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Instruction Set

 The repertoire of instructions of a computer

 Different processors have different instruction sets

 But with many aspects in common

 Early computers had very simple instruction sets

 For simplified hardware implementation

 Many modern computers also have simple 

instruction sets

 All have a common goal: to find a language that 

makes it easy to build the hardware
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 A specification of a standardized programmer-visible interface to hardware, 
comprises of:

 A set of instructions 

 instruction types

 with associated argument fields, assembly syntax, and machine 
encoding.

 A set of named storage locations

 registers

 memory

 A set of addressing modes (ways to name locations)

 Often an I/O interface

 memory-mapped

Instruction Set Architecture, ISA

Instruction Set Architecture

software

hardware

High level language code : C, C++, Java, Fortan,

Assembly language code: architecture specific statements 

Machine language code: architecture specific bit patterns 

compiler

assembler
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ISA Design Issue

 Where are operands stored?

 How many explicit operands are there?     

 How is the operand location specified?

 What type & size of operands are supported?

 What operations are supported? 

Before answering these questions, let’s consider more about

 Memory addressing

 Data operand

 Operations
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Memory Addressing

 Most CPUs are byte-addressable and provide access for
 Byte (8-bit)

 Half word (16-bit)

 Word (32-bit)

 Double words (64-bit)

 How memory addresses are interpreted and how they 
are specified?
 Little Endian or Big Endian 

 for ordering the bytes within a larger object within memory

 Alignment or misaligned memory access

 for accessing to an abject larger than a byte from memory

 Addressing modes

 for specifying constants, registers, and locations in memory
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Byte-Order (“Endianness”)

 Little Endian

 The byte order put the byte whose address is “xx…x000” at the 

least-significant position in the double word 

 E.g. Intel, DEC, …

 The bytes are numbered as

 Big Endian

 The byte order put the byte whose address is “xx…x000” at the 

most-significant position in the double word 

 E.g. MIPS, IBM, Motorolla, Sun, HP, … 

 The byte address are numbered as

7    6    5    4    3    2    1    0

0    1    2    3    4    5    6    7

LSBMSB

LSBMSB



Chapter 2 — Instructions: Language of the Computer — 7

Little or Big Endian ?

 No absolute advantage for one over the other, but

Byte order is a problem when exchanging data among computers

 Example

 In C, int num = 0x12345678; // a 32-bit word, 

 how is num stored in memory?

.

.

56

.

.

34

124n+0

78

4n+1

4n+2

4n+3

Big Endian

.

.

34

.

.

56

784n+0

12

4n+1

4n+2

4n+3

Little Endian
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Data Alignment

 The memory is typically aligned on a word or double-

word boundary. 

 An access to object of size S bytes at byte address A is 

called aligned if A mod S = 0.

 Access to an unaligned operand may require more 

memory accesses !!

32

32

32

Mis-aligned word reference

To Processor
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Remarks

 Unrestricted alignment access

 Software is simple

 Hardware must detect misalignment and make more memory accesses

 Expensive logic to perform detection 

 Can slow down all references

 Sometimes required for backwards compatibility

 Restricted alignment access

 Software must guarantee alignment

 Hardware detects misalignment access and traps

 No extra time is spent when data is aligned
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Summary: Endians & Alignment

01234567

4

1

Word-aligned word at byte address 4.

Byte-aligned (non-aligned) word, at byte address 1.

2

Halfword-aligned word at byte address 2.

Increasing byte

address

0 (LSB)123 (MSB)

3 (MSB)210 (LSB)

Little-endian byte order 

Big-endian byte order

4

4
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Addressing Mode ?

 It answers the question:

 Where can operands/results be located?

 Recall that we have two types of storage in computer : 

registers and memory

 A single operand can come from either a register or a memory 

location

 Addressing modes offer various ways of specifying the specific 

location
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Addressing Mode Example

Addressing Mode Example Action

1. Register direct       Add R1, R2, R3 R1 <- R2 + R3

2. Immediate Add R1, R2, #3 R1 <- R2 + 3

3.   Register indirect Add R1, R2,(R3) R1 <- R2 + M[R3]

4. Displacement LD  R1, 100(R2) R1 <- M[100 + R2]

5. Indexed LD  R1, (R2 + R3) R1 <- M[R2 + R3]

6. Direct LD  R1, (1000) R1 <- M[1000]

7. Memory Indirect Add R1, R2, @(R3) R1 <- R2 + M[M[R3]]

8.   Auto-increment LD  R1, (R2)+ R1 <- M[R2]

R2 <- R2 + d

9.   Auto-decrement LD  R1, (R2)- R1 <- M[R2]

R2 <- R2 – d

10. Scaled LD  R1, 100(R2)[R3] R1 <- M[100+R2+R3*d]

R: Register,  M: Memory
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Addressing Modes Visualization (1)

immImmediate

Register reg

Instr. Field(s)
Mode

Name
Reg. File Memory

Register

Indirect
reg

Direct addr

Displacement reg imm
+

“base”

address

all your base are belong to us

offset



Instr. Field(s)
Mode

Name
Reg. File Memory

Indexed reg1 reg2
+

“base”

address

offset

Memory

Indirect
reg

Scaled reg1 reg2 rowsz
+

×

Example row size = 8 locations
Base

address

index

(r1)[r2]

Addressing Modes Visualization (2)



How Many Addressing Mode ? 

 A Tradeoff: complexity vs. instruction count

 Should we add more modes?

 Depends on the application class

 Special addressing modes for DSP/GPU processors

 Modulo or circular addressing

 Bit reverse addressing

 Stride, gather/scatter addressing

 Need to support at least three types of addressing mode

 Displacement, immediate, and register indirect

 They represent 75% -- 99% of the addressing modes in benchmarks

 The size of the address for displacement mode to be at least 12—16 bits 

(75% – 99%)

 The size of immediate field to be at least 8 – 16 bits (50%— 80%)

 DSPs rely on hand-coded libraries to exercise novel addressing modes
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The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS (since 1980s) commercialized by 

MIPS Technologies (www.mips.com) 

 Typical of many modern ISAs

 See MIPS Reference Data tear-out card and Appendix E

 ARMv7 is similar to MIPS

 Intel x86 is different from MIPS

 Similar ISAs have a large share of embedded core 

market

 Applications in consumer electronics, network/storage 

equipment, cameras, printers, …

http://www.mips.com/
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Arithmetic Operations

 Add/subtract, 3-operand instruction

 Two sources and one destination

add a, b, c  # a = b + c

 The words to the right of the sharp symbol (#) are comments for 

the human reader

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at lower cost
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Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

 break a C statement into several assembly 

instructions

 introduce temporary variables

add t0, g, h   # temp t0 = g + h

add t1, i, j   # temp t1 = i + j

sub f, t0, t1 # f = t0 - t1



Chapter 2 — Instructions: Language of the Computer — 19

1. Register Operands

 Arithmetic instructions use register operands

 Registers are primitives used in hardware design that 

are also visible to the programmer

 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names

 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster

 c.f. main memory: millions of locations

§2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re



Chapter 2 — Instructions: Language of the Computer — 20

Register Operand Example

 C code:

f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

operands are all registers !!
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2. Memory Operands

 Main memory used for composite data

 Arrays, structures, dynamic data, …

 To apply arithmetic operations

 Load values from memory into registers

 Store result from register to memory

 Memory is byte addressed

 Each address identifies an 8-bit byte

 Words are aligned in memory

 Address must be a multiple of 4

 MIPS is Big Endian

 Most-significant byte at least address of a word

 c.f. Little Endian: least-significant byte at least address
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Memory Operand Example 1

 C code:

g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

 4 bytes per word

lw  $t0, 32($s3)    # load word

add $s1, $s2, $t0

offset base register

Access memory operand via addressing mode
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Memory Operand Example 2

 C code:

A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:

 Index 8 requires offset of 32

lw  $t0, 32($s3)    # load word

add $t0, $s2, $t0

sw  $t0, 48($s3)    # store word
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Operand @Registers vs. @Memory

 Registers are faster to access than memory

 Operating on memory data requires loads and 

stores

 More instructions to be executed

 Compiler must use registers for variables as 

much as possible

 Only spill to memory for less frequently used variables

 Register optimization is important!
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3. Immediate Operands or Constant

 Constant data specified in an instruction

addi $s3, $s3, 4

 No subtract immediate instruction

 Just use a negative constant: 

addi $s2, $s1, -1

 Design Principle 3: Make the common case fast

 Small constants are common

 Immediate operand avoids a load instruction  
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The Constant Zero

 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten

 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero



Chapter 2 — Instructions: Language of the Computer — 27

MIPS Registers

 32 32-bit Registers with R0:=0

 These registers are general purpose, any one can be used as an 

operand/result of an operation

 But making different pieces of software work together is easier if 

certain conventions are followed concerning which registers are 

to be used for what purposes.

 Reserved registers: R1, R26, R27

 R1 for assembler, R26-27 for OS

 Special usage:

 R28: pointer register

 R29: stack pointer

 R30: frame pointer

 R31: return address



Chapter 2 — Instructions: Language of the Computer — 28

Policy of Use Conventions

Name Register number Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results and expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1 ($at) reserved for assembler,  26-27 for operating system

These conventions are usually suggested by the vendor and supported by the compilers
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Binary Representation of Integers

 Number can be represented in any base

 Hexadecimal/Binary/Decimal representations

ACE7hex = 1010 1100 1110 0111bin = 44263dec

 most significant bit, MSB, usually the leftmost bit

 least significant bit, LSB, usually the rightmost bit

 Ideally, we can represent any integer if the bit width is 

unlimited 

 Practically, the bit width is limited and finite…

 for a 8-bit byte  0~255 (0~28 – 1)

 for a 16-bit halfword  0~65,535 (0~216 – 1)

 for a 32-bit word  0~4,294,967,295 (0~232 – 1)
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Unsigned Binary Integers

 Given an n-bit number

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 Range from 0 to +4,294,967,295
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0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 
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Signed Integers or Numbers

 Unsigned number is mandatory

 Eg. Memory access, PC, SP, RA

 Sometimes, negative integers are required in arithmetic 

operation

 a representation that can present both positive and negative 

integers is demanded

 3 well-known methods for signed integers

 Sign and magnitude

 1’s complement

 2’s complement



Chapter 2 — Instructions: Language of the Computer — 32

Sign and Magnitude Representation

 Use the MSB as the sign bit

 0 for positive and 1 for negative

 If the bit width is n

 range  –(2n–1 – 1) ~ 2n–1 – 1; 2n – 1 different numbers

 e.g., for a byte  –127 ~ 127

 Examples

 00000110  +6

 10000111  –7

 Shortcomings

 2 0’s; positive 0 and negative 0; 00000000 and 10000000

 relatively complicated HW design (e.g., adder)
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1’s Complement Representation

+7  0000 0111

–7  1111 1000 (bit inverting)

 If the bit width is n

 range  –(2n–1 – 1) ~ 2n–1 – 1; 2n – 1 different numbers

 e.g., for a byte  –127 ~ 127

 The MSB implicitly serves as the sign bit

 except for –0

 Shortcomings

 2 0’s; positive 0 and negative 0; 00000000 and 11111111

 relatively complicated HW design (e.g., adder)
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2’s Complement Representation

+7  0000 0111

–7  1111 1001 (bit inverting first then add 1)

 The MSB implicitly serves as the sign bit

 2’s complement of 10000000  10000000

 this number is defined as –128

 If the bit width is n

 range  –2n–1 ~ 2n–1 – 1; 2n different numbers

 e.g., for a byte  –128 ~ 127

 Relatively easy hardware design

 Virtually, all computers use 2’s complement representation 
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2’s-Complement Signed Integers (1/2)

 Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: –2n – 1 ~ +2n – 1 – 1

 Example

 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 ~ +2,147,483,647
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2’s-Complement Signed Integers (2/2)

 Bit 31 is sign bit

 1 for negative numbers

 0 for non-negative numbers

 –(–2n – 1) can’t be represented

 Non-negative numbers have the same unsigned and 2’s-

complement representation

 Some specific numbers

 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111
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Signed Negation

 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1 = 1111 1111 … 11102
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Sign Extension

 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set

 addi : extend immediate value

 lb, lh : extend loaded byte/halfword

 beq, bne : extend the displacement

 Replicate the sign bit to the left

 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit

 +2: 0000 0010 => 0000 0000 0000 0010

 –2: 1111 1110 => 1111 1111 1111 1110
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Example : lbu vs lb

 We want to load a BYTE into $s3 from the address 2000

After the load,  what is the value of $s3 ?

 A1: 0000 0000 0000 0000 0000 0000 1111 1111 (255) ?

 A2: 1111 1111 1111 1111 1111 1111 1111 1111 (–1) ?

 Signed (A2) lb $s3, 0($s0)

 Unsigned (A1) lbu$s3, 0($s0) 1111 1111

1111 1111

:

Assume

$s0 = 2000

1999

2000

2001

1111 1111

1111 1111
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Stored Program Computers

 Instructions represented in binary, 

just like data

 Instructions and data stored in 

memory

 Programs can operate on programs

 e.g., compilers, linkers, …

 Binary compatibility allows compiled 

programs to work on different 

computers

 Standardized ISAs

The BIG Picture
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Representing Instructions

 Instructions are encoded in binary

 Called (binary) machine code

 MIPS instructions

 Encoded as 32-bit instruction words

 Small number of formats encoding operation code 

(opcode), register numbers, …

 Regularity !!

 Register numbers (5-bit representation)

 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23
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MIPS R-format Instructions

 Instruction fields

 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000
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MIPS I-format Instructions

 Immediate arithmetic and load/store instructions

 rt: destination or source register number

 Constant: –215 to +215 – 1

 Address: offset added to base address in rs

 Design Principle 4: Good design demands good 

compromises

 Different formats complicate decoding, but allow 32-bit 

instructions uniformly

 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits



Concluding Remarks

 reg: means a register number between 0 and 31

 address/constant: means a 16-bit address/constant

 n.a.: means not applicable 

 All the R-format instructions have the same value in the op-field. The 

hardware uses the funct-field to decide the variant of the R-type 

operation

 R-type and I-type instructions have similar formats with the same 

length
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Translating MIPS Assembly Language 

into Machine Language

 A[300] = h + A[300];

 h in $s2, base address of A in $t1

 Compiled MIPS code:

lw  $t0, 1200($t1)

add $t0, $s2, $t0

sw  $t0, 1200($t1)
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Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting groups of 

bits in a word
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Shift Operations

 shamt: how many positions to shift 

 Shift left logical

 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 sll $t2, $s0, 4 # $t2 = $s0 << 4 bits

 Shift right logical

 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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AND Operation

 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0
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OR Operation

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0
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NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 In keeping with the 3-operand format, MIPS uses 

the NOR instruction instead of the NOT instruction

 a NOR b == NOT ( a OR b )

 nor $t0, $t1, $t3 # $t0 = ~ ($t1 | $t3)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111  1111  1111 1111  1100  0011 1111 1111$t0

Register 0: always 

read as zero



Chapter 2 — Instructions: Language of the Computer — 53

Program Flow Control

 Decision making instructions

 alter the control flow, i.e., change the "next" instruction to be executed

 Branch classifications

 Unconditional branch

 Always jump to the desired (specified) address

 Conditional branch

 Only jump to the desired (specified) address if the condition is true; 

otherwise, continue to execute the next instruction

 Destination addresses can be specified in the same way as other 

operands (combination of register, immediate constant, and memory 

location), depending on what addressing modes are supported in the 

ISA
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MIPS Branch Operations

 Conditional branches

 beq rs, rt, L1

 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1

 if (rs != rt) branch to instruction labeled L1;

 Unconditional branches

 j L1

 unconditional jump to instruction labeled L1

 jal L1

 Jump and link

 jr $ra

 Jump register
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Compiling If-then-else Statement

 C code:

if (i==j) f = g+h;

else f = g-h;

 f, g, h, i, j… in $s0, $s1, …, $s4

 Compiled MIPS code:

bne $s3, $s4, Else

add $s0, $s1, $s2

j   Exit

Else: sub $s0, $s1, $s2

Exit: … Assembler calculates addresses
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Compiling a While Loop Statement

 C code:

while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2

add  $t1, $t1, $s6

lw $t0, 0($t1)

bne $t0, $s5, Exit

addi $s3, $s3, 1

j    Loop

Exit: …

Why ?
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The Basic Block

 A basic block is a sequence of instructions with

 No embedded branches (except at end)

 No branch targets (except at beginning)

 Compiler identifies basic 

blocks for optimization

 An advanced processor can 

accelerate execution of basic 

blocks



Chapter 2 — Instructions: Language of the Computer — 58

More Conditional Operations

 Set result to 1 if a condition is true; Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne

slt $t0, $s1, $s2  # if ($s1 < $s2)

bne $t0, $zero, L  #   branch to L

 MIPS compiler uses the slt, beq, bne, $zero to 

create , , , , , 



Chapter 2 — Instructions: Language of the Computer — 59

Branch Instruction Design

 beq and bne are the common case

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work per 

instruction, requiring a slower clock

 All instructions penalized!

 MIPS compiler uses the slt, beq, bne, $zero to 

create , , , , ,  is a good design compromise
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Branches on LT/LE/GT/GE

 How to implement an equivalent  blt $s0, $s1, L1?

slt $t0, $s0, $s1

bne $t0, $zero, L1 # $zero is always 0

 bge  $s0, $s1, L1?

slt  $t0, $s0, $s1

beq  $t0, $zero, L1

 bgt  $s0, $s1, L1?

slt  $t0, $s1, $s0

bne  $t0, $zero, L1

Try ble yourself !!
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Signed vs. Unsigned Comparison 

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt  $t0, $s0, $s1  # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1  # unsigned

 +4,294,967,295 > +1  $t0 = 0



Case/Switch Statement

 Case statement in C

switch (k){

case 0: f=i+j;

case 1: f=g+h;

case 2: f=g-h;

case 3: f=i-j;

}

 A simplest way to implement case/switch is via a sequence of 

conditional tests, turning the case/switch statement into a chain of if-

then-else statement

 One more efficient way is via a jump address table or jump table. 

And, the program needs only to index into the table and then jump to 

the appropriate label of sequence 
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L3
L2
L1
L0

Jump address table in memory

JumpTable[k]  k=3

 k=2
 k=1
 k=0



Jump Register, jr

 Case statement in C

switch (k){

case 0: f=i+j;

case 1: f=g+h;

case 2: f=g-h;

case 3: f=i-j;

}

 Assume f, g, h,i, j, k are stored in registers 

$s0, $s1,…, and $s5, respectively

 Assume $t2 contains 4

 Assume starting address contained in $t4, 

corresponding to labels L0, L1, L2, and L3, 

respectively 

slt $t3, $s5, $zero #test if k<0

bne $t3, $zero, Exit #if k<0,exit

slt $t3, $s5, $t2 #test if k<4

beq $t3, $zero, Exit #if k4,exit

add $t1, $s5, $s5 #2k

add $t1, $t1, $t1 #$t1=4k

add $t1, $t1, $t4

lw $t0, 0($t1)

jr $t0

L0:add $s0, $s3, $s4,

j Exit

L1:add $s0, $s1, $s2

j Exit

L2:sub $s0, $s1, $s2

j Exit

L3:sub $s0, $s3, $s4

Exit:L3
L2
L1
L0

Jump address table in memory

JumpTable[k] 4n+12  k=3

4n+8  k=2
4n+4  k=1
4n+0  k=0

Use variable k to index a jump address tabke

A switch statement for  0k4
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Procedure Calling

 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call
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Recall: Register Usage

 $a0 – $a3: arguments (reg’s #4 – #7)

 Used to pass parameters

 $v0, $v1: result values (reg’s #2 and #3)

 Used to return values

 $t0 – $t9: temporaries

 Can be overwritten by callee

 $s0 – $s7: saved

 Must be saved/restored by callee

 $gp: global pointer for static data (reg #28)

 $sp: stack pointer (reg #29)

 $fp: frame pointer (reg #30)

 $ra: return address (reg #31)

 Used to return to the point of origin
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Procedure Call Instructions

 Procedure call: jump and link

jal ProcedureLabel

 Address of following instruction is saved in $ra

 Jumps to target address

 Procedure return: jump register

jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements
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Leaf Procedure Example

 C code:

int leaf_example (int g, h, i, j)

{ int f;

f = (g + h) - (i + j);

return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0
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Leaf Procedure Example

 MIPS code:

leaf_example:

addi $sp, $sp, -4

sw   $s0, 0($sp)

add  $t0, $a0, $a1

add  $t1, $a2, $a3

sub  $s0, $t0, $t1

add  $v0, $s0, $zero

lw   $s0, 0($sp)

addi $sp, $sp, 4

jr   $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Adjust stack for one item
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Nested Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the 

stack:

 Its return address

 Any arguments and temporaries needed after 

the call

 Restore from the stack after the call
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A Recursive C Procedure Example

 C code:

int fact (int n)

{ 

if (n < 1) return (1);

else return (n * fact(n - 1));

}

 Argument n in $a0

 Result in $v0
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Non-Leaf Procedure Example

 MIPS code:
fact:

addi $sp, $sp, -8     # adjust stack for 2 items

sw   $ra, 4($sp)      # save return address

sw   $a0, 0($sp)      # save argument

slti $t0, $a0, 1      # test for n < 1

beq  $t0, $zero, L1   # if n1, go to L1

addi $v0, $zero, 1    # if so, result is 1

addi $sp, $sp, 8      #   pop 2 items from stack

jr   $ra              #   and return

L1: addi $a0, $a0, -1     # else decrement n  

jal  fact # recursive call

lw   $a0, 0($sp)      # restore original n

lw   $ra, 4($sp)      #   and return address

addi $sp, $sp, 8      # pop 2 items from stack

mul  $v0, $a0, $v0    # multiply to get result

jr   $ra # and return



Remark

 What is and what is not preserved across a 

procedure call

 $sp is itself preserved by the callee adding exactly the 

same amount that was subtracted from it

 The other registers are preserved by saving them on 

the stack (if they are used) and restoring them from 

there
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Local Data on the Stack

 Local data allocated by callee (local variables to the procedure, but do 

not fit in registers)

 e.g., C automatic variables, arrays or structures, …

 Procedure frame (activation record)

 Used by some compilers to manage stack storage
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Memory Layout

 Text: program code

 Static data: constants and other 

static (global) variables

 e.g., static variables in C, constant 

arrays and strings

 $gp initialized to 1000 8000H

allowing ±offsets into this segment

 Dynamic data: heap

 E.g., malloc in C, new in Java

 Stack: automatic storage

 Start in the high end of memory 

and grows down

 Stack and heap are grown 

toward each other
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Character Data

 Byte-encoded character sets

 ASCII (American standard code for information 

interchange): 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set (universal encoding)

 Used in Java (16-bit character), C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

 UTF-32: 32-bit character
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Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store

 String processing is a common case

 Sign extend to 32 bits in rt

lb rt, offset(rs)     lh rt, offset(rs)

 Zero extend to 32 bits in rt

lbu rt, offset(rs)    lhu rt, offset(rs)

 Store just rightmost byte/halfword

sb rt, offset(rs)     sh rt, offset(rs)
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String Copy Example

 C code (naïve):

 Null-terminated string: used to mark the end of the string

void strcpy (char x[], char y[])

{ int i;

i = 0;

while ((x[i]=y[i])!='\0')

i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0



Chapter 2 — Instructions: Language of the Computer — 78

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4      # adjust stack for 1 item

sw   $s0, 0($sp)       # save $s0 for i

add  $s0, $zero, $zero # i = 0

L1: add  $t1, $s0, $a1     # addr of y[i] in $t1

lbu  $t2, 0($t1)       # $t2 = y[i]

add  $t3, $s0, $a0     # addr of x[i] in $t3

sb   $t2, 0($t3)       # x[i]  y[i]

beq  $t2, $zero, L2    # exit loop if y[i] == ‘\0’  

addi $s0, $s0, 1       # i = i + 1

j    L1                # next iteration of loop

L2: lw   $s0, 0($sp)       # restore saved $s0

addi $sp, $sp, 4       # pop 1 item from stack

jr   $ra               # and return
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0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant; load upper immediate

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0, $s0, 2304

4000000 (22-bit)>16-bit
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The Effect of the lui Instruction

 Either the compiler or the assembler must break large 

constants into pieces and then resemble them into a register. 

 The immediate field’s size is restricted

 The assembler must have a temporary register available in which 

to create the long values for resembling them into a register.

 That is why $at (assembler temporary) is reserved for the 

assembler. 
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Addressing in Jumps

 Jump (j and jal) instruction is J-type

 The target address could be anywhere in text 

segment: Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo) Direct jump addressing

 Target address = PC31…28 : (address × 4)

append

j  L1
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Addressing in Conditional Branch

 Branch instructions specify: opcode, two registers, 

and target address

 Most target address is near to the PC

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing

 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Note: Word-alignment access

offset
beq  $t2, $zero, L2 
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Target Addressing Example

 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add  $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j    Loop 80020 2 20000

Exit: … 80024
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Branching Far Away

 If branch target is too far to encode with 16-bit 

offset, assembler rewrites the code

 Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2

j L1

L2: …

(larger than 16-bit offset)
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5 MIPS Addressing Modes



Decoding Machine Code

 Decoding: Reverse-engineer machine language to create the 

assembly language

 Example: 00af 8020hex

1. Convert hexadecimal to binary

0000 0000 1010 1111 1000 0000 0010 0000

2. Look at the op field to determine the operation

The op-field is 000000. It is an R-type instruction

3. Decode the rest of the instruction by looking at the field values

4. Reveal the assembly instruction

add  $s0, $a1, $t7
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Synchronization Issue

 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize

 Result depends on order of accesses

 Hardware-supplied synchronization is required

 Atomic read/write memory operation

 No other access to the location allowed between the read and 

write

 Could be a single instruction (but hard to implement)

 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions
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Synchronization in MIPS 

 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed

 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)

try: add $t0,$zero,$s4 ;copy exchange value

ll  $t1,0($s1)    ;load linked

sc  $t0,0($s1)    ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

The contents of $s4 and the memory location specified by $s1 have been exchanged

lock-free atomic L/S
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Translation and Startup

Many compilers produce 

object modules directly

Static linking
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Assembler Pseudoinstructions

 Most assembler instructions represent machine 

instructions one-to-one

 Pseudoinstructions: figments of the assembler’s 

imagination

move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 The cost of pseudoinstructions is reserving one 

register, $at (register 1): assembler temporary
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Producing an Object Module

 Assembler (or compiler) translates program into machine 

instructions and keeps track of labels used in branches and 

data transfer instruction in a symbol table.

 Object module provides information for building a complete 

program from the six distinct pieces (the object file for UNIX)

 Header: used to describe the contents of the object module

 Text segment: translated machine codes

 Static data segment: data allocated for the life of the program

 Relocation info: for contents that depend on absolute location when 

the program is loaded into memory

 Symbol table: global definitions and external refs (or remaining 

labels) that are not defined

 Debug info: for associating with source code
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Linking Object Modules

 Linker: takes all the independently assembled program 

and stiches them together

 3 steps for linker to produce an executable image

1. Merges segments (i.e. place code and data modules 

symbolically in memory)

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

 Could leave location dependencies for fixing by a 

relocating loader

 But with virtual memory, no need to do this

 Program can be loaded into absolute location in virtual 

memory space Reading Assignment:

P-133 Example
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Loading a Program

 Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create (virtual) address space, which is large enough for 

the text and data

3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4. Set up arguments on stack, if necessary

5. Initialize registers (including $sp, $fp, $gp to the first free 

location)

6. Jump to startup routine

 Copies arguments to $a0, … and calls main

 When main returns, do exit system-call
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Dynamic Linking

 Static linking problem

 The library routines become part of the executable code. It 

keeps using the old version of the library even though a 

new one is released. 

 It loads all routines in the library that are called anywhere 

in he executable, even if those calls are not executed.

 Dynamically linked libraries (DLL): only link/load library 

procedure when it is called

 Requires procedure code to be relocatable

 Avoids image bloat caused by static linking of all 

(transitively) referenced libraries

 Automatically picks up new library versions
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Lazy Linkage

Indirection table

Stub: Loads routine ID,

Jump to linker/loader

Linker/loader code

Dynamically

mapped code
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Starting a Java Program

Simple portable 

instruction set for 

the JVM

Interprets 

bytecodes

Compiles 

bytecodes of 

“hot” methods 

into native 

code for host 

machine
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C Sort Example

 Illustrates use of assembly instructions for 

a C bubble sort function

 Swap procedure (leaf)

void swap(int v[], int k)

{

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0

§2
.1

3
 A

 C
 S

o
rt E

x
a
m

p
le

 to
 P

u
t It A

ll T
o
g
e
th

e
r



Chapter 2 — Instructions: Language of the Computer — 100

The Procedure Swap

swap: sll $t1, $a1, 2   # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

#   (address of v[k])

lw $t0, 0($t1)    # $t0 (temp) = v[k]

lw $t2, 4($t1)    # $t2 = v[k+1]

sw $t2, 0($t1)    # v[k] = $t2 (v[k+1])

sw $t0, 4($t1)    # v[k+1] = $t0 (temp)

jr $ra            # return to calling routine
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The Sort Procedure in C

 Non-leaf (calls swap)
void sort (int v[], int n)

{

int i, j;

for (i = 0; i < n; i += 1) {

for (j = i – 1;

j >= 0 && v[j] > v[j + 1];

j -= 1) {

swap(v,j);

}

}

}

 v in $a0, k in $a1, i in $s0, j in $s1
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The Procedure Body
move $s2, $a0           # save $a0 into $s2

move $s3, $a1           # save $a1 into $s3

move $s0, $zero         # i = 0

for1tst: slt  $t0, $s0, $s3      # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq  $t0, $zero, exit1  # go to exit1 if $s0 ≥ $s3 (i ≥ n)

addi $s1, $s0, –1       # j = i – 1

for2tst: slti $t0, $s1, 0        # $t0 = 1 if $s1 < 0 (j < 0)

bne  $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0)

sll  $t1, $s1, 2        # $t1 = j * 4

add  $t2, $s2, $t1      # $t2 = v + (j * 4)

lw   $t3, 0($t2)        # $t3 = v[j]

lw   $t4, 4($t2)        # $t4 = v[j + 1]

slt  $t0, $t4, $t3      # $t0 = 0 if $t4 ≥ $t3

beq  $t0, $zero, exit2  # go to exit2 if $t4 ≥ $t3

move $a0, $s2           # 1st param of swap is v (old $a0)

move $a1, $s1           # 2nd param of swap is j

jal  swap               # call swap procedure

addi $s1, $s1, –1       # j –= 1

j    for2tst            # jump to test of inner loop

exit2:   addi $s0, $s0, 1        # i += 1

j    for1tst            # jump to test of outer loop

Pass

params

& call

Move

params

Inner loop

Outer loop

Inner loop

Outer loop
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sort:    addi $sp,$sp, –20      # make room on stack for 5 registers

sw $ra, 16($sp)        # save $ra on stack

sw $s3,12($sp)         # save $s3 on stack

sw $s2, 8($sp)         # save $s2 on stack

sw $s1, 4($sp)         # save $s1 on stack

sw $s0, 0($sp)         # save $s0 on stack

…                      # procedure body

…

exit1: lw $s0, 0($sp)  # restore $s0 from stack

lw $s1, 4($sp)         # restore $s1 from stack

lw $s2, 8($sp)         # restore $s2 from stack

lw $s3,12($sp)         # restore $s3 from stack

lw $ra,16($sp)         # restore $ra from stack

addi $sp,$sp, 20       # restore stack pointer

jr $ra # return to calling routine

The Full Procedure
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Effect of Compiler Optimization
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Impact of Language and Algorithm
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Lessons Learnt

 Instruction count and CPI are not good performance 

indicators in isolation

 Compiler optimizations are sensitive to the algorithm

 Java/JIT compiled code is significantly faster than JVM 

interpreted

 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!
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Arrays vs. Pointers

 A challenge for new C programmer is understanding pointers.

 Two C examples: array indices vs. pointers

 Array indexing involves

 Multiplying index by element size

 Adding to array base address

 Pointers correspond directly to memory addresses

 Can avoid indexing complexity
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Example of Clearing with Array vs. Pointer

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

move $t0,$zero   # i = 0

loop1: sll $t1,$t0,2    # $t1 = i * 4

add $t2,$a0,$t1  # $t2 =

#   &array[i]

sw $zero, 0($t2) # array[i] = 0

addi $t0,$t0,1   # i = i + 1

slt $t3,$t0,$a1  # $t3 =

#   (i < size)

bne $t3,$zero,loop1 # if (…)
# goto loop1

move $t0,$a0    # p = & array[0]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4  # p = p + 4

sll $t1, $a1, 2 # $t1 = size * 4

add $t2, $a0, $t1 # $t2 = 

# address of array[size]

slt $t3,$t0,$t2 # $t3 =

#(p<&array[size])

bne $t3,$zero,loop2 # if (…)

# goto loop2

Assign pointer p to the 

address of the first element 

 We assume that the two parameters array and size are 

found in the registers $a0 and $a1



move $t0,$a0 

sll $t1,$a1,2 

add $t2,$a0,$t1 

loop2: sw $zero,0($t0) 

addi $t0,$t0,4  

slt $t3,$t0,$t2 

bne $t3,$zero,loop2

Fast Version of clear2
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clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

move $t0,$a0    # p = & array[0]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4  # p = p + 4

sll $t1, $a1, 2 # $t1 = size * 4

add $t2, $a0,$t1 # $t2 = 

# address of array[size]

slt $t3,$t0,$t2 # $t3 =

#(p<&array[size])

bne $t3,$zero,loop2 # if (…)

# goto loop2

Always the same
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Comparing the Two Versions of Clear

clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

move $t0,$zero   # i = 0

loop1: sll $t1,$t0,2    # $t1 = i * 4

add $t2,$a0,$t1  # $t2 =

#   &array[i]

sw $zero, 0($t2) # array[i] = 0

addi $t0,$t0,1   # i = i + 1

slt $t3,$t0,$a1  # $t3 =

#   (i < size)

bne $t3,$zero,loop1 # if (…)
# goto loop1

move $t0,$a0    # p = & array[0]

sll $t1,$a1,2 # $t1 = size * 4

add $t2,$a0,$t1 # $t2 =

#   &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4

slt $t3,$t0,$t2 # $t3 =

#(p<&array[size])

bne $t3,$zero,loop2 # if (…)

# goto loop2

 Array indices method must calculate the address of the new index “i“ 

 Pointer method increments the pointer “p” directly
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Comparison of Array vs. Ptr

 Multiply “strength reduced” to shift

 Array version requires shift to be inside loop

 Part of index calculation for incremented i

 c.f. incrementing pointer

 Compiler can achieve same effect as manual use of 

pointers

 Induction variable elimination

 Better to make program clearer and safer
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ARM & MIPS Similarities

 ARM: the most popular embedded core

 Similar basic set of instructions to MIPS

§2
.1

4
 R

e
a
l S

tu
ff: A

R
M

 In
s
tru

c
tio

n
s

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory 

mapped

Memory 

mapped
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Compare and Branch in ARM

 Uses condition codes for result of an 

arithmetic/logical instruction

 Negative, Zero, Carry, Overflow

 Compare instructions to set condition codes 

without keeping the result

 Each instruction can be conditional

 Top 4 bits of instruction word: condition value

 Can avoid branches over single instructions
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Instruction Encoding



ARM v8 Instructions

 In moving to 64-bit, ARM did a complete 

overhaul

 ARM v8 resembles MIPS
 Changes from v7:

 No conditional execution field

 Immediate field is 12-bit constant

 Dropped load/store multiple

 PC is no longer a GPR

 GPR set expanded to 32

 Addressing modes work for all word sizes

 Divide instruction

 Branch if equal/branch if not equal instructions
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 Most similar to MIPS. 

 An open architecture

RISC-V Instructions
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 All instructions are 32-bit wide for both architectures

 Both have 32 general-purpose registers

 The only way to access memory is via load and store 

instructions on both architectures

 There are no instructions that can load or store many registers 

in MIPS or RISC-V

 Both have instructions that branch if a register is equal to zero 

and branch if a register is not equal to zero

 Both sets of addressing modes work for all data sizes

Common Features between RISC-V and MIPS
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The Intel x86 ISA

 Evolution with backward compatibility

 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080

 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor

 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU

 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)

 Additional addressing modes and operations

 Paged memory mapping as well as segments
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The Intel x86 ISA

 Further evolution…
 i486 (1989): pipelined, on-chip caches and FPU

 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath

 Later versions added MMX (Multi-Media eXtension) instructions

 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)

 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)

 Added SSE (Streaming SIMD Extensions) and associated 
registers

 Pentium 4 (2001)

 New microarchitecture

 Added SSE2 instructions
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The Intel x86 ISA

 And further…
 AMD64 (2003): extended architecture to 64 bits

 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)

 Added SSE3 instructions

 Intel Core (2006)

 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions

 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)

 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its 
competitors would!
 Technical elegance ≠ market success



Chapter 2 — Instructions: Language of the Computer — 122

Basic x86 Registers
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Basic x86 Addressing Modes

 Two operands per instruction

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 Memory addressing modes

 Address in register

 Address = Rbase + displacement

 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

 Address =  Rbase + 2scale × Rindex + displacement
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x86 Instruction Encoding

 Variable length 

encoding

 Postfix bytes specify 

addressing mode

 Prefix bytes modify 

operation

 Operand length, 

repetition, locking, …
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Implementing IA-32

 Complex instruction set makes 

implementation difficult

 Hardware translates instructions to simpler 

microoperations

 Simple instructions: 1–1

 Complex instructions: 1–many

 Microengine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC

 Compilers avoid complex instructions



ARM v8 Instructions

 In moving to 64-bit, ARM did a complete 

overhaul

 ARM v8 resembles MIPS
 Changes from v7:

 No conditional execution field

 Immediate field is 12-bit constant

 Dropped load/store multiple

 PC is no longer a GPR

 GPR set expanded to 32

 Addressing modes work for all word sizes

 Divide instruction

 Branch if equal/branch if not equal instructions
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Fallacies

 Powerful instruction  higher performance

 Fewer instructions required

 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple 

instructions

 Use assembly code for high performance

 But modern compilers are better at dealing with 

modern processors

 More lines of code  more errors and less 

productivity
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Fallacies

 Backward compatibility  instruction set 

doesn’t change

 But they do accrete more instructions

x86 instruction set
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Concluding Remarks

 Design principles

1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

 Layers of software/hardware

 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs

 c.f. x86
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Concluding Remarks

 Measure MIPS instruction executions in 
benchmark programs

 Consider making the common case fast

 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu, lh, 
lhu, sb, lui

35% 36%

Logical and, or, nor, andi, 
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt, slti, 
sltiu

34% 8%

Jump j, jr, jal 2% 0%


