signals

(3) Periodic Signal

A

.,

\
‘Xk
k

\:.T.
X(i©)
® Discrete-Time Fourier Series

To

27'[/T0

X[n]: periodic discrete-time signal with period N.

x[n] L Xk
complex
valued
Aballatlatl - 2% il
' n <:> 1 II . 1 IL K
U li
X(t) X(i0)
) F.T.
tlatltled] —  tintltaleaett,
> |« - Q
T 2T
1N 1 JZT\lﬂk
x[n] = Nk:o e
N-1 szmk
X, =) X[nle N
n=0
1 N -
Power: WZ|X[H]| _Z|X |
n=0
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DSP (Spring, 2007) Sampling of Continuous-time Signals

® Discrete-Time Fourier Transform
x[n]: discrete-time signal

. X[n] X(e")
DTFT
.mmmnéﬂﬂjg

U fl

X X(i2)
il S0

1ot o s
x[n]=—| X(™)e™dw
(=] X(e™)

X(e™)= > x[nle ™

n=—w

Energy: E, = i|x[n]|2 :irﬂ‘X(ejW)rdw

Remark: X(e") v.s. X(j©9)

X(e™) is a frequency-scaled version of X(jQ)

X (jQ) =X (e™)

w=QT
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Sampling of Continuous-time Signals

< Reconstruction of a Band-limited Signal from Its

Samples

-- Perfect reconstruction: recover the original continuous-time signal without distortion,

e.g., ideal lowpass (bandpass) filter

x[n] Convert from

— L 7 Sequence to
Impulse train

X(1) :

Reconstruction
filter

X (1)

—

Based on the frequency-domain analysis, if we can “clip” one copy of the original spectrum,

X (J€), without distortion, we can achieve the perfect reconstruction. For example, we

use the ideal low-pass filter as the reconstruction filter.

Remark: Note that X, (t) is an analog signal (impulses).

X, (t) = sampling — x,(t) = >_x(nT)&(t —nT) — seq.—convr. — x[n]

X[n] — impulse —convr. — X (t) = Z X[n]o(t —nT) — recon. —x, (t)

o]

X (t) = X, () *h. (t) = |

—0

0

N=-o00

0

X, (iQ)= D x[n]H, (jQ)e "

N=—0

{ S XIS —nT)h, (¢ —ﬂ)}d/l

n=-o0

~H, (O Hnle "}

= {x[n]fw o(A—-nT)h, (t—l)dﬂ,}z ix[n]hIr (t—nT)

=H (JOXE™)| _ =H (X" )=H,(Q)X(jo)

Ideal low-pass reconstruction filter:

Hr(jQ):{

0 otherwise

NCTU EE
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T , he(®)

I SR ¢ DA VE

v

v
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Sampling of Continuous-time Signals

<> Discrete-time Processing of Continuous-time Sig-

nals

———

X (1)

C/D

Discrete-time

y[n]

] system
H(e!*)
H eff ( JQ)

® |If thisis an LTI system,

(1) x[n]—> yIn]: Y(e")=H(E")X (")

2) x.(t) > x[n]: X (e} =

)

@) yIn] -y, (1) Y, (i) =H, (i)Y (")

Note that “T” is included in the expression of Y (1),

“physical” frequency (not normalized).

4) x,(t) >---> vy (t):

Y. (JQ) = Hr(jQ)H(ejQT)X(ejQT)

=H, (jJQHE")= Z X (

D/C

Y, (t)

27K
JQ—Ji

If H,(jQ) is an ideal low-pass reconstruction filter, then

Yr(jQ):{

H ()X, (i),

|Ql<7IT
otherwise

w < QT . This means

In other words, if X, (t) is band-limited and is ideally sampled at a rate above the

Nyquist rate, and the reconstruction filter is the ideal low-pass filter, then the

equivalent analog filter has the same spectrum shape of the discrete-time filter.

NCTU EE
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0, otherwise
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Sampling of Continuous-time Signals

Remark: In order to have the above equivalent relation between H (e!“) and

H (JQ), we need

(i) Thesystemis LTI,

(i) The input is bandlimited,

(iii) The input is sampled without aliasing and the ideal impulse train is

used in sampling;

(iv) The ideal reconstruction filter is used to produce the analog output.
In practice, the above conditions are only approximately valid at best.
However, there are methods in designing the sampling and the reconstruction

processes to make the approximation better.

X
A

=4, oy o

»
= 5 (]
1] X, 0= X
r {r 3
(= nj/\
. : N
- -1 z i
T T T T
AL

bandlimated mput signal. {1} Fourier
wansform of sampled inpur plotied as a

'
T, . H, e
rrrrr e B
H v
m | ! m Figure 111 {z) Fourier transform of 4
- -x %o 7
] T

RIEY

function of conlinuous-tome (requency 0.
{c) Founcr teansform X{e™) of sequence

cansform of output of discrete-tine
a system snd froqueacy sesponse of :deal
reconsiruction filtar platied vs. Q.
ifl (M) Fourier transferm of vatpat,

Hor (JQ) = H, (j)
HE™ =H.(j3) W< 7

T ischosens.t. H_(jQ) =0, for |Q|2$

— h[n]=Th,(nT)

The impulse response of the discrete-time system is a scaled, sampled version of h_(t).

NCTU EE
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DSP (Spring, 2007) Sampling of Continuous-time Signals

< Continuous-time Processing of Discrete-time Signals

x[n] X.(t) | Continu.-time | Y. (t) y[n]
> ""CD

— — | D/C system
¢ L H. (i) J ¢

A

H(e')
X (jQ) =TX (™), |Q|<$
. . . T
Yo (JQ) = H (JQ) X, (i), |Q|<;
i 1 W
Y(E")==Y.(j=) w
(e™) = C(JT) W <7z
i 1 . W . W W -
Y(E") ==H.(j=)X.(j=)=H_(j=) X"
= Y(E") = c(JT) c(JT) c(JT) ") W<z
- H(ejW):HC(j¥) W < 7
or, equivalently, H(Ee")=H_ (jQ) Q| < %
Example: Noninteger Delay
He")=eM" w| <7
Xc(t)

x[n]

]

Ye(t) = Xc(t-AT)

ylnl \

il

v

" n
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DSP (Spring, 2007) Sampling of Continuous-time Signals

<> Change the Sampling Rate Using Discrete-time

Processing

X (1) —-T -  X[n]=x,(nT)
¢ —T'> X'[n]=x(nT")
Original sampling period: T
New sampling period: T' T#T'

e Sampling rate reduction by an integer factor
m Sampling rate compressor:
T'= MT , where M is an integer
X4[N]=X[nM ] = X, (NMT)

IM > x,[n]=x["M]=x.(NMT)

\ 4

xInl

Compressor

1, .
=X, (jQ
T, (1)

v

v

Tz = MT]_

Aliasing: If the original signal BW is not small enough to meet the Nyquist rate requirement,

NCTU EE 13
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prefiltering is needed.

The Original The Downsampled
i 1 & @ 27K - 1 & ® 2af
X(E”)==> X —— X, @7)==Y X
=72 H D T (’(T' T
ro... -2 - 01 2 M-1) M (M+])
i - (M-2) (M 1) 012 - M- 1 2
k - -1 -1 000 - 0 1 1
Old and new index: r =i+ kM rk=-o,---2-1012,---,0
1=012,---,M -1
et Ele)
Xa(") T',Z_:wX{J T T
1 & ([ o 27
e 2 (i)
1

The down-sampled spectrum = sum of shifted replica of the original

X, (i@
1

-a, iy a

)

M AiSU, XielTy
T
Ay iy

i)

P
Ay

Hiel=y

AN NN

w =0T

'
il

fe]

Figure 338 Frequency-dorman iiustcation of downsampling

NCTU EE
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DSP (Spring, 2007) Sampling of Continuous-time
Signals

Downsampling with aliasing

X a
/ \
O o, o

A M

ar

1@
Fjere = M, fe )X e

.
b | we
&N,
2= w=

or

1 L 1
1 E.E =

E

) | Katen
A/ﬁ'\m-m/\
1 1
- -r 2 w=07

Figure 319 (aj-(¢) Downampling witd uliasing. 10)-{f) Downsampiing with prefil-
wning to avowl abunag

To avoid aliasing

= wM<rx

X[n]

X[n] Xy4[N] = X[nM]
IM .

Lowpass filter
Cutoff=7/M

\ 4

\ 4

A

T T T'=MT

General System for Sampling Rate Reduction by M
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Signals

e Increasing sampling rate by an integer factor

A

el 2 A A A

T 2

T

Downsampling

FT

et = X
- - t @
T.=TidL le
m Sampling rate expander
T'=T /L, where Lis an integer
X.[n] = x (nlj
i - e L
X[n] En Xe["] | Lowpass filter | ™ [n] ‘
g | Cutoff=7/L .
T T'=TIL T
/\\/\\//;\\rr

(1) shape is compressed; (2) replicas are removed
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Signals

(1) Increase samples
<Time-domain>

x,[n] = {X[ZA], n=0+L+2L,---

otherwise

— Y x[K]S[n —KL]
k=—00

<Frequency-domain>

X, ()= 3 ( ix[k]&[n—kL]})j“’”

n=—o0 \ k=—

=3 x[k][ 3 5[n—kL]ej“’”J:X(ej“’L)

k n=

Note that ié‘[n _ kL]e—jwn — e—ijk

N=-—o0

Remark: Essentially, the horizontal frequency axis is compressed.

The shape of the spectrum is not changed.

old w=QT.new_w=QT'=QT/L,old_w=new_w-L
Remark: At this point, we only insert zeros into the original signal. In time domain,

this signal doesn’t look like the original.

(2) ldeal lowpass filtering

<Frequency-domain>

Hi(jQ)z{l —7/(TL) < Q < z/(TL)

0 otherwise

<Time-domain>
h[n] = sin(zn/L) , an interpolator!
(zn/L)

sin[z(n—kL)/L]

xln]= kzz,m K kDL

NCTU EE 17
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B Linear interpolation

_[I=|n]/L, |n|gL
in (1] _{ 0, otherwise
By [n]

3/5 L=5

-JIH[{T

Hy, (ejw) = %{

0

%
-

sin(wl/2)
sin(w/2)

T

Xin[N] = D X[kINy, [n —KL]

k=—0

Sampling of Continuous-time

Figure 4.26 Impulse response for
linear interpolation.

x,[n]
l ' ‘ . I L=:

rﬁ'T’rH-ILT‘T“T'T’IIIJIIWITHTT

Tt

n

(a)

/ \<HM
’N/\l

Hy(e™)

n

(b)

NCTU EE

«  Figure 4.27 (a) lllustration of linear
interpolation by filtering. (b) Frequency
response of linear interpolator compared
with ideal lowpass interpolation filter.
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Signals

e Changing sampling rate by a rational factor

ldea: Samp"ng period T interpolation >I decimation s T

Interpolator Decimator

Lowpass filter

I I
| I
I I Lowpass filter
Lt f1 - Gain=L
I I
| |
| I

| |
I I
| |
Jl--‘-— Gain = 1 > M : -
I I
! I
| |

x[n] x.[n] Cutoff = w/L v[n] Cutoff = w/M | x;[n] Xyln)
e o o ——————————————— e o o o e —— o ———————
Sampling
period: . T T i ™
L I L L
(a)
Lowpass filter
Gain = L
- tL = A > M
Cutoff = = =
x[n) x.[n] min(xr/L, 7/M) x;[n] -".f!’_’l
Sampling
period: T T T ™
L L L

(b)
Figure 4.28 (a) System for changing the sampling rate by a noninteger factor. (b)
Simplified system in which the decimation and interpolation filters are combined.

Remark: In general, if the factor is not rational, go back to the continuous signals.

| Xty

= - S 2= w= 0T
(b)
X, (™)
1] (L=2)
im r = x In ar_,_ w= 0TI
p L [ L1 A
(€}
| Hate™)
(M=3)
L
2m ® J"ur.= " " 2= = L
M M
{dy
{/‘ij = H(e™)X,(e™)
T
2w - = m_w = 2 w= 0T/
3 M3
()
s | Egle™)
/\M
- [ - conlilio.. | RS-
2 = n o e = (ITMIL

Figure 4,29 |liustration of changing the sampling rate by a noninteger factor,
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Signals

e Insummary:

A NG e
Time-domain Frequency -domain

Prefiltering Limit bandwidth €, > 20

Analog sampling (impulse train) Duplicate and shift (Q)

Analog to discrete O (t) — J[n] Qv >0

Time-domain Frequency -domain

Discrete to analog O[N] — oO(t) w—>Q

| Interpolation Remove extra copies (€2)

Time-domain Frequency -domain
Prefiltering Limit bandwidth
Drop samples (rearrange index) Expand (by a factor of M) and duplicate
o e ncopiey

Time-domain Frequency -domain
' Insert zeros Shrink (by a factor of L)
? Interpolation Remove extra copies in a 27 period
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Signals

<> Digital Processing of Analog Signals

Ideal C/D converter - (approximation) analog-to-digital (A/D) converter

Ideal D/C converter - (approximation) digital-to-analog (D/A) converter

oD Discrr.ftc-timc D/
x(1) x[n] System y[n] v A0
T T
(a)
Anti- Sample D Discrate-time D/A Compensated
aliasing > and - "’\'ﬂ e vt reconstruction f—
x(n) | filter | x (| hold | xy(e) |OPVETET] Em) Syseem Fln) [COPVEET g A (0) filter v,(0
H,,(jf) t t } H.(j€)
T T T
(b)

Figure 4.41 (a) Discrete-time filtering of continuous-time signals. (b) Digital processing of
analog signals.

® Prefiltering to Avoid Aliasing
Ideal antialiasing filter: Ideal low-pass filter (difficult to implement sharp-cutoff analog
filters).
€ A solution: simple prefilter and oversampling followed by sharp antialiasing filters in

discrete-time domain.

Anti- Discrete-
—] al_ilasing - /D > time > D/C  p—
x (1) filter x, (1) x[n] | system | y[n] v, (1)
H,,(jQ) t f Figure 4.42 Use of prefiltering to
r 1 avoid aliasing.

Remark: Sharp cutoff analog filters are expensive and difficult to implement.
A/D conversion = the input continuous-time signal is sampled at a very high

sampling rate.

Sampling rate reduction by M

|
| -
.. Sharp I
Simple ! antisliasite 1
——| antialiasing > C/D - I llmml'j;m!“ M T
x (1) filter x,(r) T x[n] : ciitoff = wIM x[n]
| I

Figure 4.43 Using oversampled A/D conversion to simplify a continuous-time
antialiasing filter.
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X Simple anti-
/aliasing filter
————————— <+ High-frequency
- / noise

0, 0 0, 0,

X, (i)
Filtered

14 _-Signal
/ noise
/

o i 1 i 0,
(b)

1 ‘ X(e)

Sharp cutoff T~ 1
== === decimation filter __r— =" F=mn Aliased noise F
] ! i

1 T'=MT

(d)

Figure 4.44 Use of oversampling followed by decimation in C/D conversion.

® A/D Conversion

Digital: discrete in time and discrete in amplitude

g 27 w=0T

Sampling of Continuous-time

Sample
| and » O:tu'/glcl' -
x,(1) hold | xy(1) S xgln]
* + Figure 4.45 Physical configuration for
r r analog-to-digital conversion.

Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T sec-

onds.

o0

Xo(t) = > x[n]hy (t —nT)

N=—o0

1, O<t<T
h°(t)_{0, otherwise

Xo(®) = 3 X, ("), (t—nT) ={ 3 x, ("T)3(t—nT)}hy (1)

nN=-—o0 N=—0

NCTU EE
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DSP (Spring, 2007) Sampling of Continuous-time
Signals

Sample and hold

"=
|
|
/}_\ Zero-order |
hold

(O
X010 hglr)

x,lr)

Figure 4.46 (a) Representation of an
ideal sample-and-hold.

(b) Representative input and output
signals for the sample-and-hold.

Quantization: Transform the input sample x|[n] into one of a finite set of prescribed
values.
[n] = Q(x[n])» X[n] is the quantized sample
Note: Quantization is a non-linear operation.
(i) Uniform quantizer — uniformly spaced quantization levels; very popular (also called
linear quantizer)
(if) Nonuniform quantizer — may be more efficient for certain applicaitons
B Parameters in a quantizer
(1) Decision levels — partition the dynamic range of input signal
(2) Quantization (representation) levels — the output values of a quantizer; a quanti-
zation level represents all samples between two nearby decision levels
(3) Full-scale level — the quantizer input dynamic range
Note: Typically, when the decision levels are first chosen, then the best quantization
levels are decided (for a given input probability distribution). On the other hand,

when the quantization levels are chosen, the best decision levels are decided.
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Signals

|x=Q(x)
Two's-complement  Offset binary
code code
3 - p—e 011 111
2A 010 110
A 001 101
A
L2 | I
—— 000 100
94 7A4  _5A 3A A 3A s5A 7A 9A «x
T2 2 2 2 2 2 2 2
-4 111 011
2A - 110 Coo010
-3A - 101 001
— 4A 100 000

Figure 4.48 Typical quantizer for A/D conversion.

B Quantization error analysis

For a uniform quantizer, there are two key parameters:
(i)step size A, and (ii) full-scale level (+ X.)
Assume (B+1) bits are used to represent the quantized values.

A= 28+T :279

Quantization error: e[n] = X[n] — x[n] = quanitized value - true value

It is clear that _2 <e[n] < é.

Statistical characteristics of e[n]:
(1) e[n] is stationary (probability distribution unchanged)
(2) e[n] is uncorrelated with x[n]
(3) e[n], e[n+1], ... are uncorrelated (white)
(4) e[n] has a uniform distribution
The preceding assumptions are (approximately) valid if the signal is sufficiently com-

plex and the quantization steps are sufficiently small, ...
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Signals

Mean square error (MSE) of €[N] (= variance if zero mean)
9 a2 51 A?
(0)" =Ele-e)j=[ ¢* de="

-- Expressed in terms of 28 and X,

O-ez _ 2—28 Xri
12
-- SNR (signal-to-noise ratio) due to quantization
2 ZB
SNR =10log,, 12 =10log,, 12>2( =10.8+6.02B — 20log,, —™ Xm
69 m X

Remarks:
(1) One bit buys a 6dB SNR improvement.

(2) If the input is Gaussian, a small percentage of the input samples would have an

amplitude greater than 4o .
If we choose X = =40, SNR = 6B —1.25dB

For example, a 96dB SNR requires a 16-bit quantizer.
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DSP (Spring, 2007) Sampling of Continuous-time
Signals

® D/A Conversion
The ideal lowpass filter is replaced by a “practical” filter.
Examples of practical filters: zero-order hold and first-order hold.

Mathematical model:

D/A

x[n] gt xXpal(n)
(a)
Scale by — L_‘un\'cr.t |_u Zero-order .
2gln] Ko %[n] | _impulses hold |, () Figure4.53 (a)Block diagram of D/A
converter. (b) Representation in terms of
(b) a zero-order hold.

Xon () = 3 [nh, (t—nT)

N=—o0

= quantized input * impulse response of “practical” interpolation filter

Xoa®) = S xInlhy (t—nT)+ 3 e[nlhy t —nT)

=X (t) + e(t)
Purpose: Find a compensation filter N (t) to compensate for the distortion caused by the

non-ideal Ny (t) so that its output X, (t) is close to the analog original

X, ().
X[n] Xpa(t) | Compensated R (t)
— D/A » reconstruction >
Converter filter H_ (jQ)

It

In frequency domain:

Xo(JV) = Ft{ > Xnlh t - nT)} = Y xInlH o j)e "

N=—o N=—o0

= [ i x[n]e~ T jH (1) = X (@ T)H (jQ)

=—c0

NCTU EE 26



DSP (Spring, 2007) Sampling of Continuous-time
Signals

Because y (i) - lix ( (Q kZﬂkD

1 27K .
xo(i9)=1 3 x.[ -k i)
[The interpolation filter H, (jQ) is used to remove the replicas.]

If H,(j<) is not an ideal lowpass filter, we design a compensated reconstruction filter,

H,(j), where H_(jQ) is the ideal lowpass filter.

H, (jQ) = H(0)

(1) Zero-order hold

1, O0<t<T
o (1) = {0, otherwise

or Ho(jQ) — 25'”(21- /2) piQT/2

Thus, the compensated reconstruction filter is

=14sin(QT/2)

QT /2 :
~ . 7e1m’2, QlxlT
A, (j0) = 1€
0, |Q>zIT

Remark: A “practical” filter cannot achieve this approximation.

Ideal interpolating

y T filter H (j(})

hold
IHy () -

1H, (1)

Figure 4.54 (a) Frequency response

" ; = Q of zero-order hold compared with ideal
T ] interpolating filter. (b) Ideal
compensated reconstruction filter for
(b) use with a zero-order-hold output.
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Signals

Overall system:

Sampling of Continuous-time

X, (i9)

Hoa (19)

H(e*)

H, (JQ)

\ 4

H, (jQ)

v, (i)

Anti-aliasing Processing Zero-order-hold Compensated reconstruction.

NCTU EE

He (1) =H, (JQ)-H, (jQ)-H(E™ ) -H,, (jQ)

P, (i) =|A, (JQ)-Ho(J) - H(Ee ) o2 where afzf_z
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