
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 3

Arithmetic for

Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers/Processors

 Representations

 2’s complement representation for fixed-point N-bit INT

 Std. IEEE754 FP32/64 representation

 Fixed-point INT arithmetic vs. Floating-point (FP) arithmetic

 General operations: Addition/subtraction, multiplication, division

 Special DSP operations: fused multiply-and-accumulate (MAC),

butterfly unit, general matrix-matrix multiplication (GEMM), …

 Efficient multiplication/division algorithms

 Efficient implementation of adder, multiplier, and divider

 Should deal with the problem of overflow/underflow, divide by 0, …

 The representation of infinity, NAN, …

§
3
.1

 In
tro

d
u
c
tio

n

(Fixed-Point) Integer Addition

 Example: 7 + 6

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands,

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 3

Chapter 3 — Arithmetic for Computers — 4

(Fixed-Point) Integer Subtraction

 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111

–6: 1111 1111 … 1111 1010

+1: 0000 0000 … 0000 0001

 Overflow if result out of range

 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand

 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 5

Detecting Overflow

 No overflow when adding a positive and a negative number

 No overflow when signs are the same for subtraction

 Overflow occurs when the value affects the sign:

 overflow when adding two positives yields a negative

 or, adding two negatives gives a positive

 or, subtract a negative from a positive and get a negative

 or, subtract a positive from a negative and get a positive

 Overflow detection

Chapter 3 — Arithmetic for Computers — 6

Overflow Detection Logic

 Overflow occurs when adding:

 2 positive numbers and the sum is negative

 2 negative numbers and the sum is positive

=> sign bit is set with the value of the result

 Overflow if: Carry into MSB  Carry out of MSB

 Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Chapter 3 — Arithmetic for Computers — 7

Dealing with Overflow

 Some languages (e.g., C) ignore overflow

 Use MIPS addu, addui, subu instructions

 Saturated arithmetic

 Other languages (e.g., Ada, Fortran) require raising an

exception

 Use MIPS add, addi, sub instructions

 On overflow, invoke exception handler

 Save PC in exception program counter (EPC) register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can retrieve EPC

value, to return after corrective action

Designing Arithmetic Logic Unit (ALU)

 ALU performs arithmetic and logical operations

 add, sub: two’s complement adder/subtractor with overflow

detection

 and, or, nor : logical AND, logical OR, logical NOR

 slt (set on less than): two’s complement adder with inverter,

check sign bit of result

A
L

U

32

32

32

A

B

Result

Overflow

Zero

4ALUop

CarryOut

(ALUop) Function

0000 and

0001 or

0010 add

0110 subtract

0111 set-on-less-than

1100 nor

— 9

ALU31

a31 b31

m

cinc31
s31

A B

ALUop

Result

32 32

32

4

Overflow

ALU0

a0 b0

m

cinc0
s0

Zero

 Design trick 1: divide and conquer

 Break the problem into simpler problems, solve them and glue together

the solution

 Design trick 2: solve part of the problem and extend

32-Bit ALU  Group Bit-Slice ALU

A 4-bit ALU Example

 Design trick 3: take pieces you know (or can imagine) and try to put

them together

A

B

1-bit

Full

Adder

CarryOut

M
u

x

CarryIn

Result

add

and

or

Operation

0

1

2

1-bit ALU

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

CarryOut2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

Operation

4-bit ALU

— 11

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

Overflow Detection Logic

 Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Chapter 3 — Arithmetic for Computers — 12

Arithmetic for Multimedia

 Graphics and media processing operates on vectors of

8-bit (byte) and 16-bit INT data

 SIMD (single-instruction, multiple-data) extension ISA

 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit configurable ALU

operations

 On overflow, usually applying saturating arithmetic

 Result is replaced by the largest representable value

 E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 13

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

multiplicand

multiplier

product

§3
.3

 M
u
ltip

lic
a
tio

n

Length of product is the

sum of that of operand

and multiplicand
Initially 0

mult $t1, $t2 # t1 * t2

 No destination register: product could be ~264; need two

special registers to hold it

 3-step process:

Chapter 3 — Arithmetic for Computers — 14

00011111111111111111111111111111 11000000000000000000000000000000

Hi Lo

01000000000000000000000000000000X $t2

01111111111111111111111111111111$t1

00011111111111111111111111111111$t3

11000000000000000000000000000000$t4mflo $t4

mfhi $t3

3-Step Multiplication in MIPS

— 15

3. Shift Multiplier register right 1 bit

2. Shift Multiplicand register left 1 bit

Multiply Algorithm (Ver. 1)

0010 x 0011

Product Multiplier Multiplicand

0000 0000 0011 0000 0010

0000 0010 0001 0000 0100

0000 0110 0000 0000 1000

0000 0110 0000 0001 0000

0000 0110 0000 0010 0000 Done

Done

Yes: 32 repetitions

No: < 32 repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to product and

place the result in Product register

32nd
repetition?

Start

Initially 0

Chapter 3 — Arithmetic for Computers — 16

Observations

 1 clock per cycle => too slow

 Ratio of multiply to add 5:1 to 100:1

 Half of the bits in multiplicand always 0

=> 64-bit adder is wasted

 0’s inserted in right of multiplicand as shifted

=> least significant bits of product never changed once formed

 Instead of shifting multiplicand to left, shift product to

right?

 Product register wastes space => combine Multiplier and

Product register

— 17

32nd
repetition?

2. Shift Product register right 1 bit

1a. Add multiplicand to left half of product and

place the result in left half of Product register

Multiply Algorithm (Ver. 2)

Multiplicand Product

0010 0000 0011

0010 0011

0010 0001 0001

0011 0001

0010 0001 1000

0010 0000 1100

0010 0000 0110

Done

Yes: 32 repetitions

No: < 32 repetitions

1. Test
Product0

Product0 = 0Product0 = 1

Start

Add & shift perform in parallel

Chapter 3 — Arithmetic for Computers — 18

Optimized Multiplier

 Perform steps in parallel: add/shift

 One cycle per partial-product addition

 That’s ok, if frequency of multiplications is low

0-bit Multiplier register

Chapter 3 — Arithmetic for Computers — 19

Concluding Remarks

 2 steps per bit because multiplier and product registers

combined

 MIPS registers Hi and Lo are left and right half of Product

register
=> this gives the MIPS instruction MultU

 What about signed multiplication?

 The easiest solution is to make both positive and remember

whether to complement product when done (leave out sign bit,

run for 31 steps)

 Apply definition of 2’s complement

 sign-extend partial products and subtract at end

 Booth’s Algorithm is an elegant way to multiply signed numbers

using same hardware as before and save cycles

Faster Multiplier

 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined

 Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 20

Adder Reduction Tree

Chapter 3 — Arithmetic for Computers — 21

MIPS Multiplication Instructions

 Two 32-bit registers for product

 HI: most-significant 32 bits

 LO: least-significant 32-bits

 MIPS multiply instructions

 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Long Division Algorithm

 Check for 0 divisor

 Long division approach

 If divisor ≤ dividend bits

 1 bit in quotient, subtract

 Otherwise

 0 bit in quotient, bring down next dividend bit

 Restoring division

 Do the subtract, and if remainder goes < 0, add

divisor back

 Signed division

 Divide using absolute values

 Adjust sign of quotient and remainder as

required

1001
1000 1001010

-1000
10
101
1010
-1000

10

quotient

dividend

remainder

divisor

§3
.4

 D
iv

is
io

n

Chapter 3 — Arithmetic for Computers — 23

Division Algorithm and Hardware (Ver.1)

Initially dividend

Initially divisor

in left half

2n-bit dividend and n-bit divisor yield

n-bit quotient and remainder

— 24

No: < 33 repetitions

2b. Restore original value by

adding Divisor to Remainder,

place sum in Remainder, shift

Quotient to the left, setting new

least significant bit to 0

Division Example

Test
Remainder

Remainder < 0Remainder  0

1. Subtract Divisor register from

Remainder register, and place the

result in Remainder register

2a. Shift Quotient

register to left,

setting new

rightmost bit to 1

3. Shift Divisor register right 1 bit

Done

Yes: 33 repetitions

Start: Place Dividend in Remainder

33rd
repetition?

Quot. Divisor Rem.

0000 00100000 00000111

11100111

00000111

0000 00010000 00000111

11110111

00000111

0000 00001000 00000111

11111111

00000111

0000 00000100 00000111

00000011

0001 00000011

0001 00000010 00000011

00000001

0011 00000001

0011 00000001 00000001

Chapter 3 — Arithmetic for Computers — 25

Observations

 Half of the bits in divisor register always 0

=> 1/2 of 64-bit adder is wasted

=> 1/2 of divisor is wasted

 Instead of shifting divisor to right,

shift remainder to left?

 1st step cannot produce a 1 in quotient bit

(otherwise quotient is too big for the register)

=> switch order to shift first and then subtract

=> save 1 iteration

 Eliminate Quotient register by combining with Remainder

register as shifted left

— 26

Test

Remainder

No: < 32 repetitions

Divide Algorithm (Ver. 2)

Step Remainder Div.
0 0000 0111 0010

1.1 0000 1110

1.2 1110 1110

1.3b 0001 1100

2.2 1111 1100

2.3b 0011 1000
3.2 0001 1000

3.3a 0011 0001

4.2 0001 0001

4.3a 0010 0011

0001 0011

3b. Restore original value by adding

Divisor to left half of Remainder, and

place sum in left half of Remainder.

Also shift Remainder to left, setting

the new least significant bit to 0

Remainder < 0Remainder  0

2. Subtract Divisor register from the

left half of Remainder register, and place the

result in the left half of Remainder register

3a. Shift

Remainder to left,

setting new

rightmost bit to 1

1. Shift Remainder register left 1 bit

Done. Shift left half of Remainder right 1 bit

Yes: 32 repetitions

32nd

repetition?

Start: Place Dividend in Remainder

Chapter 3 — Arithmetic for Computers — 27

Optimized Divider

 One cycle per partial-remainder subtraction

 Looks a lot like a multiplier!

 Same hardware can be used for both

0-bit Multiplier/Quotient register

Chapter 3 — Arithmetic for Computers — 28

Faster Division

 Can’t use parallel hardware as in multiplier

 Subtraction is conditional on sign of remainder

 Faster dividers (e.g. SRT division) generate multiple

quotient bits per step

 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 29

MIPS Division

 Use HI/LO registers for result

 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions

 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking

 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 30

Concluding Remarks

 Observations: Divide vs. Multiply

 Divide can use the same hardware as multiply

 just need ALU to add or subtract, and 64-bit register to

shift left or shift right

 Hi and Lo registers in MIPS combine to act as 64-bit

register for multiply and divide

Chapter 3 — Arithmetic for Computers — 31

Floating Point (FP)

 Representation for non-integral real-valued numbers

 Including very small and very large numbers

 Scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary

 ±1.xxxxxxx2 × 2yyyy

 The programming language C use the name float (or

double) for single-precision (or double-precision) FP

numbers.

normalized

not normalized

§3
.5

 F
lo

a
tin

g
 P

o
in

t

   S (E Bias)(1) (1 F) 2

Chapter 3 — Arithmetic for Computers — 32

Standard FP Representation

 Defined by IEEE Std 754-1985

 Developed in response to divergence of

representations

 Portability issues for scientific code

 Now almost universally adopted

 Two representations

 32-bit single-precision (SP) FP

 64-bit double-precision (DP) FP

Chapter 3 — Arithmetic for Computers — 33

IEEE 754 Standard (1/2)

 Regarding single precision (SP), DP similar

 Sign bit S:

1 means negative

0 means positive

 Significand F:

 To pack more bits, leading 1 implicit for normalized numbers

 1 + 23 bits single, 1 + 52 bits double

 always true: 0  Significand < 1

(for normalized numbers)

 Note: 0 has no leading 1, so reserve exponent value 0

just for number 0

   S (E Bias)(1) (1 F) 2

Chapter 3 — Arithmetic for Computers — 34

0 1111 1111 000 0000 0000 0000 0000 0000
1/2

0 0000 0001 000 0000 0000 0000 0000 00002

 Exponent E:

 Need to represent positive and negative exponents

 Also want to compare FP numbers as if they were integers, to

help in value comparisons

 If use 2’s complement to represent?

e.g., 1.0 x 2-1 versus 1.0 x2+1 (1/2 versus 2)

IEEE 754 Standard (2/2)

If we use integer comparison for these two

words, we will conclude that 1/2 > 2!!!

Chapter 3 — Arithmetic for Computers — 35

Biased (Excess) Notation
 let notation 0000 be most negative, and 1111 be most positive

 Example: Biased 7

0000 -7

0001 -6

0010 -5

0011 -4

0100 -3

0101 -2

0110 -1

0111 0

1000 1

1001 2

1010 3

1011 4

1100 5

1101 6

1110 7

1111 8

Chapter 3 — Arithmetic for Computers — 36

1/2
0 0111 1110 000 0000 0000 0000 0000 0000

0 1000 0000 000 0000 0000 0000 0000 00002

 Using biased notation

 the bias is the number subtracted to get the real number

 IEEE 754 uses bias of 127 for single precision:

Subtract 127 from Exponent field to get actual value for exponent

 1023 is bias for double precision

 The example becomes ….

IEEE 754 Standard

Chapter 3 — Arithmetic for Computers — 37

IEEE Floating-Point Format

 S: sign bit (0  non-negative, 1  negative)

 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to represent it

explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned

 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 

Chapter 3 — Arithmetic for Computers — 38

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value

 Exponent: 00000001

 actual exponent = 1 – 127 = –126

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value

 exponent: 11111110

 actual exponent = 254 – 127 = +127

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 39

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value

 Exponent: 00000000001

 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00  significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value

 Exponent: 11111111110

 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11  significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 40

Floating-Point Precision

 Relative precision

 all fraction bits are significant

 SP : approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal

digits of precision

 DP : approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal

digits of precision

single: 23 bits
double: 52 bits

Chapter 3 — Arithmetic for Computers — 41

Floating-Point Representation Example

 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias

 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 SP : 1011111101000…00

 DP : 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 42

Floating-Point Representation Example

 What number is represented by the single-precision float

11000000101000…00

 S = 1

 Fraction = 01000…002

 Bias Exponent = 100000012 = 129

 Sol. x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 43

Concluding Remarks

 What have we defined so far? (SP float)

Exponent Significand Object

0 0 ???

0 nonzero ???

1-254 anything +/- floating-point

255 0 ???

255 nonzero ???

Chapter 3 — Arithmetic for Computers — 44

Zero and Special Numbers

 Represent 0?

 exponent all zeroes

 significand all zeroes too

 What about sign?

 +0: 0 00000000 00000000000000000000000

 -0: 1 00000000 00000000000000000000000

 Why two zeroes?

 Helps in some limit comparisons

 Special numbers

 Range: 1.0  2-126  1.8  10-38

 What if result too small? (>0, < 1.8x10-38 => Underflow!)

 What if result too large? (> 3.4x1038 => Overflow!)

Chapter 3 — Arithmetic for Computers — 45

Gradual Underflow

 Represent denormalized numbers (denorms)

 Exponent : all zeroes

 Significand : non-zeroes

 Allow a number to degrade in significance until it

become 0 (gradual underflow)

 The smallest normalized number

 1.0000 0000 0000 0000 0000 0000  2-126

Chapter 3 — Arithmetic for Computers — 46

Representation for +/- Infinity

 In FP, divide by zero should produce +/- infinity, not

overflow

 Why?

 OK to do further computations with infinity, e.g., X/0 > Y may be

a valid comparison

 IEEE 754 represents +/- infinity

 Most positive exponent reserved for infinity

 Significands all zeroes

S 1111 1111 0000 0000 0000 0000 0000 000

Chapter 3 — Arithmetic for Computers — 47

Representation for Not a Number

 What do I get if I calculate sqrt(-4.0) or 0.0/0.0?

 If infinity is not an error, these should not be either

 They are called Not a Number (NaN)

 Exponent = 255, Significand nonzero

 Why is this useful?

 Hope NaNs help with debugging?

 They contaminate: op(NaN,X) = NaN

 OK if calculate but don’t use it

Chapter 3 — Arithmetic for Computers — 48

IEEE 754 Encoding of FP Numbers

 What have we defined so far? (single-precision)

Exponent Significand Object

0 0 0

0 nonzero denom

1-254 anything +/- fl. pt. #

255 0 +/- infinity

255 nonzero NaN

Chapter 3 — Arithmetic for Computers — 49

Floating-Point Addition

 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (i.e. 0.5 + –0.4375)

1. Align binary points

 Shift number with smaller exponent

 1.0002 × 2–1 + –0.1112 × 2–1

2. Add significands

 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

3. Normalize result & check for over/underflow

 1.0002 × 2–4, with no over/underflow

4. Round and renormalize if necessary

 1.0002 × 2–4 (no change) = 0.0625

Floating-Point Addition Algorithm

Basic addition algorithm:

compute Ye - Xe (to align binary point)

(1) right shift the smaller number, say Xm, that many

positions to form Xm  2Xe-Ye

(2) compute Xm  2Xe-Ye + Ym

if demands normalization, then normalize:

(3) left shift result, decrement result exponent

right shift result, increment result exponent

(3.1) check overflow or underflow during the shift

(4) round the mantissa

continue until MSB of data is 1

(NOTE: Hidden bit in IEEE Standard)

(5) if result is 0 mantissa, set the exponent

Chapter 3 — Arithmetic for Computers — 51

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 52

Floating-Point Multiplication

 Now consider a 4-digit binary example

 1.0002 × 2–1 × –1.1102 × 2–2 (i.e. 0.5 × –0.4375)

1. Add exponents

 Unbiased: –1 + –2 = –3

 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

2. Multiply significands

 1.0002 × 1.1102 = 1.1102  1.1102 × 2–3

3. Normalize result & check for over/underflow

 1.1102 × 2–3 (no change) with no over/underflow

4. Round and renormalize if necessary

 1.1102 × 2–3 (no change)

5. Determine sign: +ve × –ve  –ve

 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 53

FP Arithmetic Hardware

 Much more complex than integer arithmetic

 Doing it in one clock cycle would take too long

 FP multiplier is of similar complexity to FP adder

 But uses a multiplier for significand instead of an adder

 FP arithmetic hardware usually does

 Addition, subtraction, multiplication, division, reciprocal,

square-root

 FP  integer conversion is not trivial

 Operations usually takes several cycles

 Can be pipelined

Chapter 3 — Arithmetic for Computers — 54

FP Instructions in MIPS (1/2)

 FP hardware is coprocessor 1

 Adjunct processor that extends the ISA

 Separate FP registers

 32 single-precision: $f0, $f1, … $f31

 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPS ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers

 Programs generally don’t do integer ops on FP data, or vice

versa

 More registers with minimal code-size impact

 FP load and store instructions
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 55

FP Instructions in MIPS (2/2)

 Single-precision arithmetic
 add.s, sub.s, mul.s, div.s

 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison

 c.xx.s, c.xx.d (xx is eq, lt, le, …)

 Sets or clears FP condition-code bit

 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel

more examples,

please refer to Fig. 3.17-18,

p. 222-223

Chapter 3 — Arithmetic for Computers — 56

FP Example: °F to °C

 C code:

float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));

}

 fahr in $f12, result in $f0, literals in global memory space

 Compiled MIPS code:

f2c: lwc1 $f16, const5($gp) #$f16=5.0(in Mem.)

lwc1 $f18, const9($gp) #$f18=9.0(in Mem.)

div.s $f16, $f16, $f18 #$f16=5.0/9.0

lwc1 $f18, const32($gp) #$f18=32.0(in Mem)

sub.s $f18, $f12, $f18 #f18=fahr-32.0

mul.s $f0, $f16, $f18 #$f0=(5/9)*(fahr-32)

jr $ra

Chapter 3 — Arithmetic for Computers — 57

FP Example: Matrix Multiplication (1/3)

 X = X + Y × Z

 All 32 × 32 matrices, 64-bit double-precision elements

 C code:

void mm (double x[][], double y[][], double z[][]) {

int i, j, k;

for (i = 0; i! = 32; i = i + 1)

for (j = 0; j! = 32; j = j + 1)

for (k = 0; k! = 32; k = k + 1)

x[i][j] = x[i][j] + y[i][k] * z[k][j];

}

 Addresses of x, y, z in $a0, $a1, $a2, and i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 58

FP Example: Matrix Multiplication (2/3)

 MIPS code:
li $t1, 32 # $t1 = 32 (row size/loop end)

li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

…

Chapter 3 — Arithmetic for Computers — 59

FP Example: Matrix Multiplication (3/3)

…

sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

addu $t0, $t0, $s2 # $t0 = i*size(row) + k

sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

addiu $s2, $s2, 1 # $k k + 1

bne $s2, $t1, L3 # if (k != 32) go to L3

s.d $f4, 0($t2) # x[i][j] = $f4

addiu $s1, $s1, 1 # $j = j + 1

bne $s1, $t1, L2 # if (j != 32) go to L2

addiu $s0, $s0, 1 # $i = i + 1

bne $s0, $t1, L1 # if (i != 32) go to L1

Variant FP Format

Chapter 3 — Arithmetic for Computers — 60

Chapter 3 — Arithmetic for Computers — 61

Accurate Arithmetic

 IEEE Std 754 specifies additional rounding control

 Extra bits of precision (guard, round, sticky)

 Choice of rounding modes

 Allows programmer to fine-tune numerical behavior of a

computation

 Not all FP units implement all options

 Most programming languages and FP libraries just use defaults

 Trade-off between hardware complexity, performance,

and market requirements

Chapter 3 — Arithmetic for Computers — 62

Extra Bits for Rounding

 Why rounding after addition?

 Because not every intermediate results is truncated

 To keep more precision

 Guard and round bits: extra bits to guard against loss of bits during

intermediate additions

 to the right of significand

 can later be shifted left into significand during normalization

 Sticky bit

 Additional bit to the right of the round digit

 Better fine tune rounding

Chapter 3 — Arithmetic for Computers — 63

Example

 Try to add 2.98x100 and 2.34x102

 only 3 decimal digits are allowed

 with 2 more guard bits during computation

 perform rounding at last

 With guard bits and rounding  more accurate results

2.34

+ 0.02

2.36
without guard bits

2.3400

+ 0.0298

2.3698  rounding  2.37

Chapter 3 — Arithmetic for Computers — 64

Rounding Methods

 Round to zero or Truncation

 The result closet to zero is returned.

 Nothing is added to the least significant bit.

 Round up

 The more positive result closest to the infinitely precise result is returned.

 If the result is positive and either the guard or the sticky bit is 1, the

result is rounded.

 If the result is negative, the result is not rounded because the unrounded

result is the most positive result that is closest to the infinitely precise

result.

 Round down

 The more negative result is returned.

 Round to nearest

Chapter 3 — Arithmetic for Computers — 65

Associativity

 Parallel programs may interleave operations in

unexpected orders

 Assumptions of associativity may fail

(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38

 Need to validate parallel programs under varying

degrees of parallelism

Subword Parallellism

 Graphics and audio applications can take advantage of

performing simultaneous operations on short vectors

 Example: 128-bit adder:

 16x8-bit adds; 8x16-bit adds; 4x32-bit adds

 Also called data-level parallelism, vector parallelism, or

Single Instruction, Multiple Data (SIMD)

 ARM NEON multimedia instruction extension

 Intel SSE, SSE2 FP instructions

Chapter 3 — Arithmetic for Computers — 66

§
3
.7

 R
e
a
l S

tu
ff: S

tre
a
m

in
g
 S

IM
D

 E
x
te

n
s
io

n
s
 a

n
d
 A

V
X

 in
 x

8
6

ARM NEON Instructions

 NEON supports all the subword data type you can imagine except 64-bit

FP numbers

 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers

 32-bit FP numbers

Chapter 3 — Arithmetic for Computers — 67

Chapter 3 — Arithmetic for Computers — 68

Right Shift and Division

 Left shift by i places multiplies an integer by 2i

 Right shift divides by 2i?

 Only for unsigned integers

 For signed integers

 Arithmetic right shift: replicate the sign bit

 e.g., –5 / 4

 111110112 >> 2 = 111111102 = –2

 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

Chapter 3 — Arithmetic for Computers — 69

Concluding Remarks

 ISAs support arithmetic

 Signed and unsigned integers

 Floating-point approximation to reals

 Bounded range and precision

 Operations can overflow and underflow

 MIPS ISA

 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP

 Other instructions: less frequent

APPENDIX

Chapter 3 — Arithmetic for Computers — 70

Chapter 3 — Arithmetic for Computers — 71

x86 FP Architecture

 Originally based on 8087 FP coprocessor

 8 × 80-bit extended-precision registers

 Used as a push-down stack

 Registers indexed from TOS: ST(0), ST(1), …

 FP values are 32-bit or 64 in memory

 Converted on load/store of memory operand

 Integer operands can also be converted

on load/store

 Very difficult to generate and optimize code

 Result: poor FP performance

Chapter 3 — Arithmetic for Computers — 72

x86 FP Instructions

 Optional variations
 I: integer operand

 P: pop operand from stack

 R: reverse operand order

 But not all combinations allowed

Data transfer Arithmetic Compare Transcendental

FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 73

Streaming SIMD Extension 2 (SSE2)

 Adds 4 × 128-bit registers

 Extended to 8 registers in AMD64/EM64T

 Can be used for multiple FP operands

 2 × 64-bit double precision

 4 × 32-bit double precision

 Instructions operate on them simultaneously

 Single-Instruction Multiple-Data

Matrix Multiply

 Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)

2. {

3. for (int i = 0; i < n; ++i)

4. for (int j = 0; j < n; ++j)

5. {

6. double cij = C[i+j*n]; /* cij = C[i][j] */

7. for(int k = 0; k < n; k++)

8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

Chapter 3 — Arithmetic for Computers — 74

Matrix Multiply

 x86 assembly code:
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0

2. mov %rsi,%rcx # register %rcx = %rsi

3. xor %eax,%eax # register %eax = 0

4. vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1

5. add %r9,%rcx # register %rcx = %rcx + %r9

6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,

element of A

7. add $0x1,%rax # register %rax = %rax + 1

8. cmp %eax,%edi # compare %eax to %edi

9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0

10. jg 30 <dgemm+0x30> # jump if %eax > %edi

11. add $0x1,%r11d # register %r11 = %r11 + 1

12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element

Chapter 3 — Arithmetic for Computers — 75

Matrix Multiply

 Optimized C code:
1. #include <x86intrin.h>

2. void dgemm (int n, double* A, double* B, double* C)

3. {

4. for (int i = 0; i < n; i+=4)

5. for (int j = 0; j < n; j++) {

6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j]

*/

7. for(int k = 0; k < n; k++)

8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12. }

13. }

Chapter 3 — Arithmetic for Computers — 76

Matrix Multiply

 Optimized x86 assembly code:
1. vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0

2. mov %rbx,%rcx # register %rcx = %rbx

3. xor %eax,%eax # register %eax = 0

4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element

5. add $0x8,%rax # register %rax = %rax + 8

6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements

7. add %r9,%rcx # register %rcx = %rcx + %r9

8. cmp %r10,%rax # compare %r10 to %rax

9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0

10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax

11. add $0x1,%esi # register % esi = % esi + 1

12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements

Chapter 3 — Arithmetic for Computers — 77

