Arithmetic for Computers

Arithmetic for Computers/Processors

Representations

- 2's complement representation for fixed-point N-bit INT
- Std. IEEE754 FP32/64 representation

Fixed-point INT arithmetic vs. Floating-point (FP) arithmetic

- General operations: Addition/subtraction, multiplication, division
- Special DSP operations: fused multiply-and-accumulate (MAC), butterfly unit, general matrix-matrix multiplication (GEMM), ...
Efficient multiplication/division algorithms
Efficient implementation of adder, multiplier, and divider

Should deal with the problem of overflow/underflow, divide by $0, \ldots$ The representation of infinity, NAN, ...

(Fixed-Point) Integer Addition

Example: $7+6$

	(0)	(0)	(1)	(1)	(0)	
	0	0	0	1	1	
	0	0	0	1	1	
(0)	0	0	1	1	0	

- Overflow if result out of range
- Adding +ve and -ve operands, no overflow
- Adding two +ve operands,
- Overflow if result sign is 1
- Adding two -ve operands
- Overflow if result sign is 0

(Fixed-Point) Integer Subtraction

Example: $7-6=7+(-6)$

$$
\begin{array}{ll}
+7: & 00000000 \ldots 00000111 \\
-6: & 11111111 \ldots 11111010 \\
\hline+1: & 00000000 \ldots 00000001
\end{array}
$$

- Overflow if result out of range
- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Detecting Overflow

No overflow when adding a positive and a negative number
No overflow when signs are the same for subtraction
Overflow occurs when the value affects the sign:

- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive

Overflow detection

Operation	A	B	Result indicating overflow
$A+B$	$>=0$	$>=0$	<0
$A+B$	<0	<0	$>=0$
$A-B$	$>=0$	<0	<0
$A-B$	<0	$>=0$	$>=0$

Overflow Detection Logic

Overflow occurs when adding:

- 2 positive numbers and the sum is negative
- 2 negative numbers and the sum is positive
=> sign bit is set with the value of the result
- Overflow if: Carry into MSB $=$ Carry out of MSB
- Overflow = Carryln[N-1] XOR CarryOut[N-1]

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions
- Saturated arithmetic

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions

On overflow, invoke exception handler

- Save PC in exception program counter (EPC) register Jump to predefined handler address mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Chapter 3 - Arithmetic for Computers - 7

Designing Arithmetic Logic Unit (ALU)

ALU performs arithmetic and logical operations

- add, sub: two's complement adder/subtractor with overflow detection
- and, or, nor : logical AND, logical OR, logical NOR
- slt (set on less than): two's complement adder with inverter, check sign bit of result

(ALUop)
0000
0001
0010
0110
0111
1100

Function
and
or
add
subtract
set-on-less-than
nor

32-Bit ALU \leftarrow Group Bit-Slice ALU

Design trick 1: divide and conquer

- Break the problem into simpler problems, solve them and glue together the solution
Design trick 2: solve part of the problem and extend

A 4-bit ALU Example

Design trick 3: take pieces you know (or can imagine) and try to put them together
4-bit ALU

Overflow Detection Logic

Overflow = Carryln[N-1] XOR CarryOut[N-1]

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit (byte) and 16-bit INT data

SIMD (single-instruction, multiple-data) extension ISA

- Use 64-bit adder, with partitioned carry chain
- Operate on 8×8-bit, 4×16-bit, or 2×32-bit configurable ALU operations

On overflow, usually applying saturating arithmetic

- Result is replaced by the largest representable value
- E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

3-Step Multiplication in MIPS

mult \$t1, \$t2 \# t1 * t2
No destination register: product could be $\sim 2^{64}$; need two special registers to hold it
3-step process:

$$
\begin{aligned}
& \text { \$t1 01111111111111111111111111111111 } \\
& \text { X \$t2 } 01000000000000000000000000000000
\end{aligned}
$$

000111111111111111111111111111110000000000000000000000000000000

mfhi \$t3
\$t3 000111111111111111111111111111
mflo \$t4 \$t4 11000000000000000000000000000000

Multiply Algorithm (Ver. 1)

1a. Add multiplicand to product and place the result in Product register
0010×0011

Product	Multiplier
00000000	0011
00000010	0001
00000110	0000
00000110	0000
00000110	0000

Multiplicand
00000010
00000100
00001000
00010000
00100000 Done

Observations

- 1 clock per cycle => too slow
- Ratio of multiply to add 5:1 to 100:1
- Half of the bits in multiplicand always 0
=> 64-bit adder is wasted
0 's inserted in right of multiplicand as shifted
=> least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?

Product register wastes space => combine Multiplier and Product register

Multiply Algorithm (Ver. 2)

1a. Add multiplicand to left half of product and place the result in left half of Product register

Multiplicand	Product
0010	0000
	$0010: 0011$
0010	$0001: 0001$
	$0011: 0001$
0010	$0001: 1000$
0010	0000
0010	0000
0	0110

Add \& shift perform in parallel

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Concluding Remarks

2 steps per bit because multiplier and product registers combined

MIPS registers Hi and Lo are left and right half of Product register
=> this gives the MIPS instruction MultU
What about signed multiplication?

- The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
- Apply definition of 2's complement
sign-extend partial products and subtract at end
- Booth's Algorithm is an elegant way to multiply signed numbers using same hardware as before and save cycles

Faster Multiplier

Uses multiple adders

- Cost/performance tradeoff

- Can be pipelined

Several multiplication performed in parallel

MIPS Multiplication Instructions

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

MIPS multiply instructions

- mult rs, rt / multu rs, rt
= 64-bit product in HI/LO
- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
- Least-significant 32 bits of product $->$ rd

Long Division Algorithm

Check for 0 divisor

- Long division approach
- If divisor \leq dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit

Restoring division

- Do the subtract, and if remainder goes <0, add divisor back

Signed division

- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Algorithm and Hardware (Ver.1)

Chapter 3 - Arithmetic for Computers - 23
Division Example
Start: Place Dividend in Remainder

1. Subtract Divisor register from Remainder register, and place the result in Remainder register

Quot.	Divisor	Rem.
0000	00100000	00000111
		(1) 100111
		00000111
0000	00010000	00000111
		(1) 110111
		00000111
0000	00001000	00000111
		(1)111111
		00000111
0000	00000100	00000111
		O0000011
0001		00000011
0001	00000010	00000011
		OD000001
0011		00000001
0011	00000001	00000001

Observations

Half of the bits in divisor register always 0
=> $1 / 2$ of 64 -bit adder is wasted
=> $1 / 2$ of divisor is wasted
Instead of shifting divisor to right,
shift remainder to left?
1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
=> switch order to shift first and then subtract
=> save 1 iteration
Eliminate Quotient register by combining with Remainder register as shifted left

Divide Algorithm (Ver. 2)

Start: Place Dividend in Remainder

1. Shift Remainder register left 1 bit

Step Remainder Div.
$0 \quad 000001110010$
1.100001110
1.211101110
1.3b 00011100
2.211111100
2.3b 00111000
3.200011000
3.3a 00110001
4.200010001
4.3a 00100011

00010011

$$
\begin{aligned}
& \text { 3a. Shift } \\
& \text { Remainder to left, } \\
& \hline \begin{array}{l}
\text { setting new } \\
\text { rightmost bit to } 1
\end{array}
\end{aligned}
$$

2. Subtract Divisor register from the left half of Remainder register, and place the result in the left half of Remainder register

3b. Restore original value by adding Divisor to left half of Remainder, and place sum in left half of Remainder. Also shift Remainder to left, setting the new least significant bit to 0

Optimized Divider

One cycle per partial-remainder subtraction

- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT division) generate multiple quotient bits per step

- Still require multiple steps

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient

Instructions

- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mfhi, mflo to access result

Concluding Remarks

Observations: Divide vs. Multiply
Divide can use the same hardware as multiply

- just need ALU to add or subtract, and 64-bit register to shift left or shift right

Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Floating Point (FP)

Representation for non-integral real-valued numbers

- Including very small and very large numbers

Scientific notation

- -2.34×10^{56}

- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

In binary

- $\pm 1 . x x x x x x x_{2} \times 2^{y y y y}$
$(-1)^{\mathrm{S}} \times(1+\mathrm{F}) \times 2^{(\mathrm{E}-\text {-ias })}$
The programming language C use the name float (or double) for single-precision (or double-precision) FP numbers.

Standard FP Representation

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- 32-bit single-precision (SP) FP
- 64-bit double-precision (DP) FP

IEEE 754 Standard (1/2)

Regarding single precision (SP), DP similar

- Sign bit S:

1 means negative
0 means positive

- Significand F :
- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- always true: $0 \leq$ Significand <1 (for normalized numbers)
Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Standard (2/2)

Exponent E :

- Need to represent positive and negative exponents
- Also want to compare FP numbers as if they were integers, to help in value comparisons
- If use 2's complement to represent? e.g., 1.0×2^{-1} versus $1.0 \times 2^{+1}$ ($1 / 2$ versus 2)

$1 / 2$| 0 | 11111111 | 00000000000000000000000 |
| :--- | :--- | :--- | | 0 | 00000001 | 00000000000000000000000 |
| :--- | :--- | :--- |

If we use integer comparison for these two words, we will conclude that 1/2 > 2!!!

Biased (Excess) Notation

let notation 0000 be most negative, and 1111 be most positive Example: Biased 7

0000	-7
0001	-6
0010	-5
0011	-4
0100	-3
0101	-2
0110	-1
0111	0
1000	1
1001	2
1010	3
1011	4
1100	5
1101	6
1110	7
1111	8

IEEE 754 Standard

Using biased notation

- the bias is the number subtracted to get the real number
- IEEE 754 uses bias of 127 for single precision: Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
- The example becomes

IEEE Floating-Point Format

single: 8 bits double: 11 bits

S Exponent \quad Fraction

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{(\text {Exponent-Bias })}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq$ |significand| <2.0
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: 111... $11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
$\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
single: 23 bits double: 52 bits
- SP : approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- DP : approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Representation Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- $S=1$
- Fraction $=1000 \ldots 00_{2}$
- Exponent $=-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=0111111110_{2}$

SP:1011111101000... 00
DP : 10111111111101000... 00

Floating-Point Representation Example

What number is represented by the single-precision float 11000000101000... 00

- $S=1$
- Fraction $=01000 \ldots 00_{2}$
- Bias Exponent $=10000001_{2}=129$

$$
\begin{aligned}
\text { Sol. } \mathrm{x} & =(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Concluding Remarks

What have we defined so far? (SP float)

Exponent
0
0
$1-254$
255
255

Significand
0
nonzero
anything
0
nonzero

Object
???
???
+/- floating-point
???
???

Zero and Special Numbers

Represent 0?

- exponent all zeroes
- significand all zeroes too
- What about sign?
- +0: 0 00000000 00000000000000000000000
- -0: 10000000000000000000000000000000

Why two zeroes?

- Helps in some limit comparisons
- Special numbers
- Range: $1.0 \times 2^{-126} \approx 1.8 \times 10^{-38}$
- What if result too small? ($>0,<1.8 \times 10^{-38}=>$ Underflow!)
- What if result too large? $\left(>3.4 \times 10^{38}=>\right.$ Overflow!)

Gradual Underflow

Represent denormalized numbers (denorms)

- Exponent : all zeroes
- Significand : non-zeroes
- Allow a number to degrade in significance until it become 0 (gradual underflow)
- The smallest normalized number
$1.000000000000000000000000 \times 2^{-126}$

Representation for +/- Infinity

In FP, divide by zero should produce +/- infinity, not overflow

Why?

- OK to do further computations with infinity, e.g., X/0 > Y may be a valid comparison

IEEE 754 represents +/- infinity

- Most positive exponent reserved for infinity
- Significands all zeroes

S 1111111100000000000000000000000

Representation for Not a Number

What do I get if I calculate sqrt(-4.0) or 0.0/0.0?

- If infinity is not an error, these should not be either
- They are called Not a Number (NaN)
- Exponent $=255$, Significand nonzero

Why is this useful?

- Hope NaNs help with debugging?
- They contaminate: op($\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$
- OK if calculate but don't use it

IEEE 754 Encoding of FP Numbers

What have we defined so far? (single-precision)

Exponent
 0
 0
 1-254
 255
 255

Significand
0
nonzero
anything
0
nonzero

Chapter 3 - Arithmetic for Computers - 48

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}$
(i.e. $0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$

3. Normalize result \& check for over/underflow

- 1.000×2^{-4}, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

Floating-Point Addition Algorithm

Basic addition algorithm:
compute Ye - Xe (to align binary point)
(1) right shift the smaller number, say Xm , that many positions to form $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}$
(2) compute $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}+\mathrm{Ym}$
if demands normalization, then normalize:
(3) left shift result, decrement result exponent right shift result, increment result exponent
(3.1) check overflow or underflow during the shift
(4) round the mantissa
continue until MSB of data is 1
(NOTE: Hidden bit in IEEE Standard)
(5) if result is 0 mantissa, set the exponent

FP Adder Hardware

Floating-Point Multiplication

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}$
(i.e. 0.5×-0.4375)

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow

4. Round and renormalize if necessary

- $1.110_{2} \times 2^{-3}$ (no change)

5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$

$$
--1.110_{2} \times 2^{-3}=-0.21875
$$

FP Arithmetic Hardware

Much more complex than integer arithmetic
Doing it in one clock cycle would take too long
FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significand instead of an adder

FP arithmetic hardware usually does

- Addition, subtraction, multiplication, division, reciprocal, square-root

FP \leftrightarrow integer conversion is not trivial
Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS (1/2)

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA

Separate FP registers

- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$£0/\$£1, \$£2/\$f3, ...

Release 2 of MIPS ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- lwc1, ldc1, swc1, sdc1
- e.g., ldc1 \$f8, 32 (\$sp)

FP Instructions in MIPS (2/2)

Single-precision arithmetic

- add.s, sub.s, mul.s, div.s
- e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add.d, sub.d, mul.d, div.d
- e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

- c.xx.s, c.xx.d ($x x$ is eq, $7 \mathrm{t}, 7 \mathrm{e}, \ldots$)
- Sets or clears FP condition-code bit
- e.g.c.lt.s \$f3, \$f4

Branch on FP condition code true or false

- bc1t, bc1f
- e.g., bc1t TargetLabel
more examples,
please refer to Fig. 3.17-18,
p. 222-223

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$£0, literals in global memory space

Compiled MIPS code:
f2c: lwc1 \$f16, const5 (\$gp) \#\$f16=5.0(in Mem.) lwc1 \$f18, const9 (\$gp) \#\$f18=9.0(in Mem.) div.s \$f16, \$f16, \$f18 \#\$f16=5.0/9.0 lwc1 \$f18, const32 (\$gp) \#\$f18=32.0(in Mem) sub.s \$f18, \$f12, \$f18 \#f18=fahr-32.0 mul.s \$f0, \$f16, \$f18 \#\$f0=(5/9)*(fahr-32) jr \$ra

FP Example: Matrix Multiplication (1/3)

```
X=X +Y }\times
    - All 32 x 32 matrices, 64-bit double-precision elements
C code:
void mm (double x[][], double y[][], double z[][]) {
    int i, j, k;
    for (i = 0; i! = 32; i = i + 1)
        for (j = 0; j! = 32; j = j + 1)
            for (k = 0; k! = 32; k = k + 1)
            x[i][j] = x[i][j] + y[i][k] * z[k][j];
}
```

- Addresses of x, y, z in $\$ a 0, \$ a 1, \$ a 2$, and i, j, k in $\$ s 0, \$ s 1, \$ s 2$

FP Example: Matrix Multiplication (2/3)

MIPS code:

FP Example: Matrix Multiplication (3/3)

Variant FP Format

IEEE half-precision 16-bit float

NVidia's TensorFloat

Pixar's PXR24 format

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
Not all FP units implement all options
- Most programming languages and FP libraries just use defaults Trade-off between hardware complexity, performance, and market requirements

Extra Bits for Rounding

Why rounding after addition?

- Because not every intermediate results is truncated
- To keep more precision

Guard and round bits: extra bits to guard against loss of bits during intermediate additions

- to the right of significand
- can later be shifted left into significand during normalization
- Sticky bit
- Additional bit to the right of the round digit
- Better fine tune rounding

$$
\begin{array}{lllll}
\text { b0 } . ~ b 1 ~ b 2 ~ b 3 ~ & \ldots & \text { bp-1 } & 0 & 0 \\
0 & 0 & \text { Sticky bit: set to } 1 \text { if any } 1 \text { bit falls } \\
0 . & 0 & \times & \ldots & \times
\end{array}
$$

- Get the same results as if the intermediate results were calculated to infinite precision and then rounded.

Example

Try to add 2.98×10^{0} and 2.34×10^{2}

- only 3 decimal digits are allowed
2.34
+0.02
2.36 without guard bits
- with 2 more guard bits during computation
- perform rounding at last
2.3400
+0.0298 $\quad \rightarrow$ rounding $\rightarrow 2.37$

With guard bits and rounding \rightarrow more accurate results

Rounding Methods

Round to zero or Truncation

- The result closet to zero is returned.
- Nothing is added to the least significant bit.
- Round up
- The more positive result closest to the infinitely precise result is returned.
- If the result is positive and either the guard or the sticky bit is 1 , the result is rounded.
- If the result is negative, the result is not rounded because the unrounded result is the most positive result that is closest to the infinitely precise result.

Round down

- The more negative result is returned.
- Round to nearest

Associativity

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 \mathrm{E}+38$		$-1.50 \mathrm{E}+38$
y	$1.50 \mathrm{E}+38$	$0.00 \mathrm{E}+00$	
z	1.0	1.0	$1.50 \mathrm{E}+38$
		$1.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$

Need to validate parallel programs under varying degrees of parallelism

Subword Parallellism

Graphics and audio applications can take advantage o performing simultaneous operations on short vectors

- Example: 128-bit adder:

16x8-bit adds; 8×16-bit adds; 4×32-bit adds
Also called data-level parallelism, vector parallelism, ol
Single Instruction, Multiple Data (SIMD)

- ARM NEON multimedia instruction extension
- Intel SSE, SSE2 FP instructions

ARM NEON Instructions

NEON supports all the subword data type you can imagine except 64-bit FP numbers

- 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers
-32-bit FP numbers

Data transfer	Arithmetic	Logical/Compare
VLDR.F32	VADD.F32, VADD L L,W\}\{S8,U8,S16,U16,S32,U32\}	VAND.64, VAND. 128
VSTR.F32	VSUB.F32, VSUB\{L,W\}\{S8,U8,S16,U16,S32,U32\}	VORR.64, VORR. 128
VLD $1,2,3.4\}$. $18,116,132\}$	VMUL.F32, VMULL\{S8,U8,S16,U16,S32,U32\}	VEOR.64, VEOR. 128
VST\{1,2,3.4\}.\{18,I16,I32\}	VMLA.F32, VMLAL\{S8,U8,S16,U16,S32,U32\}	VBIC.64, VBIC. 128
VMOV.\{18,116,I32,F32\}, \#imm	VMLS.F32, VMLSL\{S8,U8,S16,U16,S32,U32\}	VORN.64, VORN. 128
VMVN. $\{18,116,132, F 32\}$, \#imm	VMAX.\{S8,U8,S16,U16,S32,U32,F32\}	VCEQ.\{18,I16,I32,F32\}
VMOV. $\{164,1128\}$	VMIN.\{S8,U8,S16,U16,S32,U32,F32\}	VCGE.\{S8,U8,S16,U16,S32,U32,F32\}
VMVN.\{164,1128\}	VABS.\{S8,S16,S32,F32\}	VCGT.\{S8,U8,S16,U16,S32,U32,F32\}
	VNEG.\{S8,S16,S32,F32\}	VCLE.\{S8,U8,S16,U16,S32,U32,F32\}
	VSHL.\{S8,U8,S16,U16,S32,S64,U64\}	VCLT.\{S8,U8,S16,U16,S32,U32,F32\}
	VSHR.\{S8,U8,S16,U16,S32,S64,U64\}	VTST. $\{18,116,132\}$

Chapter 3 - Arithmetic for Computers - 67

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2^{2} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- $11111011_{2} \gg 2=11111110_{2}=-2$

Rounds toward $-\infty$

- c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow

MIPS ISA

- Core instructions: 54 most frequently used
100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...

FP values are 32-bit or 64 in memory

- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/sT(i)	FIADDP mem/sT(i)	FICOMP	FPATAN
FISTP mem/sT(i)	FISUBRP mem/sT(i)	FIUCOMP	F2XMI
FLDPI	FIMULP mem/sT(i)	FSTSW AX/mem	FCOS
FLD1	FIDIVRP mem/sT(i)		FPTAN
FLDZ	FSQRT		FPREM
	FABS		FPSIN
	FRNDINT		FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit double precision
- Instructions operate on them simultaneously Single-Instruction Multiple-Data

Matrix Multiply

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++ )
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. \}
```


Matrix Multiply

x86 assembly code:

1. vmovsd (\%r10), \%xmm0 \# Load 1 element of C into \%xmm0
2. mov \%rsi,\%rcx
3. xor \%eax,\%eax
4. vmovsd (\%rcx), $\% x m m 1$
5. add \%r9, $\% \mathrm{rcx}$
6. vmulsd (\%r8, \%rax,8), \%xmm1, \%xmm1 \# Multiply \%xmm1, element of A
7. add $\$ 0 \times 1, \% r a x$
\# register \%rax = \%rax + 1
8. cmp \%eax, \%edi
\# compare \%eax to \%edi
9. vaddsd \%xmm1, \%xmm0, \%xmm0 \# Add \%xmm1, \%xmm0
10. jg 30 <dgemm+0x30> \# jump if \%eax > \%edi
11. add \$0x1, \%r11d \# register $\% r 11=\% r 11+1$
12. vmovsd \%xmm0, (\%r10) \# Store \%xmm0 into C element

Matrix Multiply

Optimized C code:

1. \#include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. \{
4. for (int $i=0$; $i<n$; $i+=4$)
5. for (int j $=0$; j < n; j++) \{
6. __m256d c0 = mm256_load_pd(C+i+j*n); /* c0 = C[i][j] */
7. for (int $k=0 ; k<n ; k++$)
8. $\mathrm{c} 0=$ _mm256_add_pd(c0, /* c0 +=A[i][k]*B[k][j] */
9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n), _mm256_broadcast_sd(B+k+j*n)));
10. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */
11. \}
12. \}

Matrix Multiply

Optimized x86 assembly code:

1. vmovapd ($\% r 11$), $\%$ ymm0
2. mov \%rbx, \%rcx
3. xor \%eax, \%eax
4. vbroadcastsd (\%rax, \%r8,1), \%ymm1 \# Make 4 copies of B element
5. add \$0x8, \%rax
6. vmulpd (\%rcx), \%ymm1, \%ymm1
7. add $\% r 9, \% r c x$
8. cmp \%r10, \%rax
9. vaddpd $\% y m m 1, \% y m m 0, \% y m m 0$
10. jne 50 <dgemm+0x50>
11. add \$0x1, \%esi
12. vmovapd \%ymm0, (\%r11)
\# Load 4 elements of C into \%ymm0
\# register $\% r c x=\% r b x$
\# register \%eax $=0$
\# register \%rax $=$ \%rax +8
\# Parallel mul \%ymm1,4 A elements
\# register \%rcx $=\% r c x+\% r 9$
\# compare \%r10 to \%rax
\# Parallel add \%ymm1, \%ymm0
\# jump if not \%rl0 != \%rax
\# register \% esi $=$ \% esi +1
\# Store \%ymm0 into 4 C elements
