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Discrete Fourier Transform
• Discrete Fourier transform (DFT) pairs
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• DFT/IDFT can be implemented by using the same hardware
• It requires N2 complex multiplications and N(N-1) complex 
additions

N complex multiplications
N-1 complex additions
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Decimation in Time

N+2(N/2)2 complex multiplications vs. N2 complex multiplication

twiddle factor
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Flow Graph of the DIT FFT
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8-point DIT DFT
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Remarks
• It requires v=log2N stages
• Each stage has N complex multiplications and N complex 

additions
• The number of complex multiplications (as well as additions) 

is equal to N log2N
• By symmetry property, we have (butterfly operation)
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2 complex multiplications
2 complex additions

1 complex multiplications
2 complex additions
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8-point FFT

Normal orderBit-Reversed order
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In-Place Computation

Stage 1
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Stage 3Stage 2
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The same register array can be used in each stage
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8-point FFT

Normal order Bit-reversed orderThe original from given by Cooly
& Tukey (DIT FFT)
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Normal-Order Sorting v.s. 
Bit-Reversed Sorting

Normal Order Bit-reversed Order

even

odd

top

bottom
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DFT v.s. Radix-2 FFT
• DFT: N2 complex multiplications and N(N-1)

complex additions
• Recall that each butterfly operation requires one 

complex multiplication and two complex additions
• FFT: (N/2) log2N multiplications and N log2N

complex additions

• In-place computations: the input and the output 
nodes for each butterfly operation are 
horizontally adjacent only one storage arrays 
will be required
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Alternative Form

Normal order Normal order
Two complex storage arrays are necessary !!
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Alternative Form 

X1[000]

X1[001]

X1[010]

X1[011]

X1[100]

X1[101]

X1[110]

X1[111]

X2[000]

X2[001]

X2[010]

X2[011]

X2[100]

X2[101]

X2[110]

X2[111]
Stage 1

Parallel processing:
4 BF units
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Stage 1

Sequential processing:
1 BF unit

The same register array 
can be used Two register arrays are required
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Alternative Form 2

The geometry of each stage is identical
Bit-reversed order Normal order
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Decimation in Frequency (DIF)
• Recall that the DFT is

• DIT FFT algorithm is based on the decomposition of the 
DFT computations by forming small subsequences in time 
domain index “n”: n=2ℓ or n=2ℓ+1

• One can consider dividing the output sequence X[k], in 
frequency domain, into smaller subsequences: k=2r or k=2r+1:
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DIF FFT Algorithm (1)

is just N/2-point DFT. Similarly,
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DIF FFT Algorithm (2)

v=log2N stages, each stage has N/2 butterfly operation.

(N/2)log2N complex multiplications, N complex additions
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Remarks
• The basic butterfly operations for DIT FFT and DIF FFT 

respectively are transposed-form pair.

• The I/O values of DIT FFT and DIF FFT are the same
• Applying the transpose transform to each DIT FFT 

algorithm, one obtains DIF FFT algorithm

DIF BF unitDIT BF unit
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Implementation Issues
• Radix-2, Radix-4, Radix-8, Split-Radix,Radix-22, …, 
• I/O Indexing
• In-place computation

– Bit-reversed sorting is necessary
– Efficient use of memory
– Random access (not sequential) of memory. An address 

generator unit is required.
– Good for cascade form: FFT followed by IFFT (or vice 

versa)
• E.g. fast convolution algorithm

• Twiddle factors
– Look up table
– CORDIC rotator
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Recall… Linear Convolution
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Fast Convolution with the FFT
• Given two sequences x1 and x2 of length N1 and N2

respectively
– Direct implementation requires N1N2 complex 

multiplications
• Consider using FFT to convolve two sequences:

– Pick N, a power of 2, such that N≥N1+N2-1
– Zero-pad x1 and x2 to length N
– Compute N-point FFTs of zero-padded x1 and x2, one 

obtains X1 and X2
– Multiply X1 and X2
– Apply the IFFT to obtain the convolution sum of x1 and 

x2
– Computation complexity: 2(N/2) log2N + N + (N/2)log2N
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Other Fast Algorithm for DFT
• Goertzel Algorithm

– By reformulating DFT as a convolution
– it is not restricted to computation of the DFT but any 

desired set of samples of the Fourier transform of a 
sequence

• Winograd Algorithm
– An efficient algorithm for computing short convolutions
– The number of multiplication complexity is of order 

O(N), however the number of addition complexity is 
significantly increased.

• Chirp Transform Algorithm


