CO 2021-Fall HW4 Solution

4.3.1

Load instruction and store instruction use data memory.
25% + 10% = 35%

4.3.2

All instructions use instruction memory.
24% + 28% + 25% + 10% + 11% + 2% = 100%

4.3.3

Except R-type instruction and jump instruction, all other instructions
use the sign extend.
100% - 24% - 2% = 74%

4.3.4

The sign-extend circuit is actually computing a result in every cycle,
but its output is ignored if its output is not needed.

4.5.1
ALU control unit’s input is Instruction[5-0]: 100010
4.5.2
New PC=PC+4
4.5.3
MUX Input Output
RegDst In1: 00111 ($a3) 10111 ($s7)
in2: 10111 ($s7)
ALUSrc In1: Reg[$a3] Reg[$a3]
in2: OxFFFFB822
MemtoReg In1: undefined (read from DM) Reg[$Sa2] - Reg[Sa3]
in2: Reg[Sa2] - Reg[$a3]
Branch In1: PC +4 PC +4
in2: PC + 4 + OxFFFEEO88
Jump In1: {PC+4[31-28],0x31EE088} PC +4
in2: PC+4

4.5.4

ALU: Reg[$a2] and Reg[S$a3]
Addl: PCand4
Add2: PC+4 and OxFFFEEO88

4.5.5

Read registerl: 00110 (Sa2)
Read register2: 00111 (Sa3)
Write register: 10111 (Ss7)
Write data: Reg[Sa2] - Reg[Sa3]

4.7.1

The latency of R-type instruction:
Register read + I-Mem + Register file + Mux + ALU + Mux + Register setup
30+ 250+ 150+ 25+ 200 + 25 + 20 = 700ps

4.7.2

| For I-Type (1w) Instruction
I

HERONG N/
Shion Y Chapter 4 — The Processor — 43

The latency of lw instruction:

Register read + I-Mem + Register file + ALU + D-Mem + Mux + Register setup
(#€_1-Mem] ALU #1855 Register file ¢ latency # &)

30+ 250+ 150 + 200 + 250 + 25 + 20 = 925ps

4.7.3

The latency of sw instruction:
Register read + I-Mem + Register file + ALU + D-Mem
30 + 250 + 150 + 200 + 250 = 880ps

4.7.4

W

FHEERT R A AFA > DT RE R ESER S F(F jump)

N

1. 243 jump (& BB % 9 beqinstruction)

| For I-Type (beq) Instruction

) control B
1 &1 RO N/T
e » @ [
HECROM u. U Chapter 4 — The Processor — 44

The latency of beq instruction:

Register read + I-Mem + Register file + Mux + ALU + Single gate + Mux + Register setup
30+ 250+ 150+ 25+200+5+ 25+ 20=705ps

2. 7 A& jump

| Datapath With Jumps Added

L.(.le

Z =
' (/ instructon 25-0) /G-
B 26 Vot 2/ p
[\ A PC+4[31-28]
) Add
AL

| Instruction
| memory | &

| control
0 16RONS 22\ N /T
KON \ Chapter 4 — The Processor — 46

The latency of beq instruction:

Register read + I-Mem + Register file + Mux + ALU + Single gate + Mux + Mux + Register
setup

30+250+150+25+200+5+ 25+ 25+ 20 =730ps
4.7.5

The latency of I-type instruction:

Register read + I-Mem + Register file + ALU + Mux + Register setup

(& _I-Mem 3] ALU £ 3 = if824< » & W & control -> ALUSrc mux - Register file /% sign
extend -> ALUSrc mux > # # Register file = latency & & - ¢t iE Register file)
30+ 250+ 150 + 200 + 25 + 20 = 675ps

4.7.6
Minimum clock period for this CPU is 925ps.

4.16.1

Pipelined: 350ps (longest execution time)
Non-pipelined: 250 + 350 + 150 + 300 + 200 = 1250ps

4.16.2

Pipelined: 350 * 5=1750ps
Non-pipelined: 250+ 350 + 150 + 300 + 200 = 1250ps

4.16.3

1. Stage to split: ID stage

2. New clock cycle time: 300ps
4.16.4

Load + Store = 20% + 15% = 35%
4.16.5

ALU/Logic + Load = 45% +20% = 65%

4.27.1

add $s3, $s1, $so
nop

nop

1w $s2, 4($s3)
1w $s1, 0($s4)
nop

or $s2, $s3, $s2
nop

nop

SW $s2, 0($s3)

4.27.2

add $s3, $s1, $s0
1w $s1, 0($s4)
nop

1w $s2, 4($s3)
nop

nop
or $s2, $s3, $s2
nop

nop

SW $s2, 0($s3)

—> there is no performance gain

4.27.3

With forwarding, the hazard detection unit is still needed because it must insert a one-
cycle stall whenever the load supplies a value to the instruction that immediately follows that
load. Without the hazard detection unit, the instruction that depends on the immediately

preceding load gets the stale value the register had before the load instruction.

4.27.4

The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and ID/EXZero (which
controls the Mux after the output of the Control unit). Note that IF/IDWrite is always equal
to PCWrite, and ED/ExZero is always the opposite of PCWrite. As a result, we will only show
the value of PCWrite for each cycle. The outputs of the forwarding unit is ALUin1 and ALUin2,
which control Muxes that select the first and second input of the ALU. The three possible
values for ALUin1 or ALUin2 are 0 (no forwarding), 1 (forward data value for second-previous

instruction), or 2 (forward ALU output from previous instruction).

Instruction Sequence First Seven Cycle
1 2 3 q 5 6 7
add $s3, $s1, $s0 | IF ID EX | MEM | WB
1w $s2, 4($s3) IF ID EX MEM | WB
1w $s1, 0(%$s4) IF ID EX MEM | WB
or $s2, $s3, $s2 IF ID EX | MEM
SW $s2, 0($s3) IF ID EX
Signals\Cycles First Seven Cycle
1 2 3 4 5 6 7
PCWrite 1 1 1 1 1 1 1
ALUin1 (Rs) X X 0 2 0 0 0
ALUin2 (Rt) X X 0 0 0 1 2

4.27.5

The instruction that is currently in the ID stage needs to be stalled if it depends on a value
produced by the instruction in the EX or the instruction in the MEM stage. So we need to
check the destination register of these two instructions. For the instruction in the EX stage,
we need to check Rd for R-type instructions and Rd for loads. For the instruction in the MEM
stage, the destination register is already selected (by the Mux in the EX stage) so we need to
check that register number (this is the bottommost output of the EX/MEM pipeline register).
The additional inputs to the hazard detection unit are register Rd from the ID/EX pipeline
register and the output number of the output register from the EX/MEM pipeline register.
The Rt field from the ID/EX register is already an input of the hazard detection unit in Figure
4.60. No additional outputs are needed.

We can stall the pipeline using the three output signals that we already have.

4.28.1

CPlyyirg = 1% 0.55 0.25 = 0.1375
4.28.2

CPlyyirg = 1% 0.45 % 0.25 = 0.1125

4.28.3
CPl,yrq = 1% (1 —0.85) % 0.25 = 0.0375

4.28.4

CPIwithout conversion — 1+1= (1 - 0-85) * 0.25 = 1.0375

CPlith conversion = 1 + 1 (1 —0.85) * (0.25 * 0.5) = 1.01875

1.0375
Speed up = m = 1.0184

4.28.5
CPlyithout conversion = 1+ 1% (1 —0.85) x0.25 = 1.0375

CPlyith conversion = 1+ 1% (1 —0.85) = (0.25 % 0.5) +

(0.25 * 0.5) = 1.14375

1.0375
Speed up = m = 0.907

4.28.6

Correctly Predictedyiq; = 0.85
Correctly Predicted ,on—100k—-back = 0.85 — 0.8 = 0.05

2 0.05 0.25
ccurac _ — == 0VU.
Ynon-look-back 1—-0.8

4.29.1
3
Accuracyigren = T = 0.6
2
Accuracy,on—taken = T = 0.6
4.29.2
Outcomes Prediction Correct or Incorrect
T NT (0) InCorrect
NT NT (1) Correct
T NT (0) InCorrect
T NT (1) InCorrect

1
Accuracy = i 0.25

4.29.3

Outcomes | Prediction for steady state Correct or Incorrect
T T(2) Correct
NT T(3) InCorrect
T T(2) Correct
T T(3) Correct
NT T(3) InCorrect

3
Accuracy = T = 0.6

4.29.4

The predictor should be an N-bit shift register, where N is the number of branch
outcomes in the target pattern. The shift register should be initialized with the pattern itself
(0Ofor NT, 1 forT), and the prediction is always the value in the left most bit of the shift register.

The register should be shifted after each predicted branch.

4.29.5

Since the predictor’s output is always the opposite of the actual outcome of the branch

instruction, the accuracy is zero.

4.29.6

The predictor is the same as in 4.29.4, except that it should compare its prediction to the
actual outcome and invert (logical NOT) all the bits in the shift register if the prediction is
incorrect. This predictor still always perfectly predicts the given pattern. For the opposite
pattern, the first prediction will be incorrect, so the predictor’s state is inverted and after that
the predictions are always correct. Overall, there is no warm-up period for the given pattern,

and the warm-up period for the opposite pattern is only one branch.

