HW3

Exercise: 3.8, 3.9, 3.10, 3.11, 3.17, 3.19, 3.22, 3.23, 3.24, 3.30, 3.32, 3.33,3.34



3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in
sign-magnitude format. Calculate 185 2 122, Is there overflow, underflow, or neither?

3.9 [10] <$3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in

two’s complement format. Calculate 151 + 214 using saturating arithmetic. The
result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are sj
two's complement format. Calculate 151 2 2
result should be written in decimal, Show you

gned 8-bit decimal integers stored in
14 using saturating arithmetic. The
r work.

3.11 [10] <$§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151

+ 214 using saturating arithmetic, The resylt should be written in decimal. Show
your work.

Fix 3.8
X: Calculate 182 2 122.
0O: Calculate 182 - 122.

Fix 3.10
X: Calculate 151 2 214.
0O: Calculate 151 - 214.

3.17 [20] <$§3.3> As discussed in the text, one possible performance enhancement
is to do a shift and add instead of an actual multiplication. Since 9 X 6, for example,
can be written (2 X 2 X 2 + 1) X 6, we can calculate 9 X 6 by shifting 6 to the left 3
times and then adding 6 to that result. Show the best way to calculate 0 X 33 X 0 X 55
using shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

Fix 3.17
X: 0x33x0x55
O: 0x33 X 0x55 (hexadecimal)



3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate
74 divided by 21 using the hardware described in Figure 3.11. You should show
the contents of each register on each step. Assume A and B are unsigned 6-bit
integers. This algorithm requires a slightly different approach than that shown in
Figure 3.9. You will want to think hard about this, do an experiment or two, or else
go to the web to figure out how to make this work correctly. (Hint: one possible
solution involves using the fact that Figure 3.11 implies the remainder register can

be shifted either direction.)

eration
0000 0010 0000

0 Initial values —~_ {0009 0131
1: Rem = Rem - Div gggg ggig ggoog_%

1 2b: Rem < 0 = +Div, sl1Q,Q0=0 o 0000 ong
3: shift Div right 0000 9000 | 0000 ¢gy;
1: Rem = Rem — Div 0000 00010000 | @niggy,

2 2b: Rem < 0 = +Div, s11Q,Q0 =0 0000 0001 0000 | 0000 gy3;
3: Shift Div right 0000 0000 1000 "| 0000 gy5,
1: Rem = Rem - Div 0000 0000 1000 @111 10

3 2b: Rem < 0 = +Div, sl Q,Q0 =0 0000 0000 1000 m
3: Shift Div right 0000 0000 0100 m
1: Rem = Rem - Div 0000 0000 0100 @000 0011

4 2a: Rem=>0=>sllQ,Q0=1 0001 0000 0100 0000 001
3: Shift Div right 0001 0000 0010 | 0000 0gy; |
1: Rem = Rem - Div 0001 0000 0010 m

5 2a: Rem=>0=3:sllQ,Q0=1 0011 0000 0010 oom
3: Shift Div right 0011 0000 0001 000@

FIGURE 3.10 Division example using the algorithm in Figure 3.9. The bit examined to determipe
the next step is circled in color.

Divisor

__1 1 32 bits

b v

32-bit ALU

i Shift right
Remainder Shift left Control
| Write test

64 bits

—

FIGURE 3.11 An improved version of the division hardware. The Divisor register, ALV @
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits, Compared t0 Figuré dtt
the ALU and Divisor registers are halved and the remainder is shifted left. This version also combines ref
Quotient register with the right half of the Remainder register. (As in Figure 3.6, the Remainder r¢g*
should really be 65 bits to make sure the carry out of the adder is not lost.)




1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder = Q Remainder < 0

Test Remainder

Y
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding
setting the new rightmost bit to 1 the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0
| |

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive,
the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder after
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds
the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the
divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times.



3.22 [10] <§3.5> What decimal number does the bit pattern 0xQ(C(q 000g
represent if it is a floating point number? Use the IEEE 754 standard.

3.23 [10] <$3.5> Write down the binary representation of the decima] Numbe,
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decima] Number
63.25 assuming the IEEE 754 double precision format.

3.30 [30] <$3.5> Calculate the product of —8.0546875 X 10°and _1.79931640625
x 107" by hand, assuming A and B are stored in the 16-bit half precision format
described in Exercise 3.27. Assume 1 guard, 1 round bit. and 1 sticky bit, and roun

to the nearest even. Show all the steps; however, as is done in the example it th¢

LR YKL GAD do the multiplication in human-readable format instead of using
techniques descrl.bed in Exercises 3.12 through 3.14. Indicate if there is overflow
or underflow. Write your answer in both the 16-bit floating point format describeé

in Exgrcise 3.27 and also as a decimal number. How accurate is your result? How
does it compare to the number you get if you do the multiplication on a calculator?

3.32 [20] <§3.9> Calculate (3.984375 x 10~ + 3.4375 x 107') + 1.771 x 10°
by hand, assuming each of the values are stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.33 [20] <§3.9> Calculate 3.984375 x 10" + (3.4375 x 107! + 1.771 X 10°)
by hand, assuming each of the values are stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.34 [10] <§3.9> Based on your answers to 3.32 and 3.33, does (3.984375 X 10~
+3.4375 % 107!) + 1.771 X 10> = 3.984375 x 10~ + (3.4375 X 107" + 1.771 X 10°)?



Reference for 3.30 & 3.32

3.27 [20] <§3.5> IEEE 754-2008 contains a half precision that is only 16 bits
wide. The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias
of 15, and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the
bit pattern to represent —1.5625 X 10~' assuming a version of this format, which
uses an excess-16 format to store the exponent. Comment on how the range and

accuracy of this 16-bit floating point format compares to the single precision IEEE
754 standard.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the octal unsigned 6-bit integers 62 and 12 using the hardware described
in Figure 3.3. You should show the contents of each register on each step.

3.13 [20] <$§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the octal unsigned 8-bit integers 62 and 12 using the hardware described
in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <$§3.3> Calculate the time necessary to perform a multiply using the
approach given in Figures 3.3 and 3.5 if an integer is 8 bits wide and each step
of the operation takes 4 time units. Assume that in step la an addition is always
performed—either the multiplicand will be added, or a zero will be. Also assume
that the registers have already been initialized (you are just counting how long it
takes to do the multiplication loop itself). If this is being done in hardware, the
shifts of the multiplicand and multiplier can be done simultaneously. If this is being
done in software, they will have to be done one after the other. Solve for each case.

Multiplicand
32 bits

Y Y

—/
32-bitALU /€

Y p—

Proguct Shift right Control
£ Write it
64 bits ’ o

A

::Gul::!f:fh . ;::tiinﬁg v:rslgl: of the multiplication hardware. Compare with the first yersion 1::
3. and r T ;
g p egister, ALU, and Multiplier register are all 32 bits wide, with only the PO% ¢

register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappear¢

multiplier is placed instead in the right half of () : RIS in colo®
(The Prsduct regipter should Feallhe K5 b e Product register. These changes are hlghhghted ; 64 bits

toh . 5
to highlight the evolution from Figure %5 0 hold the carry out of the adder, but it’s shown here 3



-

Multiplicand
Shift left [<—

164 bits
Y —_—

%

64-bit ALU

» Multiplier
Shift right |-<e—

32 bits

Product ;ﬂ
test\+—
Write Control

64 bits

HGdURE 33 First version of the multiplication hardware. The Multiplicand register, ALU,
Zn If;o:uct register are all 64 bi.ts wide, with only the Multiplier register containing 32 bits. (Appendix B

&;cn ALUs.) The 32-bit fm.ﬂn;?licand starts in the right half of the Multiplicand register and is shifted left
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with

the product initialized to 0. Contro] decides when to shift th ipli ipli i
: : e Multiplicand and Mult
to write new values into the Product register. il

: 0000

Initial values ggﬁ) gggg ggig o 000¢

1 1a: 1 = Prod = Prod + Mcand 00 g1

2: Shift left Multiplicand 0011 0000 0100 0000 0555

3: Shift right Multiplier 0000 0000 0100 0000 0pyg

2 1a: 1 = Prod = Prod + Mcand 0001 0000 0100 0000 011,

2: Shift left Multiplicand 0001 0000 1000 0000 0179

3: Shift right Multiplier 0000) 0000 1000 0000 011g

3 1: 0 = No operation 0000 0000 1000 0000 0119

2: Shift left Multiplicand 0000 0001 0000 0000 0119

3: Shift right Multiplier 0000) 0001 0000 0000 011

4 1: 0 = No operation 0000 0001 0000 0000011g
2: Shift left Muttiplicand 0000 0010 0000 0000011
3: Shift right Multiplier 0000 00100000 | 00000179
e ]

FIGURE 3.5 Multiply example using algorithm in Figure 3.4. The bit examined to determine th,
next step is circled in color.




