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Discrete-Time Signals and Systems

< Introduction

® Signal processing (system analysis and design)
W Analog
W Digital
® History
Before 1950s: analog signals/systems
W 1950s: Digital computer
B 1960s: Fast Fourier Transform (FFT)
B 1980s: Real-time VLSI digital signal processors
® Atypical digital signal processing system
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<> Discrete-time Signals: Sequences

e Continuous-time signal - Defined along a continuum of times. x(t)
Continuous-time system — Operates on and produces continuous-time signals.
Discrete-time signal - Defined at discrete times. x[n]; sequences of numbers.
Discrete-time system — Operates on and produces discrete-time signals.

> |H|| Lo >
| . | .

Remarks: Digital signals usually refer to the quantized discrete-time signals.
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e Sampling: \ery often, X[N] is obtained by sampling x(t).
Thatis, X[N]=X(NT), T:is the sampling period. But T is often not important in the

discrete-time signal analysis.

Al =

® Basic Sequences:

11]”” n

t

B Unit sample Sequence

1 n=0 ‘
shl={5 728

Remark: It is often called the discrete-time impulse or simply impulse. (Some books

call it unit pulse sequence.)

B Unit Step Sequence

1 n0 Lttt HUL
un]=19  n<o

Note 1: u[0]=1, well-defined.

Note 2: u[n] = Z”m:_oo S[m] running sum;
o[n]=u[n]—u[n-1]

B Exponential sequences
x[n]= Aa"

-- Combining basic sequences:

x[n] _ {OAan n>0

n<o’

X[n] = Aa"u[n]
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B Sinusoidal sequences

x[n] = Acos(won+¢)  foralln
A:amplitude, @, = 2af,: frequency, @: phase

» It can be viewed as a sampled continuous-time sinusoidal. However, it is not
always periodic!
>  Condition for being periodic with period N: x[n] = x[n + N]
Thatis, AcOS(woN+ @)= Acos(aw,(n+ N)+¢)
Or, a)o(n +N ) = w,N + 27K, where k, n are integers (k, a fixed number; n, a
running index, —o0 <N < 00).
2> w,N=27K & w,=27K/N.
Hence, fo must be a rational number.

»  One discrete-time sinusoid corresponds to multiple continuous-time sinusoids of
different frequencies.
x[n]= Acos(w,n + @)
= Acos((w, + 22r)n+ @) for alln

where r is any integer

Typically, we pick up the lowest frequency (r=0) under the assumption that the
original continuous-time sinusoidal has a limited frequency value, 0< @, <27

or —7z < @, < 7. This is the unambiguous frequency interval.

B Complex Exponential Sequences
xnl= Aa", A=|AR", and o =|ale!”

Hence,

x[n]=|Ale|"e ") = |Alo]" cos(w,n + @) + j|Ale|" sin(wyh + @)
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< Discrete-time Systems

® Adiscrete-time system is defined mathematically as a transformation or operator that

maps an input sequence with values X[N] into an output sequence with values y[N].
yInl =T {x[n]}
B Ideal Delay
y[n]=x[n—-ny], —o<n<oo,

where N, isa fixed positive integer called the delay of the system.

B Moving Average

M,

1
= S'x[n-k
yin] M;+M, +1k_,\,|)1([n ]

® Memoryless: If the output Y[N] at every value of n depends only on the input X[N]

at the same value of n.

® Linear: If it satisfies the principle of superposition.
(a) Additivity: T {x,[n]+ X,[n]} = T{x,[n]}+ T {x,[n]}
(b) Homogeneity or scaling: T {ax[n]} =aT {x[n]}

® Time-invariant (shift-invariant): A time shift or delay of the input sequence causes a cor-

responding shift in the output sequence.

y[n]

- delay |— »

y[n-no]

x[n]

X[n-no]

L »| delay —  Yuo[n]

\
—

e.g. Y[n] = x[an] is not time-invariant.
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® Causality: Forany N, the output sequence value at the index N = N, depends only

on the input sequence values for N < N,

® Stability in the bounded-input, bounded-output sense (BIBO): If and only if every

bounded input sequence produces a bounded output sequence.

<> Linear Time-invariant (LTI) Systems

® Alinear system is completely characterized by its impulse response.

o0
(1) Sequence as a sum of delayed impulses: x[n] = Z X[m]S[n —m]

M=—o0
(2) An LTI systemdue to O[N] input

X[n]=4[n] yields y[n] = h[n] (impulse response)

3) x[n]= ix[m]&[n—m] yields y[n]= ix[m]h[n—m]

® Convolutionsum: f,[n]= i f,[m]f,[n—m]= f,[n]=* f,[n]

B Procedure of convolution
1. Time-reverse: h[m] > h[—m]
2. Choose an n value
3. shift h[—m] byn: h[n—m]
4. Multiplication:  X[n]-h[n—m]
o0
5. Summationoverm:  y[n]= > x[m]h[n—m]
M=—o0

Choose another n value, go to Step 3.
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1
x[n] nlal
3+‘
n

2 O l ) [

l x_p 0] = x[-218(n + 2] [ ¥—zlo] = x{~2}hln + 2]

-2 0 n L n
] g {n] = z[0}8(n] l ¥ [0} = x[0Ih[n]
o a o [

x3lal = x13]8[n = 3| ¥alol = x(3)hin = 3]
3
: l 7 S 1 l T~

xfa] = x_y (0] + x4 lnl + x5 [n] winl = y_g(n] = yglni + yylnl

Figure 28 Represenzation of the output of a linear Lime-invarzol system as the
superposition of responses (o individual samples of the input.

<> Properties of LTI Systems

The properties of an LTI system can be observed from its impulse response.
Commutative: Xx[n]=h[n] = h[n]=*x[n]

Distributive: x[n]*(h,[n]+h,[n]) = x[n]*h [n]+ x[n]*h,[n]

Cascade connection: ~ h[n]=h[n]=*h,[n]

Parallel connection: h[n]=h[n]+ h,[n]

BIBO stability: If h[n] is absolutely summable , i.e.,

> |hk] =S <o

k=—
Casual sequence - Causal system: h[n]=0, n<O0
Memoryless LTI: h[n] =ko[n]
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Some frequently used systems:

-- Ideal Delay

yln]=x[n—n,] h[n]=d[n—ny]
-- Moving Average

y[n] S %Z:X[n K1 hin] . -M;<n<M,

= - h[n]=<M, +M, +1’ -
My +M; +h, o otherwise

-- Accumulator

y[n]= i x[K] h[n] = u[n], unit step

k=—c0

Finite-duration Impulse Response (FIR):

Its impulse response has only a finite number of nonzero samples.
-- FIR systems are always stable.

Infinite-duration Impulse Response (11R):

Its impulse response is infinite in duration.

Inverse System:

y

glnl b——

x[n] y[n] X[n]

I n[n]

System g[n] is the inverse of h[n]
h{n]*g[n]=&[n]
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< Linear Constant-Coefficient Difference Equations
B Animportant class of LTI system is described by linear constant-coefficient equation.

® Difference Equation: (general form)
N M
> ayn—kl= 3 b,x[n—m]
k=0 m=0

First-order system: y[n]=ay[n—1]+ bx[n]
Solution:

y[n]=yp[n]+ yn[n]= particular solution + homogeneous solution

Homogeneous solution: i a, y[n—-k]=0 (x[n]=0)
k=0

Particular solution:  (experience!)

< Frequency-Domain Representation
® Eigenfunction and eigenvalue
What is eigenfunction of a system T{.}?
Cf[n]=T{f[n]} , where C is a complex constant, eigenvalue.
The output waveform has the same shape of the input waveform.

The complex exponential sequence is the eigenfunction of any LTI system.

X[n] :eja)n —| LTI h[n] Y y[n] —H (ejw)eja)n

H(el)= 3 hlklel™
k=—0
Magnitude: ‘H(ejw)‘ Phase: ZH (e'?)

® H(e!) isperiodic.

® The above eigenfunction analysis is valid when the input is applied to the system at

N =—o0.
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< Fourier Transform of Sequences
W Interpretation: Decompose an “arbitrary” sequence into “sinusoidal components” of dif-
ferent frequencies.
® DTFT: Discrete-time Fourier Transform

Analysis: X (1) = ix[n]e_j“’” =F{x[n]} -z<ow<~x

Nn=—o0
Synthesis: X[n]zzi'[” X (e'”)eldr = F X (e}*)}
72- /4

x[n] <> X (€'“) Discrete-Time Fourier Transform pair
Remarks: Fourier transform is also called Fourier spectrum.
Magnitude spectrum: | X (e1?) |
Phase spectrum: X (&1%)
X (e)) is continuous in frequency, @ .
X (e1°) is “periodic” with period 277 .
® Does every x[n] have DTFT?
Convergence conditions: “error”->0 as N (samples)—> 00

(A) Absolutely summable

i X[n]| <o (uniform convergence)

Nn=-—o0

(B) Finite energy (square-summable) => mean-square error >0

i \x[n]\z < oo (mean-square convergence)

N=—o0
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Gibbs phenomenon

Hytel), M=t Hyle™), M=2

Hyls>), M=-18

A\ Ao Al

N 0 PR A e
5] !

Figure 120 Convergence of the Fourier transform. The owillalory behavior al o = @, is often
called the Gibbs phencmencn.

® DTFT of Special Functions
-- Impulse
olnje1

S[n—n,] <> e 1
-- Constant

1 i 276 (@ + 27r) ; An periodic impulse train.
r=—o0

Note: This is the analog impulse (delta) function.
-- Cosine sequence

cos(@,n +6) <> iﬂ[ej9§(a) — 0y +27K) + e 5 (0 + o, + Zzzk)]

k=-c0

-- Complex exponential

" <> > 275 (0 — o, — 271)

r=—o0

-- Unit step

u[n]<—>1%+7z > 6(w+27r)

r=-—o0

NCTU EE 10



DSP  (Spring, 2007) Discrete-Time Signals and Systems

Symmetry Properties of Fourier Transform

Any (complex) x[n] can be decomposed into ~ X[N] = X, [N] + X,[N]
where  Conjugate-symmetric part: X,[n] = (Xx[n] + x*[-n])/2

Conjugate-antisymmetric part: X,[n] = (X[n] - x*[-n])/2
Remark: x[n] is conjugate-symmetric if x[n]=x*[-n]

x[n] is conjugate-antisymmetric if X[n]=—x*[-n]
On the other hand, X ('”)=Re[X (e')]+ j Im[X (e*)]
Key1: x,[n]<>Re[X(e")],  x[n]<> jIm[X (e*)]
Similarly, X (e!”) can be decomposed into
X(€') = X, (&) + X, (e')
where X, (e!”) is the conjugate-symmetric part and
X, (e'”) is the conjugate-antisymmetric part
Key2: Re[x[n]]<> X.(€'), jIm[x[n]]< X, (')
Special case 1: Ifx[n] isreal, X (e!“) is conjugate symmetric

(magnitude —even, phase — odd)

Special case 2: If x[n] is conjugate-symmtric, X (ej“’) is real.
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TABLE 2.! SYMMETRY FROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Transform
x[n] Xie)y
1. x"[a] X¥(e—)
2. x*{—a] X¥(eh)
3. deix(n]; X () (conjugate-symmetric parl of ¥(ef))
4. j Fmlx(n]} ) X (&) {conjugatc-antisymmetric part of
. X ()
5. x,[n] {comjugate-symmetric part X p(e™)
of x[npl
6. x,[n] (comjugale-antisymmetric 17.¢ Cod

parl of x[a])
The fellowing propectics apply only when x{n] s real.
7. Any reaj x[x’ Xfe'™y = X*(e~ ™y (Fourier transform is
conjugate-symmelric)

8. Any real 1] Xy = X ({7 (real part 15 even)

9. Any real aln] X (e = —X {e *) (Omaginary parig
aacled )
W0, Any ccal x[a] | X (W = | X(¢ ™)] (magnilude is cven)
11. Any rcal x[a] X X(e) — & X(e ™ (pkase iz odd)
12. x,[n] (2ven pan af x[a]} X gle’™)
13. x,{n] iodd part of x[~]) X ™)
5
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Figwee 221 Frequency response for a system with impulse tespoase Aln] =
uln). {1 Real part ib) Imaginary part. (u) Megniode > 01, a = 0.9 (sokd
curve) and ¢ = 0.3 (doshed curva),
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<~ Fourier Transform Theorems
-- Linearity
If x[n] & X(€') and y[n] & Y(E!)
then ax[n]+by[n] <« aX(e')+by(e!)

-- Time Shift
If x[n] <<  X(E*)

then x[n-n,] <« X(el?)e I

-- Frequency Modulation
If  xnl < X(E)

then e'™"x[n] <«  X(e!“@ )

--Time Reversal
If xn] <« X&)

then x[-nN] <« X (-el®)

-- Differentiation in frequency
If xn] < X&)

jo
then nx[n] < jdX(e )
do

-- Convolution
If xn] <« X(@€*) and hn <
then  x[n]*h[n] <> X (e'”)H (e!*)

-- Multiplication

Discrete-Time Signals and Systems

H(e')

If xn] < XE*) and wn << W(e")

then  x[n]w[n] & Zij” X (/)W (e ")de
Ty
-- Parseval’s Theorem

If xn] < X&)

e 1 ¢# ;
then E= x[n1PP =— | | X(e!)| d
n;gl [n]] Zﬁf_ﬂl (e')|" do
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TABLE 2.3 FQOURIER TRANSFORM PAIRS

Discrete-Time Signals and Systems

Sequence

Fourier Translorm

1. 8[n] 1

2 8[n—ny) e 4
Y 2ad{w + 2rk)

11 (-e<n<w)

4. a'uln] (lal<1) - =%

5. uin)

6 (n + Da'ufn] (|al < 1)

e sin e fa b )

Y mder 4 2mk)

2 B 0 e
30 (0,1 (1. L] <
som— J— L ( B g
’ an ol _[0. PR [ a4
[1, B M sinfo( M + 1272 S
» - b : e 3
9. 5[] 't(l. otherwise sinfon )

1y, e

R l [e=®3ee —wy | k)4 e ilw
k - e

E 2rdlw — my = 27K)
e

- wy + 2ak)]

i

—_— e — —

TABLE 2.2 FOURIER TRANSFORM THEDREMS

Sequence
xfr}
¥n]

Fourier Transform
Xieh)
Y(e™

. ax[n] + by[n]

. x[a=n), (n,an integer)
a1

x[=n]

e N

5. nx(n]
. x{n] « y(n]
7. x[nj¥{n]

Parseval’s Theorem

Ak

ax(e™) + bY{e™)
). (G
X (et
X(e ")
X
 AX(e™)
T
X(&™)Y(e")

i r X(e”)Y (et dp
2rl_.

if x{n| real

| R i ;
o -5 |1 do

LR ]
L]

I
9. 3, x[rly*[rl= n

A= =af o

) X(e)¥*(e) do

NCTU EE

14



