HW3

Problem 3.44

The phase plane is defined by

$$
\psi=\Delta \omega-K_{t} \sin \psi(t)
$$

at $\psi=0, \psi=\psi_{s s}$, the steady-state phase error. Thus

$$
\psi_{s s}=\sin ^{-1}\left(\frac{\Delta \omega}{K_{t}}\right)=\sin ^{-1}\left(\frac{\Delta \omega}{2 \pi(100)}\right)
$$

For $\Delta \omega=2 \pi(30)$

$$
\psi_{s s}=\sin ^{-1}\left(\frac{30}{100}\right)=17.46 \text { degrees }
$$

For $\Delta \omega=2 \pi(50)$

$$
\psi_{s s}=\sin ^{-1}\left(\frac{50}{100}\right)=30 \text { degrees }
$$

For $\Delta \omega=2 \pi(80)$

$$
\psi_{s s}=\sin ^{-1}\left(\frac{80}{100}\right)=53.13 \text { defrees }
$$

For $\Delta \omega=-2 \pi(80)$

$$
\psi_{s s}=\sin ^{-1}\left(\frac{-80}{100}\right)=-53.13 \text { degrees }
$$

For $\Delta \omega=2 \pi(120)$, there is no stable operating point and the frequency error and the phase error oscillate (PLL slips cycles continually).

Problem 3.48

From the definition of the transfer function

$$
\frac{\Theta(s)}{\Phi(s)}=\frac{K_{t} F(s)}{s+K_{t} F(s)}=\frac{K_{t}\left(\frac{s+a}{s+\lambda a}\right)}{s+K_{t}\left(\frac{s+a}{s+\lambda a}\right)}
$$

which is

$$
\frac{\Theta(s)}{\Phi(s)}=\frac{K_{t}(s+a)}{s(s+\lambda a)+K_{t}(s+a)}=\frac{K_{t}(s+a)}{s^{2}+\left(K_{t}+\lambda a\right) s+K_{t} a}
$$

Therefore

$$
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=s^{2}+\left(K_{t}+\lambda a\right) s+K_{t} a
$$

This gives

$$
\omega_{n}=\sqrt{K_{t} a}
$$

and

$$
\zeta=\frac{K_{t}+\lambda a}{2 \sqrt{K_{t} a}}
$$

