1.5

a.
performance of P 1 (instructions $/ \mathrm{sec}$) $=3.0^{*} 10^{9} / 1.5=2 * 10^{9}$
performance of P2 (instructions $/ \mathrm{sec}$) $=2.5^{*} 10^{9} / 1.0=2.5^{*} 10^{9}$
performance of P3 (instructions $/ \mathrm{sec}$) $=4.0^{*} 10^{9} / 2.2=1.8^{*} 10^{9}$
b.
cycles of $\mathrm{P} 1=10 * 3.0 * 10^{9}=30 * 10^{9}$
cycles of P2 $=10^{*} 2.5^{*} 10^{9}=25^{*} 10^{9}$
cycles of $\mathrm{P} 3=10 * 4.0 * 10^{9}=40 * 10^{9}$
No. instructions of $\mathrm{P} 1=30^{*} 10^{9} / 1.5=20^{*} 10^{9}$
No. instructions of P2 $=25^{*} 10^{9} / 1.0=25^{*} 10^{9}$
No. instructions of P3 $=40^{*} 10^{9} / 2.2=18.18^{*} 10^{9}$
c.
$C P I_{\text {new }}=C P I_{\text {old }} * 1.2$, then CPI of P1 $=1.8, \mathrm{CPI}$ of P2 $=1.2, \mathrm{CPI}$ of P3 $=2.6$.
$\mathrm{f}=$ No. instr.*CPI/time, then
f of $\mathrm{P} 1=20^{*} 10^{9} * 1.8 / 7=5.14 \mathrm{GHz}$
f of $\mathrm{P} 2=25^{*} 10^{9} * 1.2 / 7=4.28 \mathrm{GHz}$
f of $\mathrm{P} 3=18.18^{*} 10^{9 * 2.6 / 7}=6.75 \mathrm{GHz}$
1.8
1.8.1.
dynamic power $=\frac{1}{2} \times C \times V^{2} \times F$, then $\mathrm{C}=\frac{2 * D P}{V^{2} \times F}$
Pentium 4: $\mathrm{C}=3.2^{*} 10^{-8} \mathrm{~F}$
Core i5: $\mathrm{C}=2.9^{*} 10^{-8} \mathrm{~F}$

1.8.2

Percentage of static power
Pentium 4: $10 / 100=10 \%$
Core i5: 30/70 = 42.9\%
Ratio of static to dynamic
Pentium 4: $10 / 90=0.11$
Core i5: $30 / 40=0.75$

1.8.3

P = dynamic power(DP) + static power(S)
Pentium 4:
Static power $(\mathrm{S})=\mathrm{V} \times I$, then $\mathrm{I}=10 / 1.25=8 \mathrm{~A}$
$\frac{P_{\text {new }}}{P_{\text {old }}}=\frac{8 \times V_{\text {new }}+\frac{1}{2} \times C \times V_{\text {new }}^{2} \times 3.6 \times 10^{9}}{100}=0.9$, then $V_{\text {new }}=1.18 \mathrm{~V}$
Core i5:
Static power $(\mathrm{S})=\mathrm{V} \times I$, then $\mathrm{I}=30 / 0.9=33.3 \mathrm{~A}$

$$
\frac{P_{\text {new }}}{P_{\text {old }}}=\frac{33.3 \times V_{\text {new }}+\frac{1}{2} \times C \times V_{\text {new }}^{2} \times 3.4 \times 10^{9}}{70}=0.9, \text { then } V_{\text {new }}=0.84 \mathrm{~V}
$$

$$
1.9
$$

	Arithmetic	Load / Store	Branch
CPI	1	12	5
1 processor	2560 M	1280 M	256 M
2 processors	1830 M	914 M	256 M
4 processors	914 M	457 M	256 M
8 processors	457 M	229 M	256 M

1.9.1

1 processor

Execution time

$$
\frac{2560 \mathrm{M} * 1+1280 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=9.6(\mathrm{sec})
$$

2 processor

Execution time

$$
\frac{1830 \mathrm{M} * 1+914 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=7.04(\mathrm{sec})
$$

Speedup

$$
\frac{9.6}{7.04}=1.36
$$

4 processor

Execution time

$$
\frac{914 \mathrm{M} * 1+457 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=3.84(\mathrm{sec})
$$

Speedup

$$
\frac{9.6}{3.84}=2.5
$$

8 processor

Execution time

$$
\frac{457 \mathrm{M} * 1+229 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=2.23(\mathrm{sec})
$$

Speedup

$$
\frac{9.6}{2.23}=4.3
$$

1.9.2

1 processor

Execution time

$$
\frac{2560 \mathrm{M} * 2+1280 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=10.88(\mathrm{sec})
$$

2 processor

Execution time

$$
\frac{1830 \mathrm{M} * 2+914 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=7.954(\mathrm{sec})
$$

4 processor

Execution time

$$
\frac{914 \mathrm{M} * 2+457 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=4.296(\mathrm{sec})
$$

8 processor

Execution time

$$
\frac{457 \mathrm{M} * 2+229 \mathrm{M} * 12+256 \mathrm{M} * 5}{2 * 10^{9}}=2.471(\mathrm{sec})
$$

1.9.3

$$
\begin{gathered}
\frac{2560 \mathrm{M} * 1+1280 \mathrm{M} * \mathrm{CPI}+256 \mathrm{M} * 5}{2 * 10^{9}}=3.84(\mathrm{sec}) \\
\mathrm{CPI}=3
\end{gathered}
$$

1.11.1

CPI $=$ clock rate \times CPU time/instr. count
clock rate $=1 /$ cycle time $=3 \mathrm{GHz}$
CPI(bzip2) $=3 \times 10^{\wedge} 9 \times 750 /\left(2389 \times 10^{\wedge} 9\right)=0.94$
1.11 .2

SPEC ratio $=$ ref. time/execution time
SPEC ratio(bzip2) $=9650 / 750=12.86$
1.11.3

CPU time $=$ No. instr. $\times \mathrm{CPI} /$ clock rate
If CPI and clock rate do not change, the CPU time increase is equal to the increase in the number of instructions, that is 10%.

1.11.4

CPU time(before) $=$ No. instr. $\times \mathrm{CPI} /$ clock rate
CPU time $($ aft er) $=1.1 \times$ No. instr. $\times 1.05 \times \mathrm{CPI} /$ clock rate
CPU time(aft er)/CPU time(before) $=1.1 \times 1.05=1.155$. Thus, CPU time is increased by 15.5\%.

1.11.5

SPECratio = reference time/CPU time
SPECratio(aft er)/SPECratio(before) = CPU time(before)/CPU time(aft er)
$=1 / 1.1555=0.86$. The SPECratio is decreased by 14%.

1.11.6

$\mathrm{CPI}=(\mathrm{CPU}$ time \times clock rate $) /$ No. instr.
$\mathrm{CPI}=700 \times 4 \times 10^{\wedge} 9 /\left(0.85 \times 2389 \times 10^{\wedge} 9\right)=1.37$

1.11.7

Clock rate ratio $=4 \mathrm{GHz} / 3 \mathrm{GHz}=1.33$
$\mathrm{CPI} @ 4 \mathrm{GHz}=1.37, \mathrm{CPI} @ 3 \mathrm{GHz}=0.94$, ratio $=1.45$
They are diff erent because, although the number of instructions has been reduced by 15%, the CPU time has been reduced by a lower percentage.

1.11.8

700/750 = 0.933. CPU time reduction: 6.7\%
1.11.9

No. instr. $=$ CPU time \times clock rate/CPI
No. instr. $=960 \times 0.9 \times 4 \times 10^{\wedge} 9 / 1.61=2146 \times 10^{\wedge} 9$

1.11.10

Clock rate $=$ No. instr. $\times \mathrm{CPI} / \mathrm{CPU}$ time .
Clock rate new $=$ No. instr. $\times \mathrm{CPI} / 0.9 \times \mathrm{CPU}$ time $=1 / 0.9$ clock rate old $=$ 3.33 GHz

1.11.11

Clock rate $=$ No. instr. $\times \mathrm{CPI} / \mathrm{CPU}$ time .
Clock rate new $=$ No. instr. $\times 0.85 \times \mathrm{CPI} / 0.80 \mathrm{CPU}$ time $=0.85 / 0.80$, clock rate old $=3.18 \mathrm{GHz}$

1.13

1.13.1 $\mathrm{T}_{\mathrm{fp}}=70 \times 0.8=56 \mathrm{~s} . \mathrm{T}_{\text {new }}=56+85+55+40=236 \mathrm{~s}$.

Reduction $=1-236 / 250=5.6 \%$
1.13.2 $\mathrm{T}_{\text {new }}=250 \times 0.8=200 \mathrm{~s}, \mathrm{~T}_{\mathrm{fp}}+\mathrm{T}_{1 / \mathrm{s}}+\mathrm{T}_{\text {branch }}=85+70+40=195 \mathrm{~s}, \mathrm{~T}_{\text {int }}$
$=55 \mathrm{~s} \rightarrow 5 \mathrm{~s}$. Reduction time INT $=1-5 / 55=90.9 \%$
1.13.3 $\mathrm{T}_{\text {new }}=250 \times 0.8=200 \mathrm{~s}, \mathrm{~T}_{\mathrm{fp}}+\mathrm{T}_{\text {int }}+\mathrm{T}_{1 / \mathrm{s}}=210 \mathrm{~s} . \mathrm{NO}$
1.14
1.14.1 Clock cycles $=$ CPI $_{\text {fp }} \times$ No. FP instr. + CPl $_{\text {int }} \times$ No. INT instr. + $\mathrm{CPI}_{1 / s} \times$ No. L/S instr. $+\mathrm{CPI}_{\text {branch }} \times$ No. branch instr. T cpu $=$ clock cycles/clock rate $=$ clock cycles $/ 2 \times 10^{9}$ clock cycles $=512 \times 10^{6}$
$\mathrm{T}_{\text {CPU }}=0.256 \mathrm{~s}$

To have the number of clock cycles by improving the CPI of FP instructions:
CPl $_{\text {improved } f p} \times$ No. FP instr. + CPl $_{\text {int }} \times$ No. INT instr. + CPl $_{1 / s} \times$ No. L/S instr. + CPIbranch \times No. branch instr. $=$ clock cycles $/ 2$
CP $_{\text {limproved } f p}=(256-462) / 50<0==>$ not possible
1.14.2 Using the clock cycle data from 1.14.1.

To have the number of clock cycles improving the CPI of L/S CPl $_{\text {fp }} \times$ No. FP instr. + CPl $_{\text {int }} \times$ No. INT instr. + CPlimproved $/ \mathrm{S} \times$ No. L/S instr. + CPlbranch \times No. branch instr. $=$ clock cycles $/ 2$
CPI improved $\mathrm{I} / \mathrm{s}=(256-192) / 80=0.8$
1.14.3 CP ${ }_{\text {int }}=0.6 \times 1=0.6 ; \mathrm{CPI}_{\mathrm{fp}}=0.6 \times 1=0.6 ; \mathrm{CPI}_{\mathrm{l} / \mathrm{s}}=0.7 \times 4=2.8$;
$C P_{\text {branch }}=0.7 \times 2=1.4$
$\mathrm{T}_{\mathrm{CPU}}$ (before improv.) $=0.256 \mathrm{~s}$; $\mathrm{T}_{\text {cPu }}$ (after improv.) $=0.171 \mathrm{~s}$

1.15

| process
 ors | exec
 time/processor | time w/
 overhead | speedu
 1 | 100 |
| :--- | :--- | :--- | :--- | :--- | | actual/idea |
| :--- |
| 1 |

