Discrete Fourier Transform

- Discrete Fourier transform (DFT) pairs

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0,1, \ldots, N-1 \mathrm{~N} c \\
& X[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad n=0,1, \ldots, N-1, \\
& \text { where } W_{N}^{-k n}=e^{-j \frac{2 \pi}{N} k n}
\end{aligned}
$$

- DFT/IDFT can be implemented by using the same hardware
- It requires N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions

Decimation in Time

$$
\begin{aligned}
& X_{N}[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& \longleftarrow N \text {-point DFT } \\
& =\underset{\substack{n \text { even } \\
N / 2-1}}{=\sum_{N} x[n] W_{N}^{k n}+\sum_{N / 2-1}^{n \text { odd }}} \\
& =\sum_{l=0} x[2 l] W_{N}^{2 l k}+\sum_{l=0} x[2 l+1] W_{N}^{(2 l+1) k} \\
& =\sum_{l=0}^{N / 2-1} x[2 l][\underbrace{W_{N}^{2}}_{W_{N / 2}}]^{l k}+\underbrace{W_{N}^{k}}_{\text {twiddle factor }} \sum_{W_{N / 2}}^{N / 2-1} x[2 l+1][\underbrace{W_{N}^{2}}]^{l k} \\
& =\underbrace{\sum_{l=0}^{N / 2-1} x[2 l] W_{N / 2}^{l k}+W_{N}^{k} \sum_{l=0}^{N / 2-1} x[2 l+1] W_{N / 2}^{l k}}_{\text {two } N / 2-\text { point DFT's!!! }}
\end{aligned}
$$

$N+2(N / 2)^{2}$ complex multiplications vs. N^{2} complex multiplication

Using a briefer system of notation:

$$
X_{N}[k]=G_{N / 2}[k]+W_{N}^{k} H_{N / 2}[k]
$$

where $G_{N / 2}[k]$ and $H_{N / 2}[k]$ are the $N / 2$-point DFTs involving $x[n]$ with even and odd n, respectively.

Flow Graph of the DIT FFT

Corollary:

Any N-point DFT with even N can be computed via two $N / 2$ point DFTs. In turn, if $N / 2$ is even then each of these $N / 2-$ point DFTs can be computed via two $N / 4$-point DFTs and so on. In the case of $N=2^{r}$, all $N, N / 2, N / 4 \ldots$ are even and such a process of "splitting" ends up with all 2-point DFTs!

8-point DIT DFT

Remarks

- It requires $\mathrm{v}=\log _{2} \mathrm{~N}$ stages
- Each stage has N complex multiplications and N complex additions
- The number of complex multiplications (as well as additions) is equal to $\mathrm{N} \log _{2} \mathrm{~N}$
- By symmetry property, we have (butterfly operation)

$$
W_{N}^{r+N / 2}=W_{N}^{r} W_{N}^{N / 2}=W_{N}^{r} e^{-j \pi}=-W_{N}^{N / 2}
$$

8-point FFT

Bit-Reversed order
Normal order

In-Place Computation

The same register array can be used in each stage

Stage 1
Stage 2
Stage 3

8-point FFT

Normal order
The original from given by Cooly \& Tukey (DIT FFT)

Bit-reversed order cwliu@twins.ee.nctu.edu.tw

Normal-Order Sorting v.s. Bit-Reversed Sorting

$\xrightarrow[\sim]{x\left[n_{2} n_{1} n_{0}\right]}$

Normal Order
Bit-reversed Order

DFT v.s. Radix-2 FFT

- DFT: N^{2} complex multiplications and $\mathrm{N}(\mathrm{N}-1)$ complex additions
- Recall that each butterfly operation requires one complex multiplication and two complex additions
- FFT: (N/2) $\log _{2} N$ multiplications and $N \log _{2} N$ complex additions
- In-place computations: the input and the output nodes for each butterfly operation are horizontally adjacent \rightarrow only one storage arrays will be required

Alternative Form

Normal order
Normal order
Two complex storage arrays are necessary !!

Alternative Form

Parallel processing:
4 BF units

The same register array can be used

Sequential processing:
1 BF unit

Stage 1
Two register arrays are required

Alternative Form 2

Decimation in Frequency (DIF)

- Recall that the DFT is $X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}, 0 \leq k \leq N-1$
- DIT FFT algorithm is based on the decomposition of the DFT computations by forming small subsequences in time domain index " n ": $n=2 l$ or $n=2 l+1$
- One can consider dividing the output sequence $X[k]$, in frequency domain, into smaller subsequences: $k=2 r$ or $k=2 r+1$:

$$
\begin{aligned}
& X[k]\left(\begin{array}{l}
X[2 r] \\
X[2 r+1]
\end{array} \quad 0 \leq r \leq \frac{N}{2}-1\right. \\
& \begin{aligned}
X[2 r] & =\sum_{n=0}^{\frac{N}{2}-1} x[n] W_{N}^{2 n r}+\sum_{n=\frac{N}{2}}^{N-1} x[n] W_{N}^{2 n r}=\sum_{n=0}^{N / 2-1} x[n] W_{N}^{2 n r}+\sum_{n=0}^{N / 2-1} x\left[n+\frac{N}{2}\right] W_{N}^{2 r\left(n+\frac{N}{2}\right)} \\
& =\sum_{n=0}^{N / 2-1}\left(x[n]+x\left[n+\frac{N}{2}\right]\right) W_{\frac{N}{2}}^{n r} \quad W_{N}^{2 r\left(n+\frac{N}{2}\right)}=W_{N}^{2 r n} W_{N}^{r N}=W_{N}^{2 r(n}
\end{aligned}
\end{aligned}
$$

DIF FFT Algorithm (1)

$$
0 \leq r \leq \frac{N}{2}-1
$$

$$
X[2 r]=\sum_{n=0}^{N / 2-1}\left(x[n]+x\left[n+\frac{N}{2}\right]\right) W_{\frac{\frac{1}{2}}{n r}}^{n} \text { is just N/2-point DFT. Similarly, }
$$

$$
X[2 r+1]=\sum_{n=0}^{N / 2-1}\left(x[n]-x\left[n+\frac{N}{2}\right]\right) W_{N}^{n(2 r+1)}=\sum_{n=0}^{N / 2-1}\left\{x[n]-x\left[n+\frac{N}{2}\right]\right\} W_{N}^{n} W_{N / 2}^{n r}
$$

DIF FFT Algorithm (2)

$v=\log _{2} \mathrm{~N}$ stages, each stage has N/2 butterfly operation.
($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$ complex multiplications, N complex additions

Remarks

- The basic butterfly operations for DIT FFT and DIF FFT respectively are transposed-form pair.

DIT BF unit

DIF BF unit

- The I/O values of DIT FFT and DIF FFT are the same
- Applying the transpose transform to each DIT FFT algorithm, one obtains DIF FFT algorithm

Implementation Issues

- Radix-2, Radix-4, Radix-8, Split-Radix,Radix-2², ...,
- I/O Indexing
- In-place computation
- Bit-reversed sorting is necessary
- Efficient use of memory
- Random access (not sequential) of memory. An address generator unit is required.
- Good for cascade form: FFT followed by IFFT (or vice versa)
- E.g. fast convolution algorithm
- Twiddle factors
- Look up table
- CORDIC rotator

Recall... Linear Convolution

$$
\begin{aligned}
& N \geq L+P-1
\end{aligned}
$$

Fast Convolution with the FFT

- Given two sequences x_{1} and x_{2} of length N_{1} and N_{2} respectively
- Direct implementation requires $N_{1} N_{2}$ complex multiplications
- Consider using FFT to convolve two sequences:
- Pick N, a power of 2 , such that $N \geq N_{1}+N_{2}-1$
- Zero-pad x_{1} and x_{2} to length N
- Compute N-point FFTs of zero-padded x_{1} and x_{2}, one obtains X_{1} and X_{2}
- Multiply X_{1} and X_{2}
- Apply the IFFT to obtain the convolution sum of x_{1} and x_{2}
- Computation complexity: $2(N / 2) \log _{2} N+N+(N / 2) \log _{2} N$

Other Fast Algorithm for DFT

- Goertzel Algorithm
- By reformulating DFT as a convolution
- it is not restricted to computation of the DFT but any desired set of samples of the Fourier transform of a sequence
- Winograd Algorithm
- An efficient algorithm for computing short convolutions
- The number of multiplication complexity is of order $O(N)$, however the number of addition complexity is significantly increased.
- Chirp Transform Algorithm

