10.4 Develop equations for the logical effort and parasitic delay with respect to the  $C_0$  input of an n-stage Manchester carry chain computing  $C_1 \dots C_n$ . Consider all of the internal diffusion capacitances when deriving the parasitic delay. Use the transistor widths shown in Figure 10.87 and assume the  $P_i$  and  $G_i$  transistors of each stage share a single diffusion contact.

FIG 10.87 Manchester carry chain

- 10.5 Using the results of Exercise 10.4, what Manchester carry chain length gives the least delay for a long adder?
- 10.10 Write a Boolean expression for  $C_{\text{out}}$  in the circuit shown in Figure 10.6(b). Simplify the equation to prove that the pass-transistor circuits do indeed compute the majority function.



FIG 10.6 Transmission gate full adder

10.18 Table 10.12 and Figure 10.75 illustrated radix-4 Booth encoding using  $X_i$ ,  $2X_i$ , and  $M_i$ . An alternative encoding is to use *POS*, *NEG*, and *DOUBLE*. *POS* is true for the multiples Y and Y. *NEG* is true for the multiples Y and Y. Design a Booth encoder and selector using this encoding.

| <b>Table 10.12</b> |          | Radix-4 modified Booth encoding value |                 |               |        |       |
|--------------------|----------|---------------------------------------|-----------------|---------------|--------|-------|
| Inputs             |          |                                       | Partial Product | Booth Selects |        |       |
| $x_{2i+1}$         | $x_{2i}$ | $x_{2i-1}$                            | $PP_i$          | $X_i$         | $2X_i$ | $M_i$ |
| 0                  | 0        | 0                                     | 0               | 0             | 0 ,    | 0     |
| 0                  | 0        | 1                                     | Y               | 1             | 0      | 0     |
| 0                  | 1        | 0                                     | Y               | 1             | 0      | 0     |
| 0                  | 1        | 1                                     | 2Y              | 0             | 1      | 0     |
| 1                  | 0        | 0                                     | -2Y             | 0             | 1      | 1     |
| 1                  | 0        | 1                                     | -Y              | 1             | 0      | 1     |
| 1                  | 1        | 0                                     | -Y              | 1             | 0      | 1     |
| 1                  | 1        | 1                                     | -0 (= 0)        | 0             | 0      | 1     |



FIG 10.75 Radix-4 Booth encoder and selector