
CO 2021-Fall HW4 Solution

4.3.1

 Load instruction and store instruction use data memory.

 25% + 10% = 35%

4.3.2

All instructions use instruction memory.

24% + 28% + 25% + 10% + 11% + 2% = 100%

4.3.3

Except R-type instruction and jump instruction, all other instructions

use the sign extend.

100% - 24% - 2% = 74%

4.3.4

The sign-extend circuit is actually computing a result in every cycle,

but its output is ignored if its output is not needed.

4.5.1

ALU control unit’s input is Instruction[5-0]: 100010

4.5.2

New PC = PC + 4

4.5.3

MUX Input Output

RegDst In1: 00111 ($a3)

in2: 10111 ($s7)

10111 ($s7)

ALUSrc In1: Reg[$a3]

in2: 0xFFFFB822

Reg[$a3]

MemtoReg In1: undefined (read from DM)

in2: Reg[$a2] - Reg[$a3]

Reg[$a2] - Reg[$a3]

Branch In1: PC +4

in2: PC + 4 + 0xFFFEE088

PC +4

Jump In1: {PC+4[31-28],0x31EE088}

in2: PC +4

PC +4

4.5.4

ALU: Reg[$a2] and Reg[$a3]

Add1: PC and 4

Add2: PC+4 and 0xFFFEE088

4.5.5

Read register1: 00110 ($a2)

Read register2: 00111 ($a3)

Write register: 10111 ($s7)

Write data: Reg[$a2] - Reg[$a3]

4.7.1

The latency of R-type instruction:

Register read + I-Mem + Register file + Mux + ALU + Mux + Register setup

30 + 250 + 150 + 25 + 200 + 25 + 20 = 700ps

4.7.2

The latency of lw instruction:

Register read + I-Mem + Register file + ALU + D-Mem + Mux + Register setup
(從 I-Mem到 ALU的路徑為 Register file的 latency最長)

30 + 250 + 150 + 200 + 250 + 25 + 20 = 925ps

4.7.3

The latency of sw instruction:

Register read + I-Mem + Register file + ALU + D-Mem

30 + 250 + 150 + 200 + 250 = 880ps

4.7.4

 這題答案下面兩種都算對，到時考試時以完整的架構為準(有 jump的)。

1. 沒支援 jump (依照講義給的 beq instruction)

The latency of beq instruction:

Register read + I-Mem + Register file + Mux + ALU + Single gate + Mux + Register setup

30 + 250 + 150 + 25 + 200 + 5 + 25 + 20 = 705ps

2. 有支援 jump

The latency of beq instruction:

Register read + I-Mem + Register file + Mux + ALU + Single gate + Mux + Mux + Register

setup

30 + 250 + 150 + 25 + 200 + 5 + 25 + 25 + 20 = 730ps

4.7.5

The latency of I-type instruction:

Register read + I-Mem + Register file + ALU + Mux + Register setup
(從 I-Mem到 ALU共有三條路徑，分別為 control -> ALUSrc mux、Register file以及 sign

extend -> ALUSrc mux，其中 Register file的 latency最長，因此選 Register file)

30 + 250 + 150 + 200 + 25 + 20 = 675ps

4.7.6

Minimum clock period for this CPU is 925ps.

4.16.1

Pipelined: 350ps (longest execution time)

Non-pipelined: 250 + 350 + 150 + 300 + 200 = 1250ps

4.16.2

Pipelined: 350 * 5 = 1750ps

Non-pipelined: 250 + 350 + 150 + 300 + 200 = 1250ps

4.16.3

1. Stage to split: ID stage

2. New clock cycle time: 300ps

4.16.4

Load + Store = 20% + 15% = 35%

4.16.5

 ALU/Logic + Load = 45% +20% = 65%

4.27.1

add $s3, $s1, $s0

nop

nop

lw $s2, 4($s3)

lw $s1, 0($s4)

nop

or $s2, $s3, $s2

nop

nop

sw $s2, 0($s3)

4.27.2

add $s3, $s1, $s0

lw $s1, 0($s4)

nop

lw $s2, 4($s3)

nop

nop

or $s2, $s3, $s2

nop

nop

sw $s2, 0($s3)

 → there is no performance gain

4.27.3

 With forwarding, the hazard detection unit is still needed because it must insert a one-

cycle stall whenever the load supplies a value to the instruction that immediately follows that

load. Without the hazard detection unit, the instruction that depends on the immediately

preceding load gets the stale value the register had before the load instruction.

4.27.4

The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and ID/EXZero (which

controls the Mux after the output of the Control unit). Note that IF/IDWrite is always equal

to PCWrite, and ED/ExZero is always the opposite of PCWrite. As a result, we will only show

the value of PCWrite for each cycle. The outputs of the forwarding unit is ALUin1 and ALUin2,

which control Muxes that select the first and second input of the ALU. The three possible

values for ALUin1 or ALUin2 are 0 (no forwarding), 1 (forward data value for second-previous

instruction), or 2 (forward ALU output from previous instruction).

Instruction Sequence First Seven Cycle

1 2 3 4 5 6 7

add $s3, $s1, $s0 IF ID EX MEM WB

lw $s2, 4($s3) IF ID EX MEM WB

lw $s1, 0($s4) IF ID EX MEM WB

or $s2, $s3, $s2 IF ID EX MEM

sw $s2, 0($s3) IF ID EX

Signals\Cycles First Seven Cycle

1 2 3 4 5 6 7

PCWrite 1 1 1 1 1 1 1

ALUin1 (Rs) X X 0 2 0 0 0

ALUin2 (Rt) X X 0 0 0 1 2

4.27.5

 The instruction that is currently in the ID stage needs to be stalled if it depends on a value

produced by the instruction in the EX or the instruction in the MEM stage. So we need to

check the destination register of these two instructions. For the instruction in the EX stage,

we need to check Rd for R-type instructions and Rd for loads. For the instruction in the MEM

stage, the destination register is already selected (by the Mux in the EX stage) so we need to

check that register number (this is the bottommost output of the EX/MEM pipeline register).

The additional inputs to the hazard detection unit are register Rd from the ID/EX pipeline

register and the output number of the output register from the EX/MEM pipeline register.

The Rt field from the ID/EX register is already an input of the hazard detection unit in Figure

4.60. No additional outputs are needed.

We can stall the pipeline using the three output signals that we already have.

4.28.1

𝐶𝑃𝐼𝑒𝑥𝑡𝑟𝑎 = 1 ∗ 0.55 ∗ 0.25 = 0.1375

4.28.2

𝐶𝑃𝐼𝑒𝑥𝑡𝑟𝑎 = 1 ∗ 0.45 ∗ 0.25 = 0.1125

4.28.3

𝐶𝑃𝐼𝑒𝑥𝑡𝑟𝑎 = 1 ∗ (1 − 0.85) ∗ 0.25 = 0.0375

4.28.4

𝐶𝑃𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 + 1 ∗ (1 − 0.85) ∗ 0.25 = 1.0375

𝐶𝑃𝐼𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 + 1 ∗ (1 − 0.85) ∗ (0.25 ∗ 0.5) = 1.01875

𝑆𝑝𝑒𝑒𝑑 𝑢𝑝 =
1.0375

1.01875
= 1.0184

4.28.5

𝐶𝑃𝐼𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 + 1 ∗ (1 − 0.85) ∗ 0.25 = 1.0375

𝐶𝑃𝐼𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 + 1 ∗ (1 − 0.85) ∗ (0.25 ∗ 0.5) +

(0.25 ∗ 0.5) = 1.14375

𝑆𝑝𝑒𝑒𝑑 𝑢𝑝 =
1.0375

1.14375
= 0.907

4.28.6

 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑡𝑜𝑡𝑎𝑙 = 0.85

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑛𝑜𝑛−𝑙𝑜𝑜𝑘−𝑏𝑎𝑐𝑘 = 0.85 − 0.8 = 0.05

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑜𝑛−𝑙𝑜𝑜𝑘−𝑏𝑎𝑐𝑘 =
0.05

1 − 0.8
= 0.25

4.29.1

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑎𝑘𝑒𝑛 =
3

5
= 0.6

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑜𝑛−𝑡𝑎𝑘𝑒𝑛 =
2

5
= 0.6

4.29.2

Outcomes Prediction Correct or Incorrect

T NT (0) InCorrect

NT NT (1) Correct

T NT (0) InCorrect

T NT (1) InCorrect

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

4
= 0.25

4.29.3

 Outcomes Prediction for steady state Correct or Incorrect

T T (2) Correct

NT T (3) InCorrect

T T (2) Correct

T T (3) Correct

NT T (3) InCorrect

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
3

5
= 0.6

4.29.4

 The predictor should be an N-bit shift register, where N is the number of branch

outcomes in the target pattern. The shift register should be initialized with the pattern itself

(0 for NT, 1 for T), and the prediction is always the value in the left most bit of the shift register.

The register should be shifted after each predicted branch.

4.29.5

Since the predictor’s output is always the opposite of the actual outcome of the branch

instruction, the accuracy is zero.

4.29.6

The predictor is the same as in 4.29.4, except that it should compare its prediction to the

actual outcome and invert (logical NOT) all the bits in the shift register if the prediction is

incorrect. This predictor still always perfectly predicts the given pattern. For the opposite

pattern, the first prediction will be incorrect, so the predictor’s state is inverted and after that

the predictions are always correct. Overall, there is no warm-up period for the given pattern,

and the warm-up period for the opposite pattern is only one branch.

