Discrete Fourier Transform

- Discrete Fourier transform (DFT) pairs

\[X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = 0, 1, \ldots, N - 1 \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad n = 0, 1, \ldots, N - 1, \]

where \(W_N^{-kn} = e^{-j\frac{2\pi}{N}kn} \)

- DFT/IDFT can be implemented by using the same hardware
- It requires \(N^2 \) complex multiplications and \(N(N-1) \) complex additions
Decimation in Time

\[X_N[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \quad \leftarrow \text{N–point DFT} \]

\[= \sum_{n \text{ even}}^{N/2-1} x[2l] W_N^{2lk} + \sum_{n \text{ odd}}^{N/2-1} x[2l+1] W_N^{(2l+1)k} \]

\[= \sum_{l=0}^{N/2-1} x[2l] \left[\frac{W_N^2}{W_{N/2}} \right]^{lk} + \sum_{l=0}^{N/2-1} x[2l+1] \left[\frac{W_N^2}{W_{N/2}} \right]^{lk} \]

\[= \sum_{l=0}^{N/2-1} x[2l] W_{N/2}^{lk} + W_N^k \sum_{l=0}^{N/2-1} x[2l+1] W_{N/2}^{lk} \]

\[= \sum_{l=0}^{N/2-1} x[2l] W_{N/2}^{lk} + W_N^k \sum_{l=0}^{N/2-1} x[2l+1] W_{N/2}^{lk} \]

\[\text{two } N/2–\text{point DFT’s!!!} \]

\[N+2(N/2)^2 \text{ complex multiplications vs. } N^2 \text{ complex multiplication} \]
Using a briefer system of notation:

\[X_N[k] = G_{N/2}[k] + W_N^k H_{N/2}[k], \]

where \(G_{N/2}[k] \) and \(H_{N/2}[k] \) are the \(N/2 \)-point DFTs involving \(x[n] \) with even and odd \(n \), respectively.
Flow Graph of the DIT FFT
Corollary:
Any N-point DFT with even N can be computed via two $N/2$-point DFTs. In turn, if $N/2$ is even then each of these $N/2$-point DFTs can be computed via two $N/4$-point DFTs and so on. In the case of $N = 2^r$, all N, $N/2$, $N/4$... are even and such a process of “splitting” ends up with all 2-point DFTs!
8-point DIT DFT
Remarks

- It requires \(v = \log_2 N \) stages
- Each stage has \(N \) complex multiplications and \(N \) complex additions
- The number of complex multiplications (as well as additions) is equal to \(N \log_2 N \)
- By symmetry property, we have (butterfly operation)

\[
W_N^{r+N/2} = W_N^r W_N^{N/2} = W_N^r e^{-j\pi} = -W_N^{N/2}
\]
8-point FFT

Bit-Reversed order

Normal order

x[0] → \(W_N^0 \) → 1 → \(W_N^0 \) → x[1] → \(W_N^0 \) → 1 → \(W_N^0 \) → x[2] → \(W_N^2 \) → \(W_N^2 \) → \(W_N^0 \) → x[3] → \(W_N^0 \) → 1 → \(W_N^0 \) → x[4] → \(W_N^0 \) → 1 → \(W_N^0 \) → x[5] → \(W_N^0 \) → \(W_N^0 \) → \(W_N^0 \) → x[6] → \(W_N^2 \) → \(W_N^2 \) → \(W_N^0 \) → x[7] → \(W_N^0 \) → 1 → \(W_N^0 \) → x[0]
In-Place Computation

The same register array can be used in each stage

Stage 1

- $X_0[000]$ to $x[0]$
- $X_0[001]$ to $x[4]$
- $X_0[010]$ to $x[2]$
- $X_0[011]$ to $x[6]$
- $X_0[100]$ to $x[1]$
- $X_0[101]$ to $x[5]$
- $X_0[110]$ to $x[3]$
- $X_0[111]$ to $x[7]$

Stage 2

- $X_1[000]$ to $X_0[000]$
- $X_1[001]$ to $X_0[001]$
- $X_1[010]$ to $X_0[010]$
- $X_1[011]$ to $X_0[011]$
- $X_1[100]$ to $X_0[100]$
- $X_1[101]$ to $X_0[101]$
- $X_1[110]$ to $X_0[110]$
- $X_1[111]$ to $X_0[111]$

Stage 3

- $X_2[000]$ to $X_1[000]$
- $X_2[001]$ to $X_1[001]$
- $X_2[010]$ to $X_1[010]$
- $X_2[011]$ to $X_1[011]$
- $X_2[100]$ to $X_1[100]$
- $X_2[101]$ to $X_1[101]$
- $X_2[110]$ to $X_1[110]$
- $X_2[111]$ to $X_1[111]$

- $X_3[000]$ to $X_2[000]$
- $X_3[001]$ to $X_2[001]$
- $X_3[010]$ to $X_2[010]$
- $X_3[011]$ to $X_2[011]$
- $X_3[100]$ to $X_2[100]$
- $X_3[101]$ to $X_2[101]$
- $X_3[110]$ to $X_2[110]$
- $X_3[111]$ to $X_2[111]$

W_N^0, W_N^1, W_N^2, W_N^3
8-point FFT

Normal order

Bit-reversed order

The original from given by Cooly & Tukey (DIT FFT)

cwliu@twins.ee.nctu.edu.tw
Normal-Order Sorting v.s. Bit-Reversed Sorting

Normal Order

Bit-reversed Order

cwliu@twins.ee.nctu.edu.tw
DFT v.s. Radix-2 FFT

- DFT: N^2 complex multiplications and $N(N-1)$ complex additions
- Recall that each butterfly operation requires one complex multiplication and two complex additions
- FFT: $(N/2) \log_2 N$ multiplications and $N \log_2 N$ complex additions

- **In-place computations**: the input and the output nodes for each butterfly operation are horizontally adjacent ➔ only one storage arrays will be required
Alternative Form

Two complex storage arrays are necessary!!
Alternative Form

Parallel processing:
4 BF units

Sequential processing:
1 BF unit

The same register array can be used
Two register arrays are required
Alternative Form 2

The geometry of each stage is identical

Bit-reversed order

Normal order

cwliu@twins.ee.nctu.edu.tw
Decimation in Frequency (DIF)

- Recall that the DFT is
 \[X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}, \quad 0 \leq k \leq N - 1 \]

- DIT FFT algorithm is based on the decomposition of the DFT computations by forming small subsequences in time domain index “n”: \(n = 2^\ell \) or \(n = 2^\ell + 1 \)

- One can consider dividing the output sequence \(X[k] \), in frequency domain, into smaller subsequences: \(k = 2^r \) or \(k = 2^r + 1 \):

\[
\begin{align*}
X[k] &= \begin{cases}
X[2^r] & 0 \leq r \leq \frac{N}{2} - 1 \\
X[2^r + 1] & \end{cases} \\
X[2^r] &= \sum_{n=0}^{N/2-1} x[n] W_N^{2^r n} + \sum_{n=N/2}^{N-1} x[n] W_N^{2^r n} \\
&= \sum_{n=0}^{N/2-1} (x[n] + x[n + \frac{N}{2}]) W_N^{2^r n} \\
&= \sum_{n=0}^{N/2-1} x[n] W_N^{2^r n} + \sum_{n=0}^{N/2-1} x[n + \frac{N}{2}] W_N^{2^r (n + \frac{N}{2})}
\end{align*}
\]

Substitution of variables

\(W_N^{2^r (n + \frac{N}{2})} = W_N^{2^r n} W_N^{rN} = W_N^{2^r n} \)
DIF FFT Algorithm (1)

\[0 \leq r \leq \frac{N}{2} - 1 \]

\[X[2r] = \sum_{n=0}^{N/2-1} (x[n] + x[n + \frac{N}{2}]) W_{N/2}^{nr} \]

is just N/2-point DFT. Similarly,

\[X[2r + 1] = \sum_{n=0}^{N/2-1} (x[n] - x[n + \frac{N}{2}]) W_{N}^{n(2r+1)} = \sum_{n=0}^{N/2-1} \{x[n] - x[n + \frac{N}{2}]\} W_{N}^{n} W_{N/2}^{nr} \]
DIF FFT Algorithm (2)

\(v = \log_2 N\) stages, each stage has \(N/2\) butterfly operation.
\((N/2)\log_2 N\) complex multiplications, \(N\) complex additions

cwliu@twins.ee.nctu.edu.tw
Remarks

• The basic butterfly operations for DIT FFT and DIF FFT respectively are transposed-form pair.

• The I/O values of DIT FFT and DIF FFT are the same
• Applying the transpose transform to each DIT FFT algorithm, one obtains DIF FFT algorithm
Implementation Issues

• Radix-2, Radix-4, Radix-8, Split-Radix, Radix-2², …,
• I/O Indexing
• In-place computation
 - Bit-reversed sorting is necessary
 - Efficient use of memory
 - Random access (not sequential) of memory. An address generator unit is required.
 - Good for cascade form: FFT followed by IFFT (or vice versa)
 • E.g. fast convolution algorithm
• Twiddle factors
 - Look up table
 - CORDIC rotator
Recall... Linear Convolution

\[x[n] \quad \text{Zero padding} \quad \rightarrow \quad \text{N-point DFT} \quad \rightarrow \quad X[k] \quad 0 \leq k \leq N - 1 \]

\[h[n] \quad \text{Zero padding} \quad \rightarrow \quad \text{N-point DFT} \quad \rightarrow \quad H[k] \quad 0 \leq k \leq N - 1 \quad N \geq L + P - 1 \]

\[\times \rightarrow \quad \text{N-point IDFT} \quad \rightarrow \quad y[n] \quad 0 \leq n \leq N + P - 2 \]
Fast Convolution with the FFT

• Given two sequences x_1 and x_2 of length N_1 and N_2 respectively
 - Direct implementation requires $N_1 N_2$ complex multiplications
• Consider using FFT to convolve two sequences:
 - Pick N, a power of 2, such that $N \geq N_1 + N_2 - 1$
 - Zero-pad x_1 and x_2 to length N
 - Compute N-point FFTs of zero-padded x_1 and x_2, one obtains X_1 and X_2
 - Multiply X_1 and X_2
 - Apply the IFFT to obtain the convolution sum of x_1 and x_2
 - Computation complexity: $2(N/2) \log_2 N + N + (N/2)\log_2 N$
Other Fast Algorithm for DFT

• **Goertzel Algorithm**
 - By reformulating DFT as a convolution
 - It is not restricted to computation of the DFT but any desired set of samples of the Fourier transform of a sequence

• **Winograd Algorithm**
 - An efficient algorithm for computing short convolutions
 - The number of multiplication complexity is of order $O(N)$, however the number of addition complexity is significantly increased.

• **Chirp Transform Algorithm**