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Sampling of Continuous-time Signals 
 Advantages of digital signal processing, e.g., audio/video CD.  

 Things to look at:  

 Continuous-to-discrete (C/D) 

 Discrete-to-continuous (D/C) – perfect reconstruction 

 Frequency-domain analysis of sampling process 

 Sampling rate conversion 

 

 Periodic Sampling 
 Ideal continuous-to-discrete-time (C/D) converter 

    

 

 

   

  Continuous-time signal: )(txc  

Discrete-time signal: ∞<<∞−= nnTxnx c ),(][ ,  T: sampling period 

   In theory, we break the C/D operation into two steps: 

(1) Ideal sampling using “analog delta function (impulse)” 

(2) Conversion from impulse train to discrete-time sequence 

   Step (1) can be modeled by mathematical equation. 

   Step (2) is a “concept”, no mathematical model. 

In reality, the electronic analog-to-digital (A/D) circuits can approximate the ideal C/D 

operation.  This circuitry is one piece; it cannot be split into two steps. 

 

 
 

 

 
   

)(txc ][nx
  C/D 

)(txc

)(ts

)(txs

Conversion from 
impulse train 

to discrete-time 
sequence ][nx  



DSP  (Spring, 2007)                                                                                                         Sampling of Continuous-time Signals                        

NCTU EE 2

 Ideal sampling 

    

 

 

  Ideal sampling signal: impulse train (an analog signal) 

( ) ( )∑
∞

−∞=
−=

n
nTtts δ ,  T: sampling period 

Analog (continuous-time) signal: )(txc  

Sampled (continuous-time) signal: )(txs  
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 Frequency-domain Representation of Sampling 

( ) ( ) ( )∑
∞

−∞=
Ω−Ω=Ω↔

k
sk

T
jSts δπ2  , where Ts /2π=Ω  

     Remark: Ω : analog frequency (radians/s) 

ω : discrete (normalized) frequency (radians/sample) 

Tω=Ω ;  πωπ ≤<− ,  
TT
ππ

≤Ω<−  

   Step 1: Ideal Sampling (all in analog domain) 
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   The sampled signal spectrum is the sum of shifted copies of the original. 

Remark: In analog domain, 
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Step 2: Analog Impulses to Sequence (analog to discrete-time) 

No mathematical model. The spectrum of )(txs , )( ΩjX s , is the same as the 

spectrum of ][nx , )( TjeX Ω . (See the Appendix at the end.)  

Now, ( )( )s
k
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Remark: In time domain, )(txs  and ][nx  are two very different signals but they 

have the “same” spectra in frequency domain. 

   Two Cases:  

(1) no aliasing: Ns Ω>Ω 2 , and  

(2) aliasing: Ns Ω<Ω 2 , where NΩ  is the highest nonzero frequency compo-

nent of )( ΩjX c . 

After sampling, the replicas of )( ΩjX c  overlap (in frequency domain). That is, the 

higher frequency components of )( ΩjX c  overlap with the lower frequency com-

ponents of ( ))( sc jX Ω−Ω . 

 

 

 

 

⇒ 
t t 

xc(t) xs(t)

T

⇓ ⇓
Xc(jΩ) 

Ω

ΩN 

Xs(jΩ) 

Ω
ΩS 

FT FT 



DSP  (Spring, 2007)                                                                                                         Sampling of Continuous-time Signals                        

NCTU EE 4

 Nyquist Sampling Theorem:  

Let x(t) be a bandlimited signal with 0)( =ΩjX c  for NΩ≥Ω || . (i.e., no com-

ponents at frequencies greater than NΩ ) Then )(txc  is uniquely determined by its 

samples K,2,1,0),(][ ±±== nnTxnx c , if Ns T
Ω≥=Ω 22π .  (Nyquist, 

Shannon) 

-- Nyquist frequency = NΩ , the bandwidth of signal. 

-- Nyquist rate = 2 NΩ , the minimum sampling rate without distortion.  (In some books, 

Nyquist frequency = Nyquist rate.) 

-- Undersampling: Ns Ω<Ω 2  

-- Overdampling: Ns Ω>Ω 2  

 

 

 Fourier Series, Fourier Transform, Discrete-Time 

Fourier Series & Discrete-Time Fourier Transform 
 Fourier Series 
x(t): periodic continuous-time signal with period T0 
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 Fourier Transform 
x(t): continuous-time signal 

Energy:      ∫∫
∞
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∞
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ΩΩ== djXdttxPx
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Remark: (1)  Other Notations 

 
(2) Relationships between F.S. & F.T. 

 

t

x(t)

Ω 

X(jΩ)

complex 
valued 

⇔

⎪
⎩

⎪
⎨

⎧

=Ω

ΩΩ=

∫
∫
∞

∞−

Ω−

∞

∞−

Ω

                 )()(

           )(
2
1)(

dtetxjX

dejXtx

tj

tj

π

⎪
⎩

⎪
⎨

⎧

=

=

∫
∫

∞

∞−

−

∞

∞−

                 )()(

           )(
2
1)(

dtetxwX

dwewXtx

jwt

jwt

π
⎪⎩

⎪
⎨
⎧

=

=

∫
∫

∞

∞−

−

∞

∞−

                 )()(

                 )()(
2

2

dtetxfX

dfefXtx
ftj

ftj

π

π

 

k 

Xk 
⇓  F.S. 

t 
T0 

T0 → ∞

⇒ t 

Ω 

X(jΩ)
⇓ F.T.

Energy SpectrumPower Spectrum 

∫ Ω−=
0

0)(1

0
T

tjk
k dtetx

T
X ∫

∞

∞−

Ω−=Ω dtetxjX tj)()(

)(lim)( 00
0

0
0

kT

k
T

k XTjXXT
∞→

Ω→Ω
∞→

=Ω⎯⎯⎯ →⎯



DSP  (Spring, 2007)                                                                                                         Sampling of Continuous-time Signals                        

NCTU EE 6

(3) Periodic Signal 
 

 
 Discrete-Time Fourier Series 
x[n]: periodic discrete-time signal with period N. 
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 Discrete-Time Fourier Transform 
x[n]: discrete-time signal 

 

 

Energy:      ∫∑ −

∞

−∞=

==
π

ππ
dweXnxE jw

n
x

22 )(
2
1][  

 
 
Remark:   X(ejw)  v.s. X(jΩ) 
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 Reconstruction of a Band-limited Signal from Its 

Samples 
-- Perfect reconstruction: recover the original continuous-time signal without distortion, 

e.g., ideal lowpass (bandpass) filter 

 

 

 

 

Based on the frequency-domain analysis, if we can “clip” one copy of the original spectrum, 

)( ΩjX c , without distortion, we can achieve the perfect reconstruction.  For example, we 

use the ideal low-pass filter as the reconstruction filter. 

  Remark: Note that )(txs  is an analog signal (impulses). 

 ∑ →−→−=→→ ][..)()()()( nxconvrseqnTtnTxtxsamplingtx sc δ  

)(.)(][)(.][ txreconnTtnxtxconvrimpulsenx rs ∑ →→−=→−→ δ  

{ } ∑∑ ∫

∫ ∑
∞

−∞=

∞

−∞=

∞

∞−

∞

∞−

∞

−∞=

−=−−=

⎭
⎬
⎫

⎩
⎨
⎧ −−=∗=

n
r

n
r

n
rrsr

nTthnxdthnTnx

dthnTnxthtxtx

)(][)()(][

)()(][)()()(

λλλδ

λλλδ
 

)()()()()()(             

}][){()(][)(

ΩΩ=Ω=Ω=

Ω=Ω=Ω

Ω

Ω=

∞

−∞=

Ω−
∞

−∞=

Ω− ∑∑
jXjHeXjHeXjH

enxjHejHnxjX

r
Tj

rTw

jw
r

n

Tnj
r

n

Tnj
rr

 

 

Ideal low-pass reconstruction filter: 
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 Discrete-time Processing of Continuous-time Sig-

nals 
 

 

 

 

 

 

 

 

 If this is an LTI system, 
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In other words, if )(txc  is band-limited and is ideally sampled at a rate above the 

Nyquist rate, and the reconstruction filter is the ideal low-pass filter, then the 

equivalent analog filter has the same spectrum shape of the discrete-time filter. 

⎩
⎨
⎧ <Ω=Ω

Ω

otherwise
TeHjH

Tj

eff ,0
/||),()( π  

][nx ][ny)(txc  )(tyr

C/D 
Discrete-time 

system D/C 

T T 

)( ωjeH

)( ΩjHeff



DSP  (Spring, 2007)                                                                                                         Sampling of Continuous-time Signals                        

NCTU EE 11

Remark: In order to have the above equivalent relation between )( ωjeH  and 

)( ΩjHeff , we need 

(i)  The system is LTI; 

(ii) The input is bandlimited; 

(iii) The input is sampled without aliasing and the ideal impulse train is 

used in sampling; 

(iv) The ideal reconstruction filter is used to produce the analog output. 

In practice, the above conditions are only approximately valid at best.  

However, there are methods in designing the sampling and the reconstruction 

processes to make the approximation better.  
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 Continuous-time Processing of Discrete-time Signals 
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 Change the Sampling Rate Using Discrete-time 

Processing 
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      Original sampling period:  T  

      New sampling period:  'T                                   'TT ≠  

  

• Sampling rate reduction by an integer factor 
 Sampling rate compressor:   

MTT =' , where M is an integer 
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prefiltering is needed. 
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The down-sampled spectrum = sum of shifted replica of the original 
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Downsampling with aliasing 

To avoid aliasing 

⇒          π<MwN  

 

 

 

 

 

 

General System for Sampling Rate Reduction by M 
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• Increasing sampling rate by an integer factor 

 Sampling rate expander  

LTT /'= , where L is an integer 
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(1) Increase samples 

<Time-domain> 
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Remark: Essentially, the horizontal frequency axis is compressed. 

The shape of the spectrum is not changed.   

Told Ω=ω_ , LTTnew Ω=Ω= '_ω , Lnewold ⋅= ωω __  

Remark: At this point, we only insert zeros into the original signal. In time domain, 

this signal doesn’t look like the original.  

 
(2)  Ideal lowpass filtering 
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 Linear interpolation 
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• Changing sampling rate by a rational factor 

Idea: Sampling period   T
L
M

L
TT ⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯ decimationioninterpolat  

 

Remark: In general, if the factor is not rational, go back to the continuous signals.  
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• In summary: 

-- Sampling 

Time-domain Frequency -domain 

Prefiltering Limit bandwidth Ns Ω>Ω 2  

Analog sampling (impulse train) Duplicate and shift )(Ω  

Analog to discrete ][)( nt δδ →  ω→Ω  

 

-- Reconstruction 

Time-domain Frequency -domain 

 Discrete to analog )(][ tn δδ →  Ω→ω  

 Interpolation  Remove extra copies )(Ω  

 

-- Down-sampling 

Time-domain Frequency -domain 

 Prefiltering  Limit bandwidth  

 Drop samples (rearrange index)  Expand (by a factor of M) and duplicate 

(insert (M-1) copies) 

 

-- Up-sampling 

Time-domain Frequency -domain 

 Insert zeros  Shrink (by a factor of L) 

 Interpolation   Remove extra copies in a π2  period 
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 Digital Processing of Analog Signals 
   Ideal C/D converter  (approximation) analog-to-digital (A/D) converter 

   Ideal D/C converter  (approximation) digital-to-analog (D/A) converter 

 Prefiltering to Avoid Aliasing 
Ideal antialiasing filter: Ideal low-pass filter (difficult to implement sharp-cutoff analog 

filters). 

 A solution: simple prefilter and oversampling followed by sharp antialiasing filters in 

discrete-time domain. 

 
 

Remark: Sharp cutoff analog filters are expensive and difficult to implement. 

A/D conversion ⇒ the input continuous-time signal is sampled at a very high 

sampling rate. 
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 A/D Conversion 
Digital: discrete in time and discrete in amplitude 

 

Ideal sample-and-hold: Sample the (input) analog signal and hold its value for T sec-

onds. 

  ∑
∞

−∞=
−=

n
nTthnxtx )(][)( 00

 

   

 

)(})()({)()()( 000 thnTtnTxnTthnTxtx
n

a
n

a ∗−=−= ∑∑
∞

−∞=

∞

−∞=

δ  

 

 

⎩
⎨
⎧ <<= otherwise

Ttth ,0
0,1)(0
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Quantization:  Transform the input sample ][nx  into one of a finite set of prescribed 

values. 

  ])[(][ˆ nxQnx = , ][ˆ nx  is the quantized sample 

Note: Quantization is a non-linear operation. 

(i) Uniform quantizer – uniformly spaced quantization levels; very popular (also called 

linear quantizer) 

(ii) Nonuniform quantizer – may be more efficient for certain applicaitons 

 Parameters in a quantizer 

(1) Decision levels – partition the dynamic range of input signal 

(2) Quantization (representation) levels – the output values of a quantizer; a quanti-

zation level represents all samples between two nearby decision levels  

(3) Full-scale level – the quantizer input dynamic range 

Note: Typically, when the decision levels are first chosen, then the best quantization 

levels are decided (for a given input probability distribution). On the other hand, 

when the quantization levels are chosen, the best decision levels are decided. 
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 Quantization error analysis 

For a uniform quantizer, there are two key parameters: 

(i) step size Δ , and (ii) full-scale level ( mX± ) 

Assume (B+1) bits are used to represent the quantized values. 

B
m

B
m XX

22
2

1 ==Δ
+

 

Quantization error: ][][ˆ][ nxnxne −=  = quanitized value – true value 

It is clear that 
2

][
2

Δ
<<

Δ
− ne . 

Statistical characteristics of ][ne : 

(1) ][ne  is stationary (probability distribution unchanged) 

(2) ][ne  is uncorrelated with ][nx  

(3) ][ne , ]1[ +ne , … are uncorrelated (white) 

(4) ][ne  has a uniform distribution 

The preceding assumptions are (approximately) valid if the signal is sufficiently com-

plex and the quantization steps are sufficiently small, … 
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Mean square error (MSE) of  ][ne  (= variance if zero mean) 

   { }
12

1)()(
22/

2/
222 Δ

=
Δ

=−= ∫
Δ

Δ−
deeeeEeσ   

-- Expressed in terms of B2  and mX  

   
12

2 22
2 m

B

e
X−

=σ  

-- SNR (signal-to-noise ratio) due to quantization 

x

m

m

x
B

e

x X
B

X
SNR

σ
σ

σ
σ

102

22

102

2

10 log2002.68.10
212

log10log10 −+=
⋅

==  

 
 

Remarks:  
(1) One bit buys a 6dB SNR improvement. 

(2) If the input is Gaussian, a small percentage of the input samples would have an 

amplitude greater than xσ4 .  

If we choose xmX σ4= , dBBSNR 25.16 −≈  

For example, a 96dB SNR requires a 16-bit quantizer. 
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 D/A Conversion 
The ideal lowpass filter is replaced by a “practical” filter. 

Examples of practical filters: zero-order hold and first-order hold. 

Mathematical model:  

 

∑
∞

−∞=
−=

n
DA nTthnxtx )(][ˆ)( 0

 

   = quantized input * impulse response of “practical” interpolation filter 

)()(

)(][)(][)(

00

00

tetx

nTthnenTthnxtx
nn

DA

+=

−+−= ∑∑
∞

−∞=

∞

−∞=

 

Purpose: Find a compensation filter )(~ thr to compensate for the distortion caused by the 

non-ideal )(0 th so that its output )(ˆ txr  is close to the analog original 

)(txa .  

 

 

 

 

 

 

 

In frequency domain: 

)()()(][

)(][)(][)(

00

000

Ω=Ω⎟
⎠

⎞
⎜
⎝

⎛=

Ω=
⎭
⎬
⎫

⎩
⎨
⎧ −=Ω

Ω
∞

−∞=

Ω−

∞

−∞=

Ω−
∞

−∞=

∑

∑∑

jHeXjHenx

ejHnxnTthnxFjX

Tj

n

nTj

n

nTj

n
t  

 

D/A  
Converter

Compensated 
reconstruction 
filter  )(~ ΩjH r  

][ˆ nx  )(txDA )(ˆ txr

T 
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Because ( ) ∑
∞

−∞=
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −Ω=Ω

k
a T

kkjX
T

jX π21 , 

( ) ( )Ω⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −Ω=Ω ∑

∞

−∞=
jH

T
kkjX

T
jX

k
a 00

21 π  

     [The interpolation filter )(0 ΩjH  is used to remove the replicas.] 

If )(0 ΩjH  is not an ideal lowpass filter, we design a compensated reconstruction filter, 
  

)(
)(

)(~
0 Ω

Ω
=Ω

jH
jH

jH r
r

,  where )( ΩjH r  is the ideal lowpass filter. 

 
(1) Zero-order hold 

 

 

 or 2/
0

)2/sin(2)( TjeTjH Ω−

Ω
Ω

=Ω  

Thus, the compensated reconstruction filter is  

⎪⎩

⎪
⎨
⎧

>Ω

<Ω
Ω

Ω
=Ω

Ω

T

Te
T

T
jH

Tj

r

/||,0

/||,
)2/sin(

2/
)(~ 2/

π

π  

Remark: A “practical” filter cannot achieve this approximation. 
 

 

 
 
 
 
 

⎩
⎨
⎧ <<= otherwise

Ttth ,0
0,1)(0
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Overall system: 
 

 

 

   

Anti-aliasing Processing   Zero-order-hold Compensated reconstruction. 

  )()()()(~)( 0 Ω⋅⋅Ω⋅Ω=Ω Ω jHeHjHjHjH aa
Tj

reff  

22

0 )()()(~)( e
Tj

re eHjHjHjP
a

σΩ⋅Ω⋅Ω=Ω      where  
12

2
2 Δ
=eσ  

 
 

)( ΩjH aa )( TjeH Ω )(0 ΩjH )(~ ΩjH r
)( ΩjX a  )( ΩjYa


