
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 4
The Processor

Chapter 4 — The Processor — 2

The Processor ?

Chapter 4 — The Processor — 3

Introduction
 We will learn

 How the ISA determines many aspects of the implementation
 How the choice of various implementation strategies affects the

clock rate and CPI for the computer

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw
 Arithmetic/logical operation: add, sub, and, or, slt
 Program flow control: beq, j

§4.1 Introduction

Chapter 4 — The Processor — 4

Instruction Cycle
 For every instruction, the first three phases are

identical:
 Instruction fetch: send PC to the memory and fetch the

instruction from the memory
 Instruction decode and operand fetch: read one or two

registers, using fields of the instruction to select the
register from the register file (RF)

 Use ALU, depending on instruction class, to
calculate
 Arithmetic result
 Memory address for load/store
 Branch target address

 Access data memory only for load/store
 Write the ALU or memory back into a register,

 using fields of the instruction to select the register

 PC  target address or PC + 4

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Chapter 4 — The Processor — 5

Datapath vs Control

 Datapath: Storage, FU, interconnect sufficient to perform the
desired functions
 Inputs are Control Points
 Outputs are signals

 Controller: State machine to orchestrate/control operation on the
data path
 Based on desired function and signals

Datapath Controller

Control Points

signals

Chapter 4 — The Processor — 6

Five Steps to Implement a Processor
1. Analyze the instruction set (datapath requirements)

 The meaning of each instruction is given by the register transfers
 Datapath must include storage element
 Datapath must support each register transfer

2. Select set of datapath components and establish
clocking methodology

3. Assemble datapath meeting the requirements
4. Analyze the implementation of each instruction to

determine setting of control points effecting register
transfer

5. Assemble the control logic

 All MIPS instructions are 32 bits long with 3 formats:
 R-type:

 I-type:

 J-type:

 The different fields are:
 op: operation of the instruction
 rs, rt, rd: source and/or destination register
 shamt: shift amount
 funct: selects variant of the “op” field
 address / immediate
 target address: target address of jump

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Step 1: Analyze the Instruction Set

Chapter 4 — The Processor — 8

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op address
016212631

6 bits 26 bits

 Arithmetic/logical operation:
 add rd, rs, rt
 sub rd, rs, rt
 and rd, rs, rt
 or rd, rs, rt
 slt rd, rs, rt

 Load/Store:
 lw rt,rs,imm16
 sw rt,rs,imm16

 Imm operand:
 addi rt,rs,imm16

 Branch:
 beq rs,rt,imm16

 Jump:
 j target

Step 1: Analyze the Instruction Set

Chapter 4 — The Processor — 9

Logical Register-Transfer Level (RTL)
 RTL is a design abstraction, which gives the hardware description of

the instructions
MEM[PC] = op | rs | rt | rd | shamt | funct

or = op | rs | rt | Imm16
or = op | Imm26 (added at the end)

Inst Register transfers
ADD R[rd] <- R[rs] + R[rt]; PC <- PC + 4
SUB R[rd] <- R[rs] - R[rt]; PC <- PC + 4
LOAD R[rt] <- MEM[R[rs] + sign_ext(Imm16)]; PC <- PC + 4
STORE MEM[R[rs] + sign_ext(Imm16)] <-R[rt]; PC <- PC + 4
ADDI R[rt] <- R[rs] + sign_ext(Imm16)]; PC <- PC + 4
BEQ if (R[rs] == R[rt]) then PC <- PC + 4 + sign_ext(Imm16)] || 00

else PC <- PC + 4
J PC <- PC[31..28] || Imm 26 || 00

Chapter 4 — The Processor — 10

Fig. 4.1 MIPS Datapath (Simplified)

Chapter 4 — The Processor — 11

Multiplexers
 Can’t just join

wires together
 Use multiplexers

Chapter 4 — The Processor — 12

Control

Chapter 4 — The Processor — 13

Step 2: Datapath Elements
§4.2 Logic D

esign C
onventions

 Information encoded in binary
 Low voltage = 0, High voltage = 1
 One wire per bit; Multi-bit data encoded on bus

 Two different types of datapath elements
 Combinational elements

 For computation, the output depends only on the current
inputs

 The output is a function of the input(s)

 State (sequential) elements
 For storing state/information
 The output depends on both the input(s) and the contents of

the internal state

 Example of combinational logic elements :

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

ALU control

32A

B 32

Y32

Select

A
dder

M
U

X

A
LU

CarryIn

Adder MUX

ALU

4

Combinational Elements

Chapter 4 — The Processor — 15

Sequential Elements (1)
 D-type flip-flop: stores data in a circuit

 Uses a clock signal to determine when to update the

stored value

 Edge-triggered: update when Clk changes from 0 to 1

D

Clk

Q
Clk

D

Q

Chapter 4 — The Processor — 16

Sequential Elements (2)
 Registers (or register file) and Memory with write

control
 Only updates on clock edge when write_enable

control input is 1

 Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

Chapter 4 — The Processor — 17

Clocking Methodology
 A clocking methodology defines when signals can be read and

when they can be written
 Combinational logic transforms data during clock cycles

 Between clock edges (edge-triggered clocking methodology)

 Input from state elements, output to state element

 Longest delay determines clock period

May be encountered a race problem

Chapter 4 — The Processor — 18

Step 3: Building a Datapath
 Datapath

 Elements that process data and addresses
in the CPU

 Registers, ALUs, mux’s, memories, …

 We will build a MIPS datapath incrementally
 Refining the overview design

§4.3 B
uilding a D

atapath

PC

Instruction
memory

Read
address

Instruction

4

Add

 Instruction fetch unit is used by other parts of the
datapath
 Fetch the instruction: mem[PC]
 Update the program counter:

 Sequential code: PC <- PC + 4
 Branch and Jump: PC <- “Something else”

Instruction Fetch Unit

32-bit
register

Increment by
4 for next
instruction

Chapter 4 — The Processor — 20

Step 3a: R-Format Instructions
 Read two register operands

 Perform arithmetic/logical operation

 Write register result

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

rs

rt

rd

Add and Subtract
 R[rd] <- R[rs] op R[rt] Ex: add rd, rs, rt

 Ra, Rb, Rw come from inst.’s rs, rt, and rd fields
 ALU and RegWrite: control logic after decode

4

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation (funct)Two read ports and
one write port

Ra

Rb

Rw

Chapter 4 — The Processor — 22

Load/Store Instructions
 Read register operands
 Calculate address using 16-bit

offset
 Use ALU, but sign-extend

offset
 Load: Read memory and update

register
 Store: Write register value to

memory

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Step 3b: Store/Load Operations
 R[rt]<-Mem[R[rs]+SignExt[imm16]] Ex: lw rt,rs,imm16

rs

rt

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

4

rt

R-Type/Load/Store Datapath

Chapter 4 — The Processor — 24

Chapter 4 — The Processor — 25

 beq rs, rt, imm16

mem[PC] Fetch inst. from memory

COND <- R[rs] == R[rt] Calculate branch condition

if (COND == 0) Calculate next inst. address
PC <- PC + 4 + (SignExt(imm16) x 4)

else
PC <- PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Recall Branch Operations

Chapter 4 — The Processor — 26

Branch Instructions
 Read register operands

 Compare operands
 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4

 Already calculated by instruction fetch

Chapter 4 — The Processor — 27

Step 3c: Branch Instructions

Just
re-routes

wires

Sign-bit wire
replicated

Chapter 4 — The Processor — 28

Composing the Elements
 First-cut data path does an instruction in one

clock cycle
 Each datapath element can only do one function at a

time

 Hence, we need separate instruction and data
memories

 Use multiplexers where alternate data sources
are used for different instructions

Chapter 4 — The Processor — 29

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

A Single Cycle Full Datapath

Chapter 4 — The Processor — 30

Clocking Methodology
 Define when signals are read and written

 Assume edge-triggered (synchronous design):
 Values in storage (state) elements updated only on a clock edge

=> clock edge should arrive only after input signals stable

 Any combinational circuit must have inputs from and outputs to
storage elements

 Clock cycle: time for signals to propagate from one storage
element, through combinational circuit, to reach the second
storage element

 A register can be read, its value propagated through some
combinational circuit, new value is written back to the same
register, all in same cycle => no feedback within a single cycle

Register-Register Timing

Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access Time

Old Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

Ideal
Instruction

Memory

PC

32

Clk

Critical Path (Load Operation) =
PC’s Clk-to-Q +

Instruction memory’s Access Time +
Register file’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +

Setup Time for Register File Write +
Clock Skew

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd
A

LU

Clk

Data In

Data
Address

Ideal
Data

Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

The Critical Path
 Register file and ideal memory:

 During read, behave as combinational logic:
 Address valid => Output valid after access time

Worst Case Timing (Load)
Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memoey Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA
Register File Access Time

Old Value New Value

busB

ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

MemtoReg Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Register
Write Occurs

Data Memory Access Time

Chapter 4 — The Processor — 34

ALUct
r

RegDst ALUSrc
MemRd MemtoRegMemWr Equal

Instruction<31:0><21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

PCsrc

Addr

Inst.
Memory

Datapath

Control

Op

<21:25>

Funct

RegWr

Step 4: Control Points and Signals

• To select the operations to
perform

• To control the flow of data

7 Control Signals

Chapter 4 — The Processor — 35

Chapter 4 — The Processor — 36

ALU Control
 ALU used for

 Load/Store: F = add
 Branch: F = subtract
 R-type: F depends on funct field

§4.4 A S
im

ple Im
plem

entation S
chem

eALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Chapter 4 — The Processor — 37

ALU Control
 Assume 2-bit ALUOp derived from opcode

 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control
lw 00 load word XXXXXX add 0010
sw 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010

subtract 100010 subtract 0110
AND 100100 AND 0000
OR 100101 OR 0001
set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 38

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

Chapter 4 — The Processor — 39

Designing Main Control
 Some observations:

 opcode (Op[5-0]) is always in bits 31-26

 two registers to be read are always in rs (bits 25-21)
and rt (bits 20-16) (for R-type, beq, sw)

 base register for lw and sw is always in rs (25-21)

 16-bit offset for beq, lw, sw is always in 15-0

 destination register is in one of two positions:
 lw: in bits 20-16 (rt)

 R-type: in bits 15-11 (rd)

=> need a multiplex to select the address for written register

Chapter 4 — The Processor — 40

Datapath with Mux and Control

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Control point

Chapter 4 — The Processor — 41

Datapath With Control

Chapter 4 — The Processor — 42

R-Type Instruction

Chapter 4 — The Processor — 43

Load Instruction

Chapter 4 — The Processor — 44

Branch-on-Equal Instruction

Chapter 4 — The Processor — 45

Implementing Jumps

 Jump looks somewhat like a branch, but always

computes the target PC (i.e. not conditional)

 Jump uses word address

 Update PC with concatenation of top 4 bits of old PC,

26-bit jump address, and 002

 Need an extra control signal decoded from opcode

2 address
31:26 25:0

Jump

Chapter 4 — The Processor — 46

Datapath With Jumps Added

Chapter 4 — The Processor — 47

Concluding Remarks
 Not feasible to vary clock period for different instructions

 Longest delay determines clock period

 Critical path: load instruction

 Instruction memory  register file  ALU  data memory 

register file

 “Making the common case fast” cannot improve the

worst-case delay  Single cycle implementation violates

the design principle

 We will improve performance by pipelining

 Critical path reduction

Pipelining Implementation

storage element

Acyclic
Combinational
Logic

storage element

storage element

Acyclic
Combinational
Logic (A)

storage element

storage element

Acyclic
Combinational
Logic (B)

==>

Chapter 4 — The Processor — 49

Pipelining Analogy
 Pipelined laundry: overlapping execution

 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining Four loads:
 Speedup

= 8/3.5 = 2.3
 Non-stop:

 Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

Chapter 4 — The Processor — 50

Steps for Designing a Pipelined Processor

 Examine the datapath and control diagram
 Starting with single cycle datapath

 Partition datapath into stages:
 IF (instruction fetch), ID (instruction decode and register file read),

EX (execution or address calculation), MEM (data memory
access), WB (write back)

 Associate resources with stages

 Ensure that flows do not conflict, or figure out how to
resolve

 Assert control in appropriate stage

Partition Single-Cycle Datapath

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Ins. fetch
RF access
ALU operation
memory access
Write back

 Add registers between smallest steps

4

Chapter 4 — The Processor — 52

5-Stage MIPS Pipeline
 Five steps, one stage per step

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 53

Pipeline Performance
 Assume time for stages is

 100ps for register read or write
 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 54

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 55

Pipeline Speedup
 If all stages are balanced

 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput
 Latency (time for each instruction) does not decrease

— 56

Pipelining Lessons
 Doesn’t help latency of single task, but throughput of

entire

 Pipeline rate limited by slowest stage

 Multiple tasks working at same time using different
resources

 Potential speedup = Number pipe stages

 Unbalanced stage length; time to “fill” & “drain” the
pipeline reduce speedup

 Stall for dependences or pipeline hazards

Chapter 4 — The Processor — 57

MIPS ISA Designed for Pipelining

 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory in

4th stage
 Alignment of memory operands

 Memory access takes only one cycle

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 58

Pipelined Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Pipeline registers (latches)

Use registers between stages to carry data and control

— 59

 IF: Instruction Fetch
 Fetch the instruction from the Instruction Memory

 ID: Instruction Decode
 Registers fetch and instruction decode

 EX: Calculate the memory address
 MEM: Read the data from the Data Memory
 WB: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Consider Load Instruction

— 60

 5 functional units in the pipeline datapath are:
 Instruction Memory for the Ifetch stage
 Register File’s Read ports (busA and busB) for the Reg/Dec

stage
 ALU for the Exec stage
 Data Memory for the MEM stage
 Register File’s Write port (busW) for the WB stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw

Pipelining lw Instructions

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 61

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

The Four Stages of R-type Instruction

 IF: fetch the instruction from the Instruction Memory

 ID: registers fetch and instruction decode

 EX: ALU operates on the two register operands

 WB: write ALU output back to the register file

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 62

 We have a structural hazard:
 Two instructions try to write to the RF at the same time, but only

one write port !

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops! We have a problem !

Hazard Problem

Chapter 4 — The Processor — 63

Pipeline Hazards
 Situations that prevent starting the next instruction in the

next cycle

 Structure hazard
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to complete its data

read/write

 Control hazard
 Deciding on control action depends on previous instruction

 Several ways to solve: forwarding, adding pipeline bubble,
making instructions same length

Chapter 4 — The Processor — 64

Structure Hazards
 Conflict for use of a resource

 In MIPS pipeline with a single memory
 Load/store requires data access

 Instruction fetch would have to stall for that cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate
instruction/data memories
 Or separate instruction/data caches

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 65

Mem

I
n
s
t
r.

O
r
d
e
r

Time

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

U Mem Reg

A
L

UMem Reg Mem Reg

1. I/D separate memory: data memory and instruction memory
2. First half cycle for write and the second half cycle for read

Structural Hazard Solution:
Seperate I/D Memory

Reg

Reg

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 66

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5

Structural Hazard Solution:
Delay R-type’s Write
 Delay R-type’s register write by one cycle:

 R-type also use Reg File’s write port at Stage 5
 MEM is a NOP stage: nothing is being done.

R-type also has 5
stages

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 67

 IF: fetch the instruction from the Instruction Memory
 ID: registers fetch and instruction decode
 EX: calculate the memory address
 MEM: write the data into the Data Memory
Add an extra stage:

 WB: NOP

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

The Four Stages of sw

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 68

 IF: fetch the instruction from the Instruction Memory
 ID: registers fetch and instruction decode
 EX:

 compares the two register operand
 select correct branch target address
 latch into PC

Add two extra stages:
 MEM: NOP
 WB: NOP

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

The Three Stages of beq

Chapter 4 — The Processor — 69

Data Hazards
 An instruction depends on completion of data

access by a previous instruction
 add $s0, $t0, $t1

sub $t2, $s0, $t3

Chapter 4 — The Processor — 70

Types of Data Hazards
Three types: (inst. i1 followed by inst. i2)
 RAW (read after write):

i2 tries to read operand before i1 writes it
 WAR (write after read):

i2 tries to write operand before i1 reads it
 Gets wrong operand, e.g., autoincrement addr.
 Can’t happen in MIPS 5-stage pipeline because:

 All instructions take 5 stages, and reads are always in stage 2, and writes are always in
stage 5

 WAW (write after write):
i2 tries to write operand before i1 writes it
 Leaves wrong result (i1’s not i2’s); occur only in pipelines that write in more than

one stage
 Can’t happen in MIPS 5-stage pipeline because:

 All instructions take 5 stages, and writes are always in stage 5

 RAR?

True data dependency

Name dependency

Name dependency

No dependency

Chapter 4 — The Processor — 71

Handling Data Hazards
 Use simple, fixed designs

 Eliminate WAR by always fetching operands early (ID) in pipeline
 Eliminate WAW by doing all write backs in order (last stage,

static)
 These features have a lot to do with ISA design

 Internal forwarding in register file:
 Write in first half of clock and read in second half
 Read delivers what is written, resolve hazard between sub and

add

 Detect and resolve remaining ones
 Compiler inserts NOP, or reorders the code sequence
 Forward
 Stall

Chapter 4 — The Processor — 72

Forwarding (aka Bypassing)
 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Hardware complexity

Chapter 4 — The Processor — 73

Example
 Consider the following code sequence


sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 74

Data Hazards Solution:
Inserting NOPs by Software

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/ -2 0 -20 -20 -20 -20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

Insert two nops

 Use temporary results, e.g., those in pipeline registers, don’t wait for
them to be written

Data Hazards Solution:
Internal Forwarding Logic

IM Reg

IM R eg

C C 1 CC 2 CC 3 CC 4 C C 5 CC 6

Time (in c lock cyc les)

sub $2, $1 , $3

Program
execution o rder
(in instruc tions)

and $12 , $2, $5

IM Reg DM Reg

IM D M R eg

IM DM R eg

CC 7 C C 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13 , $6, $2

add $14 , $2, $2

sw $15 , 100($2)

Value o f register $2 :

D M R eg

R eg

R eg

R eg

X X X – 20 X X X X XVa lue of EX/M EM :
X X X X – 20 X X X XVa lue o f M EM /W B :

D M

HW Change for Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM
 Data

Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Additional hardware is required.

Chapter 4 — The Processor — 76

Chapter 4 — The Processor — 77

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

 If value not computed when needed
 Can’t forward backward in time!

Software Check or Hardware Handling
How to insert a bubble ???

Chapter 4 — The Processor — 78

Rescheduling Code to Avoid Stalls
 Compiler reorders the code sequence to avoid use of

load result in the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

11 cycles13 cycles

Control Hazard on Branches

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?
The simplest solution is to stall the pipeline as soon as a branch instruction is detected

Chapter 4 — The Processor — 79

Branch Stall Impact
 If CPI = 1, 30% branch,

Stall 3 cycles => new CPI = 1.9!
 Two-part solution:

 Determine branch taken or not sooner, AND
 Compute taken branch address earlier

 MIPS branch tests if register = 0 or  0
 MIPS Solution:

 Move Zero test to ID/RF stage
 Adder to calculate new PC in ID/RF stage
 1 clock cycle penalty for branch versus 3

Chapter 4 — The Processor — 80

Chapter 4 — The Processor — 81

Stall on Branch
 Wait until branch outcome determined before

fetching next instruction

How to add a stall cycle ?

Four Alternatives for Control Hazard
#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

– But haven’t calculated branch target address in MIPS, it still
incurs 1 cycle branch penalty

– Advantage of branch target is known before outcome

Chapter 4 — The Processor — 82

Four Alternatives for Control Hazard
#4: Delayed Branch – make the stall cycle useful

– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 0-cycle latency, if all the stall cycles are useful

Branch delay of length n
These insts. are executed !!

Chapter 4 — The Processor — 83

Chapter 4 — The Processor — 84

Handling Branch Hazard
 Moving branch execution earlier in the pipeline

 Move up branch address calculation to ID

 Check branch equality at ID (using XOR for zero test) by comparing the

two registers read during ID

 Branch decision made at ID => one instruction to flush

 Add a control signal, IF.Flush, to zero instruction field of IF/ID => making

the instruction an NOP (i.e. bubble instruction)

 (Static) Predict branch always not taken

 Need to add hardware for flushing inst. if wrong

 Compiler rescheduling and delay branch (discussed later)

 Dynamic branch prediction (discussed later)

Chapter 4 — The Processor — 85

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 86

More-Realistic Branch Prediction
 Static n-bit branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches
 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 87

Pipeline Operation
 Cycle-by-cycle flow of instructions through

the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

Chapter 4 — The Processor — 88

Recall: Steps for Designing a Pipelined
Processor
 Examine the datapath and control diagram

 Starting with single cycle datapath

 Partition datapath into stages:
 IF (instruction fetch), ID (instruction decode and register file read),

EX (execution or address calculation), MEM (data memory
access), WB (write back)

 Associate resources with stages

 Ensure that flows do not conflict, or figure out how to
resolve

 Assert control in appropriate stage

§4.6 P
ipelined D

atapath and C
ontrol

Chapter 4 — The Processor — 89

MIPS Single-Cycle Datapath

WB

MEM

Right-to-left
flows lead to
hazards

Two right-to-left flows

Chapter 4 — The Processor — 90

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

Pipeline registers (latches)

Pipeline Registers

Use registers between stages to carry data and control

MIPS ISA Micro-Operations

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

One way to show what happens in pipelined execution

Chapter 4 — The Processor — 91

MIPS ISA Micro-Operations

Step name Action for R-type
instructions

Action for memory-reference
instructions Action for branches Action for jumps

IR = Memory[PC]
PC = PC + 4

Instruction decode &
register fetch
Execution/ address ALUOut = A op B ALUOut = A + sign-extend PC = PC [31-28] II
computation (IR[15-0]) (IR[25-0]<<2)

Memory access or R-type Load: MDR = Memory[ALUOut]
completion or

Store: Memory [ALUOut] = B
Memory read completion/ Reg [IR[15-11]] =
R-type completion ALUOut

Instruction fetch

if (A ==B) then, ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Load: Reg[IR[20-16]] = MDR

A = Reg [IR[25-21]]; B = Reg [IR[20-16]]

Chapter 4 — The Processor — 92

Chapter 4 — The Processor — 93

Pipeline Operation
 Cycle-by-cycle flow of instructions through the

pipelined datapath
 Shows pipeline usage in a single cycle (stage)

 Highlight resources used

 We’ll look at “single-clock-cycle” diagrams for
load instruction

Instruction

memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Instruction fetch
lw

Address

Data

memory

 Ex: lw rt,rs,imm16

IF Stage of lw

IR, PC+4

Chapter 4 — The Processor — 94

ID Stage of lw
 Ex: lw rt,rs,imm16
 A = Reg[IR[25-21]];

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Instruction decode
lw

Address

Data
memory

Chapter 4 — The Processor — 95

EX Stage of lw
 Ex: lw rt,rs,imm16
 ALUout = A + sign-ext(IR[15-0])

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Execution
lw

Address

Data
memory

Chapter 4 — The Processor — 96

MEM State of lw
 Ex: lw rt,rs,imm16
 MDR = mem[ALUout]

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataData

memory
1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Memory
lw

Address

Chapter 4 — The Processor — 97

WB Stage of lw
 Ex: lw rt,rs,imm16
 Reg[IR[20-16]] = MDR

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX MEM/WB

Write back
lw

Write
register

Address

Who will supply
this address?

Pipelined Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Chapter 4 — The Processor — 99

Chapter 4 — The Processor — 100

Pipeline Diagram
 Multi-clock-cycle pipeline diagram

Pipeline diagram
 Single-clock-cycle diagram in a given cycle cc5

Chapter 4 — The Processor — 101

Pipelined Control (1)
 Start with the (simplified) single-cycle datapath

 Use the same ALU control logic, branch logic, destination-register-
number MUX, and control lines

Chapter 4 — The Processor — 102

Pipelined Control (2)
 To specify control for the pipeline, we need to set control

values during each pipeline stage.

 The simplest implementation way is data stationary
pipelined control: to extend the pipeline registers to
include control information

Chapter 4 — The Processor — 103

Chapter 4 — The Processor — 104

Data Stationary Pipelined Control
 Control signals derived from instruction

 Main control generates control signals during ID
 Pass control signals along just like the data

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 105

Data Stationary Control
 Signals for EX (ExtOp, ALUSrc, ...) are used 1 cycle later
 Signals for MEM (MemWr, Branch) are used 2 cycles later
 Signals for WB (MemtoReg, MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

E
M

 R
egister

M
E

M
/W

B
 R

egister

ID EX MEM

ExtOp

ALUOp

RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp

RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemW

WB

Chapter 4 — The Processor — 106

Pipelined Control

Chapter 4 — The Processor — 107

Hazard Detection
 We can resolve hazards with forwarding, but how

do we detect when to forward?
 RAW (WAR, WAW) dependence check

 i.e. to compare register number between instructions

 Pass register numbers along pipeline
 ID/EX.RegisterRs = register number for Rs sitting in ID/EX

pipeline register
 e.g. ALU operand register numbers in EX stage are given by

ID/EX.RegisterRs, ID/EX.RegisterRt
 Data hazards when

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

§4.7 D
ata H

azards: Forw
arding vs. S

talling

Chapter 4 — The Processor — 108

Detecting the Need to Forward

 Not always do fordward if true data hazard

 But only if forwarding instruction will write to a

register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero

 EX/MEM.RegisterRd ≠ 0, MEM/WB.RegisterRd ≠ 0

Chapter 4 — The Processor — 109

Forwarding Paths

Chapter 4 — The Processor — 110

Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10
 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 111

Double Data Hazard
 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur Want to use the most recent

 Revise MEM hazard condition Only forward if EX
hazard condition isn’t true

Chapter 4 — The Processor — 112

Revised Forwarding Condition
 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Chapter 4 — The Processor — 113

Datapath with Forwarding

Chapter 4 — The Processor — 114

Load-Use Data Hazard

Need to stall
for one cycle

Chapter 4 — The Processor — 115

Load-Use Hazard Detection
 Check when using instruction is decoded in ID stage

 ALU operand register numbers in ID stage are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 116

How to Stall the Pipeline
 Force control values in ID/EX register to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw
 Can subsequently forward to EX stage

Chapter 4 — The Processor — 117

Stall/Bubble in the Pipeline

Stall inserted
here

Chapter 4 — The Processor — 118

Stall/Bubble in the Pipeline

Or, more
accurately…

Chapter 4 — The Processor — 119

Datapath with Hazard Detection

Chapter 4 — The Processor — 120

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid hazards and
stalls
 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 121

Branch Hazards
 If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

Original Datapath

Chapter 4 — The Processor — 122

Reducing Branch Delay
 Move hardware to determine outcome to ID stage

 Target address adder
 Register comparator

additional hardware

Chapter 4 — The Processor — 123

Data Hazards for Branch -- I
 If a comparison register is a destination of 2nd or

3rd preceding ALU instruction

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding, but need 1 stall
cycle

Chapter 4 — The Processor — 124

Data Hazards for Branch -- I

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

 1 stall cycle + forwarding for ALU results

Chapter 4 — The Processor — 125

Data Hazards for Branch -- II
 If a comparison register is a destination of

immediately preceding load instruction
 Can resolve using forwarding, but need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 126

 Predict-not-taken + branch decision at ID
=> the following instruction is always executed
=> branches take effect 1 cycle later

 0 clock cycle penalty per branch instruction if can find instruction to put in
slot

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add

beq

misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem
A

L
UReg Mem Reg

lw Mem

A
L

UReg Mem Reg

Delayed Branch

Scheduling the Branch Delay Slot

Chapter 4 — The Processor — 127

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

Delay-Branch Scheduling Schemes

CA-Lec4
cwliu@twins.ee.nctu.edu.tw 128

Scheduling
Strategy

Requirements Improve Performance
When?

From before Branch must not depend on
the rescheduled instructions

Always

From target Must be OK to execute
rescheduled instructions if
branch is not taken. May need
to duplicate instructions

When branch is taken.
May enlarge program
if instructions are
duplicated

From fall
through

Must be OK to execute
instructions if branch is taken

When branch is not
taken.

Chapter 4 — The Processor — 129

Dynamic Branch Prediction
 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic branch prediction
 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch
 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction  1-bit predictor

Chapter 4 — The Processor — 130

Shortcoming for 1-Bit Predictor
 Inner loop branches mispredicted twice!

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of
inner loop next time around

T NT

Chapter 4 — The Processor — 131

2-Bit Predictor
 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 132

Calculating the Branch Target Address

 Even with predictor, still need to calculate the
target address
 1-cycle penalty for a taken branch in 5-stage MIPS

processor

 Branch target buffer (discussed in CA course)
 Cache of target addresses

 Indexed by PC when instruction fetched
 If hit and instruction is branch predicted taken, can fetch

target immediately

 0-cycle penalty

Chapter 4 — The Processor — 133

Exceptions and Interrupts
 “Unexpected” events requiring change in flow of control

 Different ISAs use the terms differently

 Exception: Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt: From an external I/O controller

 Dealing with execeptions without sacrificing performance
is hard

§4.9 E
xceptions

Chapter 4 — The Processor — 134

Handling Exceptions in MIPS
 In MIPS, exceptions managed by a System Control

Coprocessor (CP0)
 1. Save PC of offending (or interrupted) instruction in

Exception Program Counter (EPC)
 2. Save indication of the problem in Cause register

 Must know the reason for the exception
 Cause is a status register
 We’ll assume 1-bit

 0 for undefined opcode, 1 for overflow

 3. Save registers in memory (similar to procedure call)
 4. Jump to exception handler at 8000 00180

Chapter 4 — The Processor — 135

An Alternate Mechanism
 Vectored Interrupts

 Handler address determined by the cause

 Example:
 Undefined opcode: C000 0000

 Overflow: C000 0020

 …: C000 0040

 Instructions either
 Deal with the interrupt, or

 Jump to real handler

Chapter 4 — The Processor — 136

Handler Actions
 Read cause, and transfer to relevant handler

 Determine action required

 If restartable
 Take corrective action

 use EPC to return to program (also need to restore
the saved registers from memory)

 Otherwise
 Terminate program

 Report error using EPC, cause, …

Must subtract 4 from EPC

Chapter 4 — The Processor — 137

Exceptions in a Pipeline
 Another form of control hazard
 Consider overflow on add in EX stage

add $1, $2, $1

 Prevent $1 from being clobbered
 Complete previous instructions
 Flush add and subsequent instructions
 Set Cause and EPC register values
 Transfer control to handler

 Similar to mispredicted branch
 Use much of the same hardware

Chapter 4 — The Processor — 138

Pipeline with Exceptions
Zeros control signals for flushing

Chapter 4 — The Processor — 139

Exception Summary
 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the instruction
 Refetched and executed from scratch

 PC saved in EPC register
 Identifies causing instruction

 Actually PC + 4 is saved
 Handler must adjust

Chapter 4 — The Processor — 140

Exception Example
 Exception on add in

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)
…

 Handler
80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)
…

Chapter 4 — The Processor — 141

Exception Example

Clock 6

4Ch + 4 = 50h saved in EPC

Chapter 4 — The Processor — 142

Exception Example

Clock 7

The add and following instructions are flushed

Chapter 4 — The Processor — 143

Multiple Exceptions
 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once
 Simple approach: deal with exception from

earliest instruction
 Flush subsequent instructions
 “Precise” exceptions

 In complex pipelines
 Multiple instructions issued per cycle
 Out-of-order completion
 Maintaining precise exceptions is difficult! (discussed

in CA course)

Chapter 4 — The Processor — 144

Imprecise Exceptions
 Just stop pipeline and save state

 Including exception cause(s)
 Let the handler work out

 Which instruction(s) had exceptions
 Which to complete or flush

 May require “manual” completion

 Simplifies hardware, but more complex handler
software

 Not feasible for complex multiple-issue
out-of-order pipelines

Chapter 4 — The Processor — 145

Instruction-Level Parallelism (ILP)
 Pipelining: executing multiple instructions in parallel

 To increase ILP

 Deeper pipeline (increase clock rate)
 Less work per stage  shorter clock cycle

 Multiple issue (using multiple ALUs)
 Replicate pipeline stages  multiple pipelined datapaths

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue (upto 4 parallel instructions)

 16 BIPS, peak CPI = 0.25, peak IPC = 4, ideally

 But dependencies reduce this in practice

§4.10 P
arallelism

 via Instructions

Chapter 4 — The Processor — 146

Multiple Issue Processor
 Static multiple issue or VLIW processor

 Compiler solves hazards, groups instructions to be issued
together, and packages them into “issue slots”

 Compiler detects and avoids hazards
 Dynamic multiple issue or Superscalar processor

 CPU examines instruction stream and chooses instructions
to issue each cycle

 Compiler can help by reordering instructions
 CPU resolves hazards using advanced techniques at

runtime
 Rescheduling and loop unrolling techniques for

multiple issue processors

Chapter 4 — The Processor — 147

MIPS with Static Dual Issue
 Two-issue packets

 One for ALU/branch instruction and the other for
load/store instruction

 64-bit aligned, 2-issue slot
 Pad an unused instruction with nop

 Peak IPC = 2

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Code Rescheduling
 Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $zero, Loop

 After code rescheduling:
 Loop: lw $t0, 0($s1)

addi $s1, $s1, -4
addu $t0, $t0, $s2
sw $t0, 4($s1)
bne $s1, $zero, Loop

Chapter 4 — The Processor — 148

Chapter 4 — The Processor — 149

Loop Unrolling
 Replicate loop body to expose more parallelism

 Reduces loop-control overhead

 Use different registers per replication
 Called “register renaming”

 Avoid loop-carried “anti-dependencies”
 Store followed by a load of the same register

 Aka “name dependence”
 Reuse of a register name

Multiple-Issue Code Scheduling
 2-issue processor

 CPI: 4/5 = 0.8 (or IPC = 1.25)
 Assume the loop index is a multiple of four
 After four-times loop unrolling and code scheduling

 CPI: 8/14 = 0.57 (or IPC = 1.75)

Chapter 4 — The Processor — 150
Closer to 2, but at cost of registers and code size

Blank is nop

Chapter 4 — The Processor — 151

Static Multiple Issue Processor
 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between
packets
 Varies between ISAs; compiler must know!

 Insert nop(s), if necessary

 Software complexity Hardware complexity

Chapter 4 — The Processor — 152

Two-Issue MIPS VLIW Processor

Chapter 4 — The Processor — 153

Dynamic Multiple Issue Processor
 CPU decides whether to issue 0, 1, 2, … each

cycle (out-of-order execution and completion)
 Avoiding structural and data hazards

 Avoids the need for compiler scheduling
 Though it may still help

 Code semantics ensured by the CPU

 Old code still run
 May not re-compile the code for new version

 Hardware complexity Software complexity

Chapter 4 — The Processor — 154

Superscalar Processor

Results also sent
to any waiting

reservation stations

Reorders buffer for
register writes Can supply

operands for
issued instructions

Preserves
dependencies

Hold pending
operands

Chapter 4 — The Processor — 155

Speculation
 Predict and continue to do with an instruction

 Start operation as soon as possible
 Check whether guess was right

 If so, complete the operation
 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue
 Examples

 Speculate on branch outcome
 Roll back if path taken is different

 Speculate on load
 Roll back if location is updated

Chapter 4 — The Processor — 156

Compiler/Hardware Speculation
 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover from
incorrect guess

 Hardware can look ahead for instructions to
execute
 Buffer results until it determines they are actually

needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 157

Speculation and Exceptions
 What if exception occurs on a speculatively

executed instruction?
 e.g., speculative load before null-pointer check

 Static speculation
 Can add ISA support for deferring exceptions

 Dynamic speculation
 Can buffer exceptions until instruction completion

(which may not occur)

Chapter 4 — The Processor — 158

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate
 e.g., pointer aliasing

 Some parallelism is hard to expose
 Limited window size during instruction issue

 Memory delays and limited bandwidth
 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 159

Multicore/Multiprocessor is the Trend
 Complexity of multiple-issue processors requires power
 Multiple simpler cores may be better

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Pipelining,
Data locality,
Parallelism processing

Cortex A8 and Intel i7
Processor ARM A8 Intel Core i7 920

Market Personal Mobile Device Server, cloud
Thermal design power 2 Watts 130 Watts
Clock rate 1 GHz 2.66 GHz
Cores/Chip 1 4
Floating point? No Yes
Multiple issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline stages 14 14
Pipeline schedule Static in-order Dynamic out-of-order

with speculation
Branch prediction 2-level 2-level
1st level caches/core 32 KiB I, 32 KiB D 32 KiB I, 32 KiB D
2nd level caches/core 128-1024 KiB 256 KiB
3rd level caches (shared) - 2- 8 MB

Chapter 4 — The Processor — 160

§4.11 R
eal S

tuff: The A
R

M
 C

ortex-A
8 and Intel C

ore i7 P
ipelines

Chapter 4 — The Processor — 161

Fallacies
 Pipelining is easy (!)

 The basic idea is easy
 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology
 So why haven’t we always done pipelining?
 More transistors make more advanced techniques

feasible
 Pipeline-related ISA design needs to take account of

technology trends
 e.g., predicated instructions

§4.14 Fallacies and P
itfalls

Chapter 4 — The Processor — 162

Pitfalls
 Poor ISA design can make pipelining

harder
 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work
 IA-32 micro-op approach

 e.g., complex addressing modes
 Register update side effects, memory indirection

 e.g., delayed branches
 Advanced pipelines have long delay slots

Chapter 4 — The Processor — 163

Concluding Remarks
 ISA influences design of datapath and control
 Datapath and control influence design of ISA
 Pipelining improves instruction throughput

using parallelism
 More instructions completed per second
 Latency for each instruction not reduced

 Hazards: structural, data, control
 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism
 Complexity leads to the power wall

§4.14 C
oncluding R

em
arks

