M(COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

5th
Edition

Chapter 4

The Processor

The Processor ?

Interface m

v.—-’

Computer

Datapath

'&.m !u :

Processor

pipi. OF ELECTROMICS
FIGINEERIG o -@
st Of ELECTROMICS ”(I U Chapter 4 — The Processor — 2

Evaluatihg
performance

Introduction

We will learn
How the ISA determines many aspects of the implementation
How the choice of various implementation strategies affects the
clock rate and CPI for the computer

We will examine two MIPS implementations
A simplified version
A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: Iw, sw
Arithmetic/logical operation: add, sub, and, or, slt
Program flow control: beq, j

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 3

pipr. ©F ELECTRON
ENGINEERING a

Instruction
Fetch

l

Instruction
Decode

l

Operand
Fetch

Execute

Result
Store

l

Next

liist. O ELECTROMNIC

,@"ﬁlnsfruction

Instruction Cycle
d—_

For every instruction, the first three phases are
identical:

Instruction fetch: send PC to the memory and fetch the
instruction from the memory

Instruction decode and operand fetch: read one or two
registers, using fields of the instruction to select the
register from the register file (RF)

Use ALU, depending on instruction class, to
calculate

Arithmetic result

Memory address for load/store

Branch target address

Access data memory only for load/store

Write the ALU or memory back into a register,
using fields of the instruction to select the register

PC « target address or PC + 4

Chapter 4 — The Processor — 4

Datapath vs Control

Datapath Controller
signals | : |
L/ Control Points \)

Datapath: Storage, FU, interconnect sufficient to perform the
desired functions
Inputs are Control Points
Outputs are signals
Controller: State machine to orchestrate/control operation on the
pier. OF ELECTRON data path

HGINEERING 4 Based on desired function and signals
list. Of ELECTROIN

Five Steps to Implement a Processor

1. Analyze the instruction set (datapath requirements)
The meaning of each instruction is given by the register transfers
Datapath must include storage element
Datapath must support each register transfer

2. Select set of datapath components and establish
clocking methodology
3. Assemble datapath meeting the requirements

4. Analyze the implementation of each instruction to
determine setting of control points effecting register
transfer

5. Assemble the control logic

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 6

All MIPS instructions are 32 bits long with 3 formats:

Step 1: Analyze the Instruction Set

R-type: 31 26 21 16 1 6
op IS rt rd shamt funct
-type: 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16
op Is rt immediate
J-type: 6 bits 5bits 5 bits 16 bits
31 26
op target address
6 bits 26 bits

The different fields are:
op: operation of the instruction
rs, rt, rd: source and/or destination register
shamt: shift amount
funct: selects variant of the “op” field
address / immediate
target address: target address of jump

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a
tist. OF ELECTROMCS

add rd,
sub rd,
and rd,
or rd,

sit rd,

rt
rt
rt
rt
rt

rs,
rs,
rs,
s,
rs,

Load/Store:

Iw rt,rs, 1immle
sw rt,rs,i1mml6

Imm operand:
addr rt,rs,imml6

Branch:

beq rs,rt,imml6

Jump:

pipr. OF ELECTROMICS
ENGINEERING a
liist. O ELECTROMICS

J target

Arithmetic/logical operation:

Step 1: Analyze the Instruction Set

31 26 21 16 11 6
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16
op rs It immediate
6 bits 5 bits 5 bits 16 bits
31 26 21 16
op address
6 bits 26 bits

Chapter 4 — The Processor — 8

Logical Register-Transfer Level (RTL)

RTL is a design abstraction, which gives the hardware description of
the instructions
MEM[PC]=op |rs|]rt]rd] shamt | funct

or =op|rs|rt] Imml6

or =op | Imm26 (added at the end)
Inst Regqgister transfers
ADD R[rd] <- R[rs] + R[rt]; PC<-PC+14
SUB R[rd] <- R[rs] - R[rt]; PC<-PC+4

LOAD R[rt] <- MEM[R[rs] + sign_ext(Imm16)]; PC <-PC +4
STORE MEM[R[rs] + sign_ext(Imm16)] <-R[rt]; PC<-PC +4

ADDI R[rt] <- R[rs] + sign_ext(Imm16)]; PC<-PC +4

BEQ If (R[rs] == R[rt]) then PC <- PC + 4 + sign_ext(Imm16)] | | 00
else PC <- PC +4

J PC <-PC[31..28] || Imm 26 |] 00

pipr. OF ELECTROMICS ¢, 2%
ENAINEERING «
tist. O ELECTIROMCS ™

Chapter 4 — The Processor — 9

Fig. 4.1 MIPS Datapath (Simplified)

pibr. OF fLECIROMC o™ v N T
ENGINEERING ¢ { g

51 Of FLICRONICS W=

-
4 —»
kdd Add
-
|—> Data
Register #
- PC (#» Address Instruction ‘{ Registers Address
Register # A
Instruction mgt: -
memory o Register # Y
» Data

Chapter 4 — The Processor — 10

Multiplexers

(=)
S

N

3

Can't just join
wires together

Use multiplexers

Instruction
memory

- PC &> Address Instruction

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Chapter 4 — The Processor — 11

Add
pr—-"
/O
|-> Data \
Register #
‘{ Registers ALU Address
Register # Data
o Register # /' memory
Data

Control

Branch
7
N T
M |-
u
v
4—» t "l
%dd _[Add M)
> o u r«
X -t
ALU operation
L»| Data I
> Register # MemWirite
- PC [Address Instruction [#— Registers \ >ALU » Address
o> Register # Zero
Instruction u m::::: o
memory ¢~ Register # Ragwrite X ry
+ Data
MemRead
X
\
Control

oivt Of AECIROICS e N T |
ENGINEERING 4 1Rl h h
i1, O HLECTROMCS I\ IV Chapter4 —The Processor —12

Step 2: Datapath Elements

Information encoded in binary
Low voltage = 0, High voltage = 1
One wire per bit; Multi-bit data encoded on bus

Two different types of datapath elements

Combinational elements
For computation, the output depends only on the current
inputs
The output is a function of the input(s)
State (sequential) elements
For storing state/information

The output depends on both the input(s) and the contents of
the internal state

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 13

Combinational Elements

s Example of combinational logic elements :

Carryln Select\L
A
A—F—
Sum 32 |z ,
<32
7 > ——
B 33 Vv Carry B 33 L
Adder MUX
ALU control
4
A 32
33 Result
B 32
ALU

pibr. OF fLECIROMC o™ v N T
EalEeRIG « { -
tist. OF ELECIROMCS Hye

Sequential Elements (1)

D-type flip-flop: stores data in a circuit

Uses a clock signal to determine when to update the

stored value

Edge-triggered: update when Clk changes from 0O to 1

Clk
D — — Q - - '
TS S G - —
Clk —I> 9 ;‘ ;‘ %

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 15

control

Sequential Elements (2)

Registers (or register file) and Memory with write

Only updates on clock edge when write _enable

control input is 1

Used when stored value is required later

Clk
D — > Q Write
Write — D
Clk —>
Q

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

X X |

A\

X

g i ><i

Chapter 4 — The Processor — 16

when they can be written

Clocking Methodology

A clocking methodology defines when signals can be read and

Combinational logic transforms data during clock cycles

Between clock edges (edge-triggered clocking methodology)

Input from state elements, output to state element

Longest delay determines clock period

State State
element »(Combinational logic element
1 2

State
element

Combinational logic

Clock cycle —

May be encountered a race problem

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Chapter 4 — The Processor — 17

Step 3: Building a Datapath

Datapath

Elements that process data and addresses
in the CPU

Registers, ALUs, mux’s, memories, ...

We will build a MIPS datapath incrementally

Refining the overview design

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 18

Fetch the instruction: mem|[PC]

Update the program counter:
Sequential code: PC <-PC +4
Branch and Jump: PC <- “Something else”

Instruction Fetch Unit

32-bit
register

PC

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Read
address

Instruction
memory

> Add

Instruction

N

Instruction fetch unit is used by other parts of the
datapath

Increment by
4 for next
instruction

Step 3a: R-Format Instructions

Read two register operands
Perform arithmetic/logical operation

Write register result

2 | Read ALU operation
register 1 Read A
—
Register ¢ 5 |Read data 1
numbers ~" | register 2
5 |write Registers > Data ALU ALu .
= result
L register Read
: data 2
Data Write J
Data
RegWrite
a. Registers b. ALU

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

i o FLECROICS H = Chapter 4 — The Processor — 20

Add and Subtract

R[rd] <- R[rs] op R[rt] Ex:add rd, rs, rt
Ra, Rb, Rw come from inst.’s rs, rt, and rd fields
ALU and RegWrite: control logic after decode

31 26 21 16 11 6 0
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

4

Two read ports and
one write port

ALU operation (funct)

Read

register 1 Ra
data 1
Read
i ' Zero
Instruction register 2
Registers >ALU ALul Rw
Write result
i Rb
register Read
Write data 2
data

RegWrite

pipr. OF ELECTRONICS 3”5 %, M #
ENGINEERING a -
tist. OF ELECTROMCS

Load/Store Instructions

Read register operands

Calculate address using 16-bit
offset

Use ALU, but sign-extend
offset

Load: Read memory and update
register

Store: Write register value to
memory

MemWrite
Read
— Address data —
Data
Write memory
——
data
MemRead

a. Data memory unit

pipr. OF fLECIROMC
BIGIEERING o« g
lisi. Of ELECTROMCS Hmy

5 _|Read
rag'ntnﬂ Reead
5 |Read data 1
S
register 2
5 |we Resmisters Data
reglster Read
data 2
Data
| Regwrita

b. ALU

Sign-
extend

b. Sign extension unit

Chapter 4 — The Processor — 22

Step 3b: Store/Load Operations

R[rt]<-Mem[R[rs]+SignExt[imm16]] Ex: Iw rt,rs, imml6

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits
4 | ALU operation
Read
register 1 Read MemWrite
Read data 1 g
Instruction register 2 Zero|—>
.. Registers >ALU ALU
Write result »| Address I?jead
register Read ata
. data 2 v /
_| Write
" | data Data
| Write oo
RegWrite o
16 . 32 ;
AN Sign MemRead
\ | extend

pipr. OF fLECIROMC
BIGIEERING o« g
lisi. Of ELECTROMCS Hmy

R-Type/Load/Store Datapath

Read ALU operation
register 1 Read .
ea > MemWrite
Read data 1
) : Zero MemtoReg
Instruction register 2 ALUSrc ALU
Registers po.q ALU Read
Write 0 result Address ~ yoia {1
register data 2 “l’l' I\LlllI
. X X
»| Write > 1 > 0
data Data
Write
RegWrite " gata memery
16 _ Sign_ 32 MemHead
™ | extend

pibr. OF ELECIROMC 2%
ENQINEERING 4 '

s Of ELECIROMICS Chapter 4 — The Processor — 24

Recall Branch Operations

beq rs, rt, 1mml6

31 26 21 16 0
op rs rt Immediate
6 bits 5 bits 5 bits 16 bits
mem|[PC] Fetch inst. from memory

COND <- R[rs] == R[rt] Calculate branch condition

If (COND ==0) Calculate next inst. address
PC <- PC + 4 + (SignExt(imm16) x 4)

else
PC <- PC+4

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 25

Branch Instructions

Read register operands

Compare operands
Use ALU, subtract and check Zero output

Calculate target address
Sign-extend displacement
Shift left 2 places (word displacement)
Add to PC + 4

Already calculated by instruction fetch

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 26

Just
re-routes
wires

Step 3c: Branch Instructions

PC +4 from instruction datapath

\

Instruction ‘

Branch

Add Sum target

ALU operation

Y

To branch

> ALU Zero control logic

pipt. OF FLECIROMICS 5% oe

ENAINEERING o

i1 Of FLECIRONCS HF==g

Read
register 1 Read
Read data 1
register 2
Write Registers
register Read
Write data 2
data
RegWrite
16 _| Sign- 32
~ | extend

Y

Sign-bit wire
replicated

Chapter 4 — The Processor — 27

Composing the Elements

First-cut data path does an instruction in one
clock cycle
Each datapath element can only do one function at a
time
Hence, we need separate instruction and data
memaories
Use multiplexers where alternate data sources
are used for different instructions

pibr. OF fLECIROMC o™ v N T
FGINERING o (g

i o FLECROICS H = Chapter 4 — The Processor — 28

A Single Cycle Full Datapath

Read
address

Instruction
[31-0]

Instruction
memory

pipr. OF ELECTROMICS
ENGINEERING ¢ 3
tist. OF ELECTROMCS

Instruction [25—21]

PCSr
R \ o
>Add l M
ALU 5
0
4= > Add result

Instruction [20— 16]

Instruction [15—-1 11

Instruction [15— 0]

oxc

RegDst

RegWrite >
|
_| Read
register 1 Read MemWrite
data 1 >
|Read ala ALUSIC l MemtoReg
register 2 Read Zero
ea
Write data 2 > >ALU re'gtll’zJ Address Read 1
register M data M
. u
Write . X u
data Registers | S X
Write _Data 0
> data memory
16 [sign 32 '
v\ extend I\/IemlRead

Instruction [5-0]

ALUOp

Chapter 4 — The Processor — 29

Clocking Methodology

Define when signals are read and written

Assume edge-triggered (synchronous design):

Values in storage (state) elements updated only on a clock edge
=> clock edge should arrive only after input signals stable

Any combinational circuit must have inputs from and outputs to
storage elements

Clock cycle: time for signals to propagate from one storage
element, through combinational circuit, to reach the second
storage element

A register can be read, its value propagated through some
combinational circuit, new value is written back to the same
register, all in same cycle => no feedback within a single cycle

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 30

Register-Register Timing

Clk
> Clk-to-Q
pc, Old Value | New Value | X
| ‘: Instruction Memory Access Time |
Rs, Rt, Rd?
Op, Func | Old Value X New Value |
| . ‘: Delay through Control Logic |
ALUctr l Old Value | X New Value l
| |
! : : 4
RegWr | Old Value | A New Value
|
| . ‘: Register File Access Time |
busA, B : Old Value | X New Value C
: ! ! ‘: ALU Delay /:\
busw ' Old Value X New Value |[!
| I Y
o Y
Idea Rd_ Rs Rt . .
Instruction 5+ SJ(5+ ALUctr Rggéitg |_/|\(/9rr|;e
Memory |
busA /
Rw Ra Rb /
32 32-bit 32 > / Result
. —
Registers o C 32/
oiel Of HECIRONCS 9 QUS—OI> usB _/
ARG ¢ § g 307

tist. OF ELECTROMCS

The Critical Path

Register file and ideal memory:

During read, behave as combinational logic:
Address valid => Output valid after access time

Critical Path (Load Operation) =
PC’s Clk-to-Q +

Ideal Instruction memory’s Access Time +
Instruction nstructi +
nstruction
Memory ALU to Perform a 32-bit Add +
Rs Rt Imm Data Memory Access Time +
5 5 5 16 Setup Time for Register File Write +
Address
— A / Data
0 Rw Ra Rb 32 Address
) . 32 /
S O 32 32-bit o
p. o Registers 5 - Data In
% Y
=z /
’ Clk
pipt. OF FLECTIROINCS 2 32
ENGINEERING & : A

1. Of FLECIROIICS HNe=

CIK

Worst Case Timing (Load)

MO-Q

|
pc._ OldValue]| X New Value | X
_ | ! : Instruction Memoey Access Time |
RS, Rt, Rd, | Old Value X New Value |
Qp, Func 1 : ! _ i
| : Delay through Control Logic |
ALUctr I Old Value | X New Value I
1 1
[| I /1\ [|
ExtOp ' Old Value ! | New Value i
| : :
ALUSrc Old Value | d \ New Value |
| ' |
MemtoReg : Old Value ')I' New Value Register |
- ' l Write Occurs
RegWr | Old Value 1 \ New Value N(I\
| |) _)
| . I : Register File Access Time \ T
busA | Old Value | X New Value \ |
__V
| Delay through Extender & Mux ,‘——’: : \ |
busB Old Value X, New Value \
| ! ! ALU Delay |
Address | Old Value ' X New Value
| Data Memory Access Time ' :
ibl QUSMILOINCS sl Old Value : X Néy
EinEER) 0 v,

liist. O ELECTROMICS

Step 4: Control Points and Signals

Instruction<31 0> « To select the operations to

Inst. 518 A A |a
Memony| SR (2 |E R perform
Addr VAR KV = <\J; v To control the flow of data
OpFunctRt Rs Rd Immil6
4 I
Control
PCK 4
src RegDst ALUS MemW
RegWr® MemRd ALUct MemtoReg * Equal
N
Datapath

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 34

/ Control Signals

Signal
Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).
RegWrite | None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.
PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.
MemRead | None. Data memory contents designated by the
address input are put on the Read data output.
MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.
MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.

pipr. OF ELECIROMCS »*
ENGINEERING ¢ §
nst. OF ELECTROMCS ™

nq“ Chapter 4 — The Processor — 35

ALU Control

ALU used for
Load/Store: F = add
Branch: F = subtract
R-type: F depends on funct field

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 36

ALU Control

Assume 2-bit ALUOp derived from opcode
Combinational logic derives ALU control

opcode ALUOp | Operation funct ALU function ALU control
lw 00 load word XXXXXX | add 0010
SW 00 store word XXXXXX | add 0010
beq 01 branch equal XXXXXX | subtract 0110
R-type 10 add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than 0111

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 37

The Main Control Unit

Control signals derived from instruction

pipr. OF ELECTROMICS
ENGINEERING a
liist. O ELECTROMICS

R-type 0 rs rt rd shamt funct
31:26 25:21 20:16 ‘\15:11 10:6 5:0
Load/ 35 or 43 rs rt \ address
Store
31:26 25:21 20:16 ’\ \ 15:0 1
Branch 4 rs rt \ \ address
31:26 25:21 20:16 \\ 15:0 \
opcode always read, write for sign-extend
read except R-type and add
for load and load

Chapter 4 — The Processor — 38

Designing Main Control

Some observations:
opcode (Op[5-0]) is always in bits 31-26

two registers to be read are always in rs (bits 25-21)
and rt (bits 20-16) (for R-type, beq, sw)

base register for Iw and sw is always in rs (25-21)
16-bit offset for beq, Iw, sw is always in 15-0

destination register is in one of two positions:
Iw: in bits 20-16 (rt)
R-type: in bits 15-11 (rd)

=> need a multiplex to select the address for written register

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 39

Datapath with Mux and Control

PCSr

. \ 1
>Add l g 4
X
4 2
RegWrite ™
|
Instruction [25— 21] Read
~ead register 1 Read MemWrite
b | PC jmmp- address Instruction [20— 16] R Read data 1 ‘ MemtoReg
Instruction I 1 register 2 Read
[31-0] V1 | Write data 2 Address Readiy(q
_ . u register data M
Instruction Instruction [15—-11] | x Write X
memory [0| Plgata Redis X
: Data 0
Writ
RegDst dartlae memory
Instruction [15—0 Sign) 32 I
%1 extend l

MemRead

Instruction [5—0]

Control point

ALUOp

pipr. OF ELECTROMICS
ENGINEERING a

s Of ELECIROMICS '- Chapter 4 — The Processor — 40

Datapath With Control

\ l_, >0
Sadd T~ ¥
X
ALU -
4 —» / >Addresult g\
RegDst @ /
Branch
MemRead
Instruction [31-26] MemtoReg
»| Control ALUOD
MamWrite
| _ALUSrc
RegWrite
Read .Instruction [25—21] Read
ca > '
> PC &~ 2ddress register T Read
Instruction [20-16] | gggg data
Instruction _I 7 | register 2
[31-0] M . Read Read 1
wetacton | Ineescion s | F 28, 55 ot pares’ el
ns o Instruction [15-11] | x [| register u
memory ||e | { u x
| write 1" g
Instruction [15-0] ALU
control
Instruction [5-0]
pipr. OF FLECIROMC

ENAINEERING «
tist. OF ELECTROMCS

Chapter 4 — The Processor — 41

pipr. OF ELECTROMCS ¢,

ENAINEERING o

tist. O ELECTIROMCS ™

R-Type Instruction

PC

L

N
>Add

Instruction [31-26]

Read
address

Instruction

[31-0]

Instruction
memaory

.I nstruction [25—21]

= Control

RegDst
Branch

N
(Shift
(Ieﬁ 2)
V\"’--f'}‘

l_’\\

- xeE ©

MemRBead

MemtoReg

ALUOBD

MemWrite

ALUSrc

RegWrite

. | Read

Instruction [20—16]

I L.

[Imstruction [15-11]

—h

0
M
u
X

Instruction [15-0]

o

register 1 Read
Read data 1

register 2
Write
register
Write
datz Registers

Read
data 2

i’f—\‘
18 [sign. | ¢

32

Read

Address data

OxgE-—

Write

\extend|

k/ ,

Instruction [5—0]

L

data M

Chapter 4 — The Processor — 42

pipr. OF ELECTROMCS ¢,

ENAINEERING o

tist. O ELECTIROMCS ™

Load Instruction

PC

-

Read
address

Instruction

[31-0]

Instruction
memory

Ingtruction [31—-26]

b

Instruction [15—11]
® .

.Instruction [25—21]

» Control

RegDst
Branch

7N
_[Shift
(Ieﬂ 2
N’ ©

| —

N\
f}gdd

ﬂ_,«*"'(

.

Y

- xeE ©

I

ALU
result

//#

Mem Reiad

MemtoReg

ALUOBD

MemWrite

ALUJSrc

RegWrite

. | Head

Instruction [20—16]

0
M
u
X

—h

Instruction [15—0]

>

" | register 1 Read

Read data 1

register 2
Write
register
Write
datz Registers

Read
data 2

Read
Address data

OnxgE-

Write Data

Instruction [5-0]

L

data Memory

Chapter 4 — The Processor — 43

pipr. OF ELECTROMCS ¢,

ENAINEERING o

tist. O ELECTIROMCS ™

Branch-on-Equal Instruction

I

4 —»

—

>Add

7

Instruction [31-26]

» Control

RegDst
Branch

S,

/

Y

MemRBead

MemtoReg

ALUCH

MemWrite

ALUSrc

RegWrite

Instruction [150]

.

Road .Instruction [25—21] Read
eal - i
PC |e» address register 1 Raag
Instruction [20-16] Read data 1
Instruction _I o | register 2
[31_01 ') Write Read
Instruction | i sirucion [15-111| & [| register data2
memory ||e | 1

ala Registers

Zera

>N-U ALU Read
- id 1
(')‘ result [17 A49re88” gata {1
u u
[T8 1‘ Qx

Write Data
™ data MEMory

Instruction [5-0]

Chapter 4 — The Processor — 44

Implementing Jumps

Jump 2 address
31:26 25:0

Jump looks somewhat like a branch, but always

computes the target PC (i.e. not conditional)

Jump uses word address

Update PC with concatenation of top 4 bits of old PC,
26-bit jump address, and 00,

Need an extra control signal decoded from opcode

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 45

pipr. OF FLECIROIMICS 25

ENGINEERING 4

5. of ELECIROINCS 3

Datapath With Jumps Added

Instruction [25-0] . Jump address [31-0]
«, [Shift)y,
- S \left2]
\ 26 28 | pC +4[31-28] - -@) Lo
»add d J‘ T~ v
X
ALU .
4 —» >ﬁdd rasult {1
RegDst Shift -
Jump @/,
Branch —
MemRead
Instruction [31-26] MemtoReg
| Control ALUOp
MemWrite
/ ALUSrc
RegWrite
Instruction [25-21] Read
PC 4 Road it ™| register 1
address Read N
Instruction [20-16] Read data 1
Instruction I.II | 6 " | register 2 Zera
[31-0] ALU 5y Read
M write Pead Lot LoD result [1] Address oy —>(1
Instruetion | ||insiuction [15-11]| || register 22192 M M
memory 1 - g X
> ag{;e Registers "\ Daia 2
Write D@
| data MEMory
Instruction [15—0]
ALU
control
Instruction [5—-0]

Chapter 4 — The Processor — 46

Concluding Remarks

Not feasible to vary clock period for different instructions

Longest delay determines clock period

Critical path: load instruction

Instruction memory — register file -» ALU — data memory —

reqgister file

“Making the common case fast” cannot improve the
worst-case delay = Single cycle implementation violates

the design principle

We will improve performance by pipelining

pibr. OF fLECIROMC o™ v N T
ENGINEERING ¢ { g

i o FLECROICS H = Chapter 4 — The Processor — 47

Critical path reduction

> storage element

4 N
Acyclic
Combinational

Logic

- Y,

> storage element

pier. OF ELECTROMC % N #7F

HIGUIEERIG o { b
inst. OF ELECTROMCS e

Pipelining Implementation

> storage element

y
Acyclic
Combinational
Logic (A)

.

> storage element

p
Acyclic
Combinational

kLogic: (B)

> storage element

Pipelining Analogy

Pipelined laundry: overlapping execution

Parallelism improves performance

PM 7 1 11 12
Time 6 0

2 AM

= number of stages

ok =l - H . . H [
e B5= Four loads:
8 - [®EER _ Speedup
c BC={ =8/3.5=2.3
D B0=0 Non-stop:
Time __BPM 7 8 9 10 11 12 1 2AM Speedup
m T T T =2n/0.5n + 1.5= 4

piper. OF ELECTROMCS ! 5%
ENAINEERING « E
st OF ELECTROMICS My o

Chapter 4 — The Processor — 49

Steps for Designing a Pipelined Processor

Examine the datapath and control diagram
Starting with single cycle datapath

Partition datapath into stages:

IF (instruction fetch), ID (instruction decode and register file read),

EX (execution or address calculation), MEM (data memory
access), WB (write back)

Associate resources with stages

Ensure that flows do not conflict, or figure out how to
resolve

Assert control in appropriate stage

pipr. OF ELECTRONC 3”& N #7T
ENGINEERING a
tist. OF ELECTROMCS

Chapter 4 — The Processor — 50

Add registers between smallest steps

Partition Single-Cycle Datapath

Ins. fetch

RF access

ALU operation
memory access

pipr. OF ELECTROMCS ¢,

ENGINEERING 4

5. of ELECIROINCS 3

Write back
PCSr B
M
gAdd [— > u
X
ALU
4= >Addresult —
»
Read regsters 4 | ALY offeration MemWrite
Read register 1 ALUSrc
= PC Read|__ |
address Read data 1
register 2 ZeroH »
Instruction
Write Read > | Address Readlly
. register data 2 "M data
Instruction Wit g
memory —p| VVFILE Data X
data . | G Write memory | g
Reantel data
16 . 32
\ [Sign i
™ extend MemRead

NemtoReg

5-Stage MIPS Pipeline

Five steps, one stage per step

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 52

Pipeline Performance

Assume time for stages is
100ps for register read or write

200ps for other stages

Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time

read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps
SW 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 53

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800

order
(in instructions)

Instruction Data

lw $1, 100($0)| ™11 |Rea| ALV | _“° | Reg

w $2, 200($0) 800 ps e |Reg| AU | %2 | Reg

w $3, 300(30) 800 ps et
: : 800 ps
Pipelined (T.= 200ps)

Program

execution . 200 400 600 800 1000 1200 1400

Ime 1 1 1 1 I 1 I

order

(in instructions)

w $1,100($0) "™ [Rea| AU | %2 IReg

w $2,200(80) 200 ps | "inen| |Res| AU | socess |Fes

w $3, 300(30) 200 ps ["laen | |Fe8| AU | socess |Re@

200ps 200 ps 200ps 200 ps 200 ps

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 54

Pipeline Speedup

If all stages are balanced
l.e., all take the same time

Time between instructions ;,ejineq
= Time between instructions
Number of stages

nonpipelined

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not decrease

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 55

Pipelining Lessons

Doesn'’t help latency of single task, but throughput of
entire

Pipeline rate limited by slowest stage

Multiple tasks working at same time using different
resources

Potential speedup = Number pipe stages

Unbalanced stage length; time to fill" & "drain” the
pipeline reduce speedup

Stall for dependences or pipeline hazards

pibr. OF fLECIROMC o™ v N T
FGINERING o (g

i O HLECIROICS HSemg — 56

MIPS ISA Designed for Pipelining

All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing

Can calculate address in 3" stage, access memory in
4 stage

Alignment of memory operands
Memory access takes only one cycle

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 57

Pipelined Datapath

Use registers between stages to carry data and control

Pipeline registers (latches)

[\

0
M
u
X
1
[\ IF/ID EX/MEM MEM/WB
Add
4
c Read
—| PC Address % register 1 Read
5
E Re"?dt , data 1 R -,
i £ register
Instruction | = Registers Read AU ALy
memory Write data2 0 result Address Read] | 1
register M data M
u
Write X / memory X
data 1 0
Write
data
16 . 32
A\ Sign |\
\ @ \

- - - -]

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 58

pipr. O ELECTROMC
ENAINEERING « o
list. OF ELECTROMCS e

e—
—
F ™

B

e

| S—

——

Consider Load Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 ECycIe 5

Load| Ifetch IReq/DecI Exec I Meml Wr

IF: Instruction Fetch
Fetch the instruction from the Instruction Memory

ID: Instruction Decode
Registers fetch and instruction decode

EX: Calculate the memory address
MEM: Read the data from the Data Memory
WB: Write the data back to the register file

pipr. OF ELECTRONC 3”& N #7T
ENGINEERING a
tist. OF ELECTROMCS

— 59

Pipelining Iw Instructions

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Clock

1st Iw]_Ifetch IReq/DecI Exec I Meml Wr

2nd lw|_Ifetch IReq/DecI Exec I Meml Wr

3rd Iw|_Ifetch IReq/DecI Exec I Meml Wr

5 functional units in the pipeline datapath are:
Instruction Memory for the Ifetch stage
Register File’s Read ports (busA and busB) for the Reg/Dec
stage
ALU for the Exec stage
Data Memory for the MEM stage
Register File’s Write port (busW) for the WB stage

pipr OF ELECTROMC 7~
ENGINEERING a -,
ist. OF FLECTROMICS . \ 1L — 60

The Four Stages of R-type Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4

R-type|_Ifetch IReq/DecI Exec I Wr

|F: fetch the instruction from the Instruction Memory
ID: registers fetch and instruction decode
EX: ALU operates on the two register operands

WB: write ALU output back to the register file

pipl. OF FLECIRONMC 3 nec. N T
EIGIEERING 4 @ L : .
s Of ELECIROIICS . WU Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 61

Clock

Hazard Problem

R-type|_lfetch IReq/DecI Exec I Wr

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

R-type |_lfetch IReq/DecI Exec I Wr

Load |_lfetch IReq/DecI Exec I Mem § Wr ‘

R-type|__lfetch IReq/DecI Exec Wr

R-type

Ifetch IReq/DecI Exec I Wr

We have a structural hazard:
Two instructions try to write to the RF at the same time, but only

one write port !

B

Opis! e rélave aéprobleim !

pibr. OF fLECIROMC o™ v N T
ok '- Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 62
st ©f HLECTRONICS \ | L PIp g .ee. .edu.

Pipeline Hazards

Situations that prevent starting the next instruction in the
next cycle

Structure hazard

A required resource is busy

Data hazard

Need to wait for previous instruction to complete its data
read/write

Control hazard

Deciding on control action depends on previous instruction

Several ways to solve: forwarding, adding pipeline bubble,
making instructions same length

pipr. OF fLECIROMC
ENGINEERING o § vz B
inst. Of ELECTIROMCS Sy

Chapter 4 — The Processor — 63

Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access

Instruction fetch would have to stall for that cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require separate
Instruction/data memories

Or separate instruction/data caches

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 64

Structural Hazard Solution:

SeEerate I D I\/Iemory

Time

L oad I\/I?mI Reg%g, Reg

nstr1 | Meit] Reg % |r
ﬁ;\

nstr2 | ;| Merp| Regf: i 5
; Instr 3 'V'GWF%:Q(i;(Memlr-[Reg‘

Instr 4 'V'e"*[Reg % Me I Reg‘

1. 1/D separate memory: data memory and instruction memaory
2. First half cycle for write and the second half cycle for read

s~ N 5 -

Reg‘

= D0 Q =

pipt. OF ELECIRONC R, M A7
HIGNEERIG o @ L . .
1 O FLECRONCS . WL Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 65

Structural Hazard Solution:

Delax R-type’s Write

Delay R-type’s register write by one cycle:
R-type also use Reg File’s write port at Stage 5
MEM is a NOP stage: nothing is being done.

1 2 3 A S R-type also has 5

R-type| Ifetch IReq/DecI Exec |:_ _MeLn_l Wr stages

 Cycle1iCycle2 | Cycle3;Cycle4 | Cycle5 i Cycle6 i Cycle7 i Cycle 8 i Cycle :

Clock I B B

R-type| _Ifetch IReq/DecI Exec I Meml Wr

R-type | _Ifetch IReq/DecI Exec I Meml Wr

Load |_lfetch IReq/DecI Exec I Meml Wr

R-type| _Ifetch IReq/DecI Exec I Meml Wr

R-type| _Ifetch IReq/DecI Exec I Meml Wr

pibr. OF fLECIROMC o™ v N T
ok - Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 66
st ©f HLECTRONICS \ | L PIp g .ee. .edu.

The Four Stages of sw

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Store | Ifetch IReq/DecI Exec I Mem I__V_/r_ |

IF: fetch the instruction from the Instruction Memory
ID: registers fetch and instruction decode
EX: calculate the memory address
MEM: write the data into the Data Memory
Add an extra stage:
WB: NOP

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

i o FLICRONCS He s Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 67

The Three Stages of beqg

: Cycle1;Cycle2 i Cycle 3; Cycle 4 ;

Beq|_Ifetch IReq/DecI Exec I_ Mem |:_ Wr_

IF: fetch the instruction from the Instruction Memory
ID: registers fetch and instruction decode
EX:
compares the two register operand
select correct branch target address
latch into PC
Add two extra stages:
MEM: NOP
WB: NOP

pipr. OF fLECIROMCS 5 e
EGINEERING « <z b
lisi. OF ELECTROMCS y 2

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 68

Data Hazards

An instruction depends on completion of data
access by a previous instruction

add $sO0, $t0, $t1
sub $t2, $sO, $t3

. 200 400 600 800 1000 1200 1400 1600
Time T | | T T , : —
add $s0, $t0, $t1 IF —': ID B WB |

MEM ;
bubble bubble bubblé bubble bubble
) @ O @ O
bubble bubble,) (bubble bubble/ (bubble
@ o (O O QO
IF :

- C D Q MEM WB |

.. / .

Chapter 4 — The Processor — 69

sub $t2, $s0, $t3

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Types of Data Hazards

Three types: (inst. i1 followed by inst. i2)

RAW (read after write): True data dependency
i2 tries to read operand before i1 writes it

WAR (write after read): Name dependency
i2 tries to write operand before i1 reads it
Gets wrong operand, e.g., autoincrement addr.

Can’t happen in MIPS 5-stage pipeline because:

All instructions take 5 stages, and reads are always in stage 2, and writes are always in
stage 5

WAW (write after write): Name dependency
i2 tries to write operand before i1 writes it

Leaves wrong result (i1’s not i2’s); occur only in pipelines that write in more than
one stage

Can’t happen in MIPS 5-stage pipeline because:
All instructions take 5 stages, and writes are always in stage 5

2
RAR: No dependency

pibr. OF fLECIROMC o™ v N T
ENGINEERING o § vz B
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 70

Handling Data Hazards

Use simple, fixed designs
Eliminate WAR by always fetching operands early (ID) in pipeline

Eliminate WAW by doing all write backs in order (last stage,
static)
These features have a lot to do with ISA design

Internal forwarding in register file:
Write in first half of clock and read in second half
Read delivers what is written, resolve hazard between sub and
add

Detect and resolve remaining ones
Compiler inserts NOP, or reorders the code sequence
Forward
Stall

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 71

Forwarding (aka Bypassing)

Use result when it is computed

Don’t wait for it to be stored in a register

Requires extra connections in the datapath

Hardware complexity]

Program
execution . 200 400 600 800 1000
order Time T T . T T

(in instructions)
add $s0, $t0, $t1 IF

MEM WB |

sub $t2, $s0, $t3

pipl. OF FLECIROMICS 57> e
ENGINEERING & g

i o FLECROICS H = Chapter 4 — The Processor — 72

Example

Consider the following code sequence

sub $2, %$1, $3
and $12, $2, $5
or %$13, $6, $2
add $14, $2, $2
sw $15, 100($2)

DEPT. OF FLECTRONIC 2 nee N 7T
ENGINEERING o g}
st OF ELECTROMCS

Chapter 4 — The Processor — 73

Data Hazards Solution:

Inserting NOPs by Software

Time (in clock cycles)

v

Value of CC1 CC2 CC3 CC4 CC5 CC6o6 CC7 CC8 CCo9
register $2: 10 10 10 10 10/ -20 -20 -20 -20 -20
Program
execution

order

(in instructions)]]]
sub $2, $1, $3 ni/l Reg[} DM —2{9
= //

Insert two nops —

1

- —
and $12, $2, $5 Ili/l — FrEg %—/—I—_Dﬁ
L _| . \}

:l— Reg

¢ |
or $13, $6, 2 M~ H Reg | DM | |{Reg
_| | W |
add $14, $2, $2 | _ERTSQ_ L DM | [Reg
- [

—5
sw $15, 100(52) M~ Freq | 9— ~|ﬂ4|_|:|~Rag

pipr. O ELECTROMICS |
ENGINEERING a g
tist. OF ELECIROMCS Hye

Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 74

Data Hazards Solution:
Internal Forwarding Logic

them to be written

Time (in clock cycles)

Use temporary results, e.g., those in pipeline registers, don'’t wait for

CcC 1 CC 2 CC3 CC 4 CC5 CC 6

Value of register $2 : 10 10 10 10 10/-20 -20
Value of EXIMEM : X X X -20 X X
Value of MEM/WB : X X X X -20 X

Program
execution order

(in instructions) [
sub $2, $1, $3 IM Reg| | DM |— Reg
| p
||

and $12, $2, $5 M — FHReg | DM (— [—Reg
|| || _I—_
or$13, $6, 52 M - FRreg] j— DM |
| 1 =5

add $14, $2, $2 M — FHR%g %—

pipr. OF ELECTRONIC g R, M00R) IM H FHReg

ENGINEERING o § g
inst. Of ELECTIROMCS Sy

CC7
-20

CC 8
-20

— Reg

CC 9
-20

M}

Reg

HW Change for Forwarding

Additional hardware is required.

NextPC
3
[
PV X
®
T
> 0
—+
®
=3
«w 3 Data -
. Memory
X 3
Immediate ch
pipr. OF FLECTROMCS 3 =&

ENGINEERING @ 4
st O ELECTROINCS ™,

Chapter 4 — The Processor — 76

Load-Use Data Hazard

Can't always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program

execution _ 200 400 600 800 1000 1200 1400
order Time T T - ' : ' '
(in instructions)

lw $s0, 20($t1) IF

sub $t2, $s0, $t3

How to insert a bubble ???

Softy _heck or Hardware Handling

pipr. OF ELECTRONIC | \
ENAINEERING ¢
inst. o ELECTROIMICS °

Chapter 4 — The Processor — 77

Rescheduling Code to Avoid Stalls

Compiler reorders the code sequence to avoid use of
load result in the next instruction

CcodeforA =B + E; C =B + F;

Iw $t1, 0($t0) Iw $t1, 0($t0)

v (3t2)_4($t0) Iw 4($t0)
o — add $t3, $ti;(3t2) Iw .

sw $t3, 12($t0) add $t3,

Iw @ 8($t0) sw $t3,
S|~ add $t5, $tl,($t4) add $t5,

sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 78

10: beqg
14: and
18- or

22 - add
36: Xor

ri,r3,36 ﬂww[

L

r2,r3,rb5

ro,rl,rv7/

r8,rl,r9

r___
rio,rl,rll

Reg I

ZfetcPI:

Efefc[

Reg

What do you do with the 3 instructions in between?
The simplest solution is to stall the pipeline as soon as a branch instruction is detected

pipr. OF ELECTRONC 3”& N #7T
ENGINEERING a
tist. OF ELECTROMCS

=D Men]—

)

Reg

-[DMerr —

Reg

Efe'rcll:

Control Hazard on Branches

-[DMen] =

L Reg

Reg

-[)Merr 4 |~

Chapter 4 — The Processor — 79

Branch Stall Impact

If CP1 =1, 30% branch,
Stall 3 cycles => new CPIl = 1.9!
Two-part solution:
Determine branch taken or not sooner, AND
Compute taken branch address earlier
MIPS branch tests if register=0or =0

MIPS Solution:
Move Zero test to ID/RF stage
Adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch versus 3

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 80

Stall on Branch

fetching next instruction

Program

Wait until branch outcome determined before

execution 200 400 600 800 1000 1200 1400
order ! | | | | |]
(in instructions)

add §4, 5,86 "o |Reg| AU | %2 IReg

00 $1,82,40 So sl EEN) lnes| AW | o, |

or $7, $8, $9 -

400 ps

»Instruction

fetch

How to add a stall cycle ?

pibr. OF fLECIROMC o™ v N T
ENGINEERING o § vz B
tist. OF ELECIROMCS Hye

ubbleX bubblexCbubbl ubble
(O

Reg

Data

access Reg

ALU

Chapter 4 — The Processor — 81

Four Alternatives for Control Hazard

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

Execute successor instructions in sequence
“Squash” instructions in pipeline if branch actually taken
Advantage of late pipeline state update

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

But haven’t calculated branch target address in MIPS, it still
iIncurs 1 cycle branch penalty

Advantage of branch target is known before outcome

pibr. OF fLECIROMC o™ v N T
ENGINEERING ¢ { g

i o FLECROICS H = Chapter 4 — The Processor — 82

Four Alternatives for Control Hazard

#4:. Delayed Branch — make the stall cycle useful
Define branch to take place a following instruction

branch Instruction
sequential successor,
sequential successor,

........ / Branch delay of length n

sequential successor, These insts. are executed !!
branch target 1t taken

0-cycle latency, if all the stall cycles are useful

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 4 — The Processor — 83

Handling Branch Hazard

Moving branch execution earlier in the pipeline
Move up branch address calculation to ID

Check branch equality at ID (using XOR for zero test) by comparing the

two registers read during ID
Branch decision made at ID => one instruction to flush

Add a control signal, IF.Flush, to zero instruction field of [F/ID => making

the instruction an NOP (i.e. bubble instruction)
(Static) Predict branch always not taken
Need to add hardware for flushing inst. if wrong

Compiler rescheduling and delay branch (discussed later)

Dynamic branch prediction (discussed later)

pipr OF FLECTROMICS ¢?as ;‘%’ l
ENAINEERING « I
tist. OF ELECTROMCS

Chapter 4 — The Processor — 84

MIPS with Predict Not Taken

Program
execution Time 290 490 690 890 10|00 12|00 14|00 _
order
(in instructions)
dd $4. $5. $8 Instruction R ALU Data Re
! ! 81C access
Prediction add $4, 95,96 | " teton % 0
| i D
correct beq $1,82,40 <50 "ton | |P%8| AV | access |78
lw $3, 300($0) 200 ps | een | |Re9| AU | aocess |ReS
\ i
Program
execution i 200 400 600 800 1000 1200 1400 N
order ' ' ‘ ' ‘ ' '
(in instructions)
Prediction add $4, $5,$6 |"SNUCON lReg| ALU | D% | Reg
. Instruction Data
Incorrect beq $1, $2,40 ~———"" Reg| ALU | sccess |9
| 200 ps
ubbley bubble/ bubble/ bubble/(b :
()
—or $7, $8, $9 -+ »Instruction Data
' 400 ps fetch Reg | ALU access | 169

pipr. OF fLECIROMC
BIGIEERING o« g
lisi. Of ELECTROMCS Hmy

Chapter 4 — The Processor — 85

More-Realistic Branch Prediction

Static n-bit branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken

Predict forward branches not taken

Dynamic branch prediction

Hardware measures actual branch behavior

e.g., record recent history of each branch

Assume future behavior will continue the trend

When wrong, stall while re-fetching, and update history

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 86

Pipeline Operation

Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle

Highlight resources used

c.f. “multi-clock-cycle” diagram

Graph of operation over time

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 87

Recall: Steps for Designing a Pipelined
Processor

Examine the datapath and control diagram
Starting with single cycle datapath

Partition datapath into stages:

IF (instruction fetch), ID (instruction decode and register file read),

EX (execution or address calculation), MEM (data memory
access), WB (write back)

Associate resources with stages

Ensure that flows do not conflict, or figure out how to
resolve

Assert control in appropriate stage

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 88

Two right-to-left flows

ID: Instruction decode/
register file read

EX: Execute/

address calculation

MIPS Single-Cycle Datapath

IF: Instruction fetch

MEM: Memory access WB: Write back

MEM

-

4—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> Add (8
|
|
|
|
|
|
|
|
|
Address :
|

|

Instruction
memery

Instruction —y-I_.

Right-to-left

WB

flows lead to
hazards

pipt. OF FLECIROMICS 5% oe

ENAINEERING o

i1 Of FLECIRONCS HF==g

register 1 data 1
Read
register 2

Reglsters
Write Read

register data 2

Write
data

Shitt
left2

A

Chapter 4 — The Processor — 89

Pipeline Registers

Use registers between stages to carry data and control

Pipeline registers (latches)

// N\

IF/ID ID/EX EX/MEM MEM/WB

Add \
Add
4 Add oquit
Shift
left 2

“xcZo

s Read
PC Address § register 1 Read
£ Read data 1 R
Instruction = register 2 >
memo! = _ Registers Read
i Write data 2 Address Read 1
register data M
Writ Data u
rite
| data memory 5(
Write
data
16 .
\ Sign
\ " lextend

pipr. OF fLECIROMC
ENAMEERING o '

. o FLECIROINCS 3 =Y. Chapter 4 — The Processor — 90

One way to show what happens in pipelined execution

MIPS ISA Micro-Operations

computation, branch/
jump completion

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches [umps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A ==B) then | PC =PC [31-28] I
(IR[15-0]) PC = ALUOut (IR[25-0]<<2)

Memory access or R-type
completion

Reg [IR[15-11]] =
ALUOut

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOut] = B

Memory read completion

Load: Reg[IR[20-16]] = MDR

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Chapter 4 — The Processor — 91

MIPS ISA Micro-Operations

Step name

Action for R-type
instructions

Action for memory-reference
instructions

Action for branches Action for jumps

Instruction fetch

IR = Memory[PC]
PC=PC+4

Instruction decode &
register fetch

A = Reg [IR[25-21]]; B = Reg [IR[20-16]]
if (A ==B) then, ALUOUt = PC + (sign-extend (IR[15-0]) << 2)

Execution/ address
computation

ALUOut = Aop B

ALUOut = A + sign-extend
(IR[15-0])

PC = PC [31-28] Il
(IR[25-0]<<2)

Memory access or R-type
completion

Load: MDR = Memory[ALUOut]
or
Store: Memory [ALUOUt] = B

Memory read completion/
R-type completion

Reg [IR[15-11]] =
ALUOUt

Load: Reg[IR[20-16]] = MDR

pipr. OF ELECTROMICS
ENGINEERING ¢ 3
tist. OF ELECTROMCS

Chapter 4 — The Processor — 92

Pipeline Operation

Cycle-by-cycle flow of instructions through the
pipelined datapath

Shows pipeline usage in a single cycle (stage)
Highlight resources used

We’'ll look at “single-clock-cycle” diagrams for
load instruction

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 93

IF Stage of Iw

Iw

Instruction fetch

pipr. OF fLECIROMC

ENGINEERING 4

5. of ELECIROINCS 3

ey ()
M
u
X

—=

-

Ex: Iw rt,rs,immle

IR, PC+4

/

h

Address

Instruction
memory

l Instruction

_| Read
register 1 Read
Read data 1
register 2

Registers Read

Write data 2
register
Write
data

16 mm
A\ Sign |\

“xcZz°

\@\

EX/MEM MEM/WB
Zero > >
ALU ALY

result Address %gatg b | 1
M
Data u
memory X

Write 0

i data

Chapter 4 — The Processor — 94

A =

Iw

ID Stage of Iw

Ex: Iw rt,rs,immle
Reg[IR[25-21]];

pipr. OF ELECTRONICS ¢
ENaNEERING ¢ 4
tist. OF ELECTROMCS ™

0 .
i | Instruction decode |
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
Add N‘
— Add
4 Add result
c Read
PC Address £ register 1 Read
‘E Read datat Zero —
Instruction < register 2
memo] . Registers Reaq 5 ALU ALu fon
v Write data 2 result Address ead | —
register M data M
Wit u Data u
rite X
data] memory (;(
Write
data
16 .
N Sign
N lextend

Chapter 4 — The Processor — 95

EX Stage of 1w

Ex: Iw rt,rs,immle
ALUout = A + sign-ext(IR[15-0])

pipt. OF fLECTROMICS 2>

ENQINEERNG & §
tist. OF ELECTROMCS ™

| w |
pr— | 0
M | Execution |
X
N
IF/ID ID/EX EX/MEM MEM/WB
Add \‘
Add
4 Add result
Shift
left 2
c Read
—s{ PC Address -% register 1 Read \
=} » L
I Rez_-xdt 2 deat Zero > >
i £ register >
Instruction — _ Registers Read >A|—U ALU
memory Write data 2 0 result Address Read 1
register M data M
Writ x / Data u
rite X
b] memory OX
Write
- data
16 R EZ
A\ Sign |\
\ @ \

Chapter 4 — The Processor — 96

MEM State of Iw

Ex: Iw rt,rs,immle
MDR = mem[ALUout]

| Iw |
0
u | Memory |
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
Add \‘
- Add
! Add result
Shift
left 2
5 Read
—> PC Address § register 1 Read
= Read data 1 S ‘ N
Instruction £ register 2 >
=] ~ Registers Read ALU ALU
e Jyrite data 2 v result Address Read 1
register M Data data M
u
| write X / memory u
data L1 ;
Write
data
16) 32
A\ Sign | \
\ w \

pipr. OF ELECTRONICS ¢
ENaNEERING ¢ 4
tist. OF ELECTROMCS ™

Chapter 4 — The Processor — 97

WB Stage of Iw

Ex: Iw rt,rs,immle

Reg[IR[20-1611 = MDR
Who will supply

' | this address?

xcZ O

N

N IF/ID // ID/EX EX/MEM
Add \
Add
/ Add result
Shift
left 2

c Read
PC Address 2 register 1 Read \
2 data 1 v >
Instructi 2 rReZ?gterZ Zero > >
Temory 1 . Registers Reag 5 ALU ALy
Y *—I Wn_te data 2 result
register M
u
Write X /
data 1
16 /\ 32
\ Sign |\

Address

Write
data

Data
memory

Read
data

Iw
Write back

MEM/WB

Oxcz -~

\@\

pipt. OF fLECTROMICS 2>

ENQINEERNG & §
tist. OF ELECTROMCS ™

Pipelined Datapath

[()
M
u
X
r 1
IFID ID/EX EXMEM MEMWB
Add \
— Add
4 Add result
Shift
left 2
c Read
Address 2 register 1 Read \
2 data 1 v >
A Read
Instruction g register 2 Zero <
Registers Read AU ALy
memory Write data? »0 result Address Read | 1
"| register M data
u Data M
White X memory ;
data P ;
Wite
" data
16) 32
Nmy| Sion |\ |
\ @ \

pipr. OF ELECTROMICS
ENGINEERING a

s Of ELECIROMICS '- Chapter 4 — The Processor — 99

Pipeline Diagram

Multi-clock-cycle pipeline diagram

Time (in clock cycles) >
CC1 cC2 cc3 cc4 CC5 cCe CcC7 ccs cCo9

Program
execution
order

{(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24(31)

add $14, $5, $6

pier. OF ELECTROMCS
ENaNEERING ¢ 4
tist. O ELECTIROMCS ™

(IU Chapter 4 — The Processor — 100

Pipeline diagram

Single-clock-cycle diagram in a given cycle cc5

add $14, $5, $6 | Iw $13, 24 ($1) | add $12, §3, $4 | sub $11, $2, $3 | Iw $10, 20($1) |
Instruction fetch | Instruction decode | Execution | Memory [write-back |

IF/ID ID/EX EX/MEM MEM/WB

| =
Shift
left 2

e L'}
i Add)
u PC > ress ».| Aead
x 5 register 1 Read >
-\ 1 b data 1
% > Rec_sdta) > Zero > -~
Instruction £ registar e ALU oy R
> 4 Registers - ead
mermory wie Read, > 0 resut > Addiess gor [
»| W M
register u / Data
] ::rge X memory
| write
v data
18 f sign- | 32 |

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 101

Pipelined Control (1)

Start with the (simplified) single-cycle datapath
Use the same ALU control logic, branch logic, destination-register-
number MUX, and control lines

PCSre
IFID 12/EX EX/MEM MEM/WB
4 h Mdmf
Shift resull Brancr
left2 L—
) RegWrite
M |
u —~| PC —e—»-{Address 8 o |Read Read
X ? register 1 g - J\ Mem‘:\‘rlle
2 Read ALUSIC Zero}— MemioFied
Instruction _ I reglsteﬁz iste Add 4 iy N Read
memory w | write BgIBIers ad > result »| Address data [
™| ragister data 2 -~ Data
—-| Write memory
cata
Write
_ ™ T dam
Instruetion I
(150) 16 [gign. | 32 € [au >
——| { |
™ extend - control MemRead
Instruction
(20-18B)
» 0 Y ALUCp
M - -
Instruction :
{15-11) {
> -
RegDst
pipr. OF fLECIROMC

ENAINEERING o

. O FLECTROICS &} Chapter 4 — The Processor — 102

Pipelined Control (2)

To specify control for the pipeline, we need to set control
values during each pipeline stage.

Execution/address calculation stage Memory access stage Write-back stage
control lines control lines control lines
Mem- Reg- Memto-
RegDst ALUOpO Read Write Reg
1 Q) i f i

o 1 1
0 o X
1 o X

R-format

Tw

ool

L Bl I ol B

=lolald

=D D

0 A,
Sl X 0
beq A o

The simplest implementation way is data stationary
pipelined control: to extend the pipeline registers to
include control information

pipr. OF ELECTROMICS g5
ENaNEERING ¢ 4 :
st OF ELECTROMICS My o

Chapter 4 — The Processor — 103

Data Stationary Pipelined Control

Control signals derived from instruction
Main control generates control signals during ID
Pass control signals along just like the data

\ “|wB
Instruction,
Control M | WwB
/ o — - S
M wB
/ . . . -~ ——— s s
IF/ID ID/EX EX/MEM MEM/WB

piper. OF ELECTROMC 5o

msf?ﬁ‘?&@'ﬂ%ﬁm W=y HCIU Chapter 4 — The Processor — 104

Data Stationary Control

Signals for EX (ExtOp, ALUSrc, ...) are used 1 cycle later
Signals for MEM (MemWr, Branch) are used 2 cycles later
Signals for WB (MemtoReg, MemWr) are used 3 cycles later

1 1 1 1
l: ID l: EX l: MEM 1: WB
l: l: l: l:
) - R -1 Iy
ALUSIC ALUSIC
m <
_ o ALUOp = ALUOp N % 2
T ain =
= RegDst RegDst
ol | Control 4 Y £ E 5
2y MemWr ép MemWr ol Memw %
D
(c% Branch @'| Branch <. Branch S
® = o &
MemtoReg MemtoReg - MemtoReg S MemtoReg
RegWr RegWr RegWr RegWr

pipr. OF fLECIROMCS 5 e
ENGINEERING 4 '

5 o FECTRONCE S Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 105

Pipelined Control

PCSrc

ID/EX

wa lfleBﬁ

WB |
Contral M MEMME

IFD

Branch

RegWrite

0
K
u
x

PC | Address

y

MemWrite
MemtoReg

Read

i Read
register 1 data 1 > " \
Read ZogHt»| -
Instruction N register 2 >“Lu ALU Read

memory - Virite HReglsters g4 o o 6M result Address datz
u
X
1

l Instruction

Y
i
o

0 4

register datz 3

Write memary

Instruction
[15-0] 18

— MemRead

Instruction
4 [20—16] ALUCp

Instruction
[t6—11]

— | RegDst |

pipr. OF ELECTROMICS
ENGINEERING a

s Of ELECIROMICS Chapter 4 — The Processor — 106

Hazard Detection

We can resolve hazards with forwarding, but how
do we detect when to forward?

RAW (WAR, WAW) dependence check

l.e. to compare register number between instructions

Pass register numbers along pipeline

ID/EX.RegisterRs = register number for Rs sitting in ID/EX
pipeline register

e.g. ALU operand register numbers in EX stage are given by
ID/EX.RegisterRs, ID/EX.RegisterRt

Data hazards when
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt
MEM/WB.RegisterRd = ID/EX.RegisterRs
MEM/WB.RegisterRd = ID/EX.RegisterRt

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 107

Detecting the Need to Forward

Not always do fordward if true data hazard

But only if forwarding instruction will write to a
register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not $zero

EX/MEM.RegisterRd # 0, MEM/WB.RegisterRd # 0

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 108

Forwarding Paths

ID/EX EX/MEM MEM/WB

- fwl

—- > o : -
—-] el

Registers ForwardA > ALU
—-] - -
?ﬂ - Data . .
X memory
[2 2
ForwardB

Rs

Rt
Rd

EX/MEM.RegisterRd

P

Ty

Cre2)

- Forwarding |.—— MEM/WB.RegisterRd

il

> unit -

b. With forwarding

pipr. OF fLECIROMC
BIGIEERING o« g
lisi. Of ELECTROMCS Hmy

Chapter 4 — The Processor — 109

Forwarding Conditions

EX hazard

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 110

Double Data Hazard

Consider the sequence:
add $1,%$1,%2

add $1,$1,%$3
add $13%1,%4

Both hazards occur = \Want to use the most recent

Revise MEM hazard condition =» Only forward if EX
hazard condition isn’t true

pipr. OF ELECTROMICS ¢, 2%
ENAINEERING «
tist. O ELECTIROMCS ™

Chapter 4 — The Processor — 111

Revised Forwarding Condition

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

pibr. OF fLECIROMC o™ v N T
ENGINEERING ¢ { g

i o HECROIIC HF Chapter 4 — The Processor — 112

Datapath with Forwarding

ID/EX
|"W'3 EX/MEM
Control - M ~WB | MEM/WB
IF/ID LEX » M B
(‘\
. A———————_ " M
= U »
- X
S » > ™
g Registers) > ALU i
[- ~
Instruction | [|=] - >
memory - o n: Data
7 | x memory
™
> >
IF/ID.RegisterRs Rs . -
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt : Rt =m EX/MEM.RegisterRd
T IF/ID.RegisterRd Rd u -
v
MEM/WB.RegisterRd
L
-

pipr. OF fLECIROMC
ENAMEERING o '

s Of ELECIROMICS '- Chapter 4 — The Processor — 113

Load-Use Data Hazard

Time (in clock cycles) »
CC1 CC2 CC3 CC4 CCh CCs CcC7 CcCs CcC9a

Program
execution
order

(in instructions)

Iw $2, 20($1) IM / Need to stall
for one cycle
and $4, $2, $5 TE,QE
or $8, $2, $6 DM — _@;g’:
add $9, $4, $2 DM — _I%'gi
| sit$1, $6, §7 m | fared | [DM} [HReg!

pibr. OF ELECIROMC 2%
ENQINEERING 4
iisi. Of ELECTROMCS Hwy

s——
—

é@?@‘%’ Y

&]

——

Chapter 4 — The Processor — 114

| S—

Load-Use Hazard Detection

Check when using instruction is decoded in ID stage

ALU operand register numbers in ID stage are given by
IF/ID.RegisterRs, IF/ID.RegisterRt

Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 115

How to Stall the Pipeline

Force control values in ID/EX register to O
EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again

Following instruction is fetched again

1-cycle stall allows MEM to read data for 1w

Can subsequently forward to EX stage

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 116

Stall/Bubble in the Pipeline

Time (in clock cycles) -
CC 1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9 CC10

Program
execution
order

(in instructions) - - _

w $2, 20($1) M lI=Teg| g oM eg_'
X 1 5 bubble / Stall inserted
- @ here

and becomes nop IM —E?:l_egl_
and $4, $2, $5 IM |—
or $8, $2, $6 —iil?_gj
| add $9, $4, 62 DMH | HReg

pipr. OF fLECIROMC
ENAMEERING o '

. O FLECTROICS &} Chapter 4 — The Processor — 117

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 cC2 CC3 CC4 CC5 CCe CC7 ccs cC9 CC10

Program
execution
order

(in instructions)

|5

Iw $2, 20($1)

and becomes nop IM —

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

e

add $9, $4, $2

DM Reg

Or, more

oipt. O HLECIROINCS e accurately___

ENAINEERING ¢ -z E
tist. OF ELECTIROMCS e

Chapter 4 — The Processor — 118

Datapath with Hazard Detection

YALU

Hazard
= detection |« ID/EX.MemRead
L unit
£ \
2 ID/EX
= e EX/MEM
[} »{Control M)| v LhiEM/WB
% IFirID 0 o I —
o
5 oS T
v E Registers i | :

Xxe =

Data

r

PC Instruction N
‘ ‘ memory - R

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

c=) r(*==)r(~==)

(.

Bt

Rd,,

Rt unit a

Chapter 4 — The Processor — 119

¥y ¥y Y79

pipr. OF fLECIROMC
BIGIEERING o« g
lisi. Of ELECTROMCS Hmy

Stalls and Performance

Stalls reduce performance

But are required to get correct results

Compiler can arrange code to avoid hazards and
stalls

Requires knowledge of the pipeline structure

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 120

Branch Hazards

If branch outcome determined in MEM

Time {In clock cycles)

Program
sxecution
order

(In Instructions)

40 beq $1,$3, 28 EII—I-D,

44 and $12, $2, §5

Flush these
instructions
(Set control
values to 0)

48 or $13, $6, $2

52 add $14, §2, $2

piper. OF ELECTROMC 5o
ENaNERING ¢ 4

s O FLECTROMICS % Chapter 4 — The Processor — 121

Reducing Branch Delay

Move hardware to determine outcome to ID stage
Target address adder
Register comparator

additional hardware

IF.Flush

Hazard
detaction
un t

*.e
44 ("

.~ R E

MEM/WB
»\W3

i
»e =

Data
memory

pier. OF ELECTROMC ¥ &
fNaINEERING ¢ &
st O ELECTROINCS ™,

o
Forwarding !
unit Y i ;
|

&,ha[:)te 4 —[The Pr:bcesso — 122

Data Hazards for Branch -- |

If a comparison register is a destination of 2" or
3" preceding ALU instruction

add $1, $2, $3 IF |:| ID _ EX _||V|E|\/|| WB
- - -\ _
add %4, $5, $6 HUEINEI N EHEE
\ - - “\\ - _
beq $1, $4, target IR E M RE
- =\ -
IF |D\ EX ||V|EM|:| WB

Can resolve using forwarding, but need 1 stall
cycle

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 123

Data Hazards for Branch -- |

1 stall cycle + forwarding for ALU results

Iw , addr IF H o |IIEx _|MEM|—| WB

add , $5, $6 IF : ID : EX :I[I_/IEM_ WB

= HEls oo

beq $1, $4, target _ : ID_|: EX :|MEM||:| WB

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 124

Data Hazards for Branch -- |l

If a comparison register is a destination of
Immediately preceding load instruction

Can resolve using forwarding, but need 2 stall cycles

lw $1, addr IF H D ||| EX _|MEM|_ wB

beq stalled i :O : "

beq stalled el :O _Q

beq $1, $0, target _ : D'[{| EX :|MEM||:| WB

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

i o HECROIIC HF Chapter 4 — The Processor — 125

Delayed Branch

Predict-not-taken + branch decision at ID
=> the following instruction is always executed
=> branches take effect 1 cycle later

| Time (clock cycles)
? add MemE Reg)E Memlr; Reg;
: {rmm o 2 N ot o

beg i MentH Reg)E riMemp— Reg

. v e |] I: .

r | misc Mem-!: Reg| : ' I Reg| :
d A Y e
€ |lw : |Ment L IMemE Regf
r : : : = : 19)/ i :

0 clock cycle penalty per branch instruction if can find instruction to put in
slot

pier. OF ELECTROMICS 9 % N #7T
HIGIERRING o -, o . .
st Of ELECIROMICS . WU Lecture06 - pipelining (cwliu@twins.ee.nctu.edu.tw) — 126

a. From before

b. From target

Scheduling the Branch Delay Slot

¢. From fall-through

add $s1, $s2, $s3 sub $t4, $t5, $t6<— add $s1, $s2, $s3

if $52 = 0 then —— if $s1 = 0 then ——
Delay slot add $s1, $s2, $s3 Delay slot
if $s1 = 0 then —
Doy sub $t4, $t5, $t6 L
Becomes Becomes Becomes

add $s1, $s2, $s3

if $52 = 0 then —— if $s1 = 0 then ——

add $s1, $s2, $s3

add $s1, $s2, $s3

sub $t4, $t5, $t6

if $s1 = 0 then ——

sub $t4, $t5, $t6

A is the best choice, fills delay slot & reduces instruction count (IC)
In B, the sub instruction may need to be copied, increasing IC
»o In B and C, must be okay to execute sub when branch fails

IS OF cocigs_mms L '

27

Delay-Branch Scheduling Schemes

Scheduling | Requirements Improve Performance
Strategy When?
From before | Branch must not depend on Always

the rescheduled instructions

From target | Must be OK to execute When branch is taken.
rescheduled instructions if May enlarge program
branch is not taken. May need | if instructions are
to duplicate instructions duplicated

From fall Must be OK to execute When branch is not

through instructions if branch is taken | taken

et Of HECROINS e N T CA-Lec4
|ns1t§|gtrttgg§)ﬁm 1| cwliu@twins.ee.nctu.edu.tw 128

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch
penalty is more significant

Use dynamic branch prediction
Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses
Stores outcome (taken/not taken)

To execute a branch
Check table, expect the same outcome
Start fetching from fall-through or target
If wrong, flush pipeline and flip prediction = 1-bit predictor

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 129

outer: ..

inner: ..

, Inner

.., outer

Shortcoming for 1-Bit Predictor

Inner loop branches mispredicted twice!

TN

oo

Mispredict as taken on last iteration of inner loop

Then mispredict as not taken on first iteration of

Inner loop next time around

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 130

2-Bit Predictor

Only change prediction on two successive
mispredictions

Not taken
Taken
Not taken
Not taken
(Predict not taken
Taken g

per. OF ELECTROMCS 7%
fNGINERING o §

i, Of ELECTROMICS H ¥y Chapter 4 — The Processor — 131

Calculating the Branch Target Address

Even with predictor, still need to calculate the
target address

1-cycle penalty for a taken branch in 5-stage MIPS
processor

Branch target buffer (discussed in CA course)

Cache of target addresses

Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can fetch
target immediately

0-cycle penalty

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 132

Exceptions and Interrupts

“Unexpected” events requiring change in flow of control

Different ISAs use the terms differently
Exception: Arises within the CPU
e.g., undefined opcode, overflow, syscall, ...

Interrupt: From an external |/O controller

I/0 device request External Interrupt
Invoke the operating system from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions 1 Either Exception or interrupt

Dealing with execeptions without sacrificing performance
IS hard

piper. OF ELECTROMC 5o
ENaNERING ¢ 4 FE
st OF ELECTROMICS My o

Chapter 4 — The Processor — 133

Handling Exceptions in MIPS

In MIPS, exceptions managed by a System Control
Coprocessor (CPO0)

1. Save PC of offending (or interrupted) instruction in
Exception Program Counter (EPC)

2. Save indication of the problem in Cause register
Must know the reason for the exception
Cause is a status register

We’ll assume 1-bit
0 for undefined opcode, 1 for overflow

3. Save registers in memory (similar to procedure call)
4. Jump to exception handler at 8000 00180

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 134

An Alternate Mechanism

Vectored Interrupts

Handler address determined by the cause

Example:
Undefined opcode: CO000 0000
Overflow: C000 0020

CO000 0040

Instructions either
Deal with the interrupt, or

Jump to real handler

pibr. OF ELECIROMC e N 7T
ENGEERING o i
st OF ELECTROMCS

Chapter 4 — The Processor — 135

Handler Actions

Read cause, and transfer to relevant handler

Determine action required

If reStartable Must subtract 4 from EPC
Take corrective action /

use EPC to return to program (also need to restore
the saved registers from memory)

Otherwise
Terminate program

Report error using EPC, cause, ...

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 136

Exceptions in a Pipeline

Another form of control hazard

Consider overflow on add in EX stage
add $1, $2, $1
Prevent $1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set Cause and EPC register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

i o HECROIIC HF Chapter 4 — The Processor — 137

Pipeline with Exceptions

Zeros control signals for flushing

EX.Flush
IF.Flush
1D.Flugh
Hezard
detsetion -
\ uni / KA
') M
ID/EX u
Y
Control M M owml
ontro u M u wB MEM/WB
> X — Cause X — | I
T y 0 EX —|—> EPC | 0=+ M wB—»
Shi M)
left 2 - |
B = —lu -
Registers = >
¥ - >
g <> M ALY i
80000180 Instruction || > - u
memory " Data -
> —]u >
x memory
[>
Sign- - - -
extend
- —
: 0
> A d »| U -
" - > :J >
Forwarding j : —‘
unit -

pibr. OF ELECIROMC 2%
ENQINEERING 4 '

0 o OIS S Chapter 4 — The Processor — 138

Exception Summary

Restartable exceptions

Pipeline can flush the instruction

Handler executes, then returns to the instruction

Refetched and executed from scratch

PC saved in EPC register
|dentifies causing instruction

Actually PC + 4 is saved

Handler must adjust

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 139

Exception Example

Exception on add in

40 sub $11, $2, %4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, 9$2, $1
50 slt $15, $6, $7
54 1w $16, 50($7)

Handler

80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 140

Exception Example

4C, + 4 = 50, saved in EPC

\ add $1, $2, $1

Iw $18, 50(S7) | sit $15, $6, $7 | : or$13,... | and $12,
IF.Fluah i E E i
! Hazard i i i
detectlon L ! !
__unit / ! ! !
IDAE ! |

Y

! - :
e Data
(o) mm
12
Clock 6 !

pipr. OF ELECTROMICS o 2%
ENaNEERING ¢ 4
tist. OF ELECTROMCS ™

Chapter 4 — The Processor — 141

Exception Example

The add and following instructions are flushed

sw $25, 1000($0) bubble (nop) | bubble | bubble ,or$13,...

; 5 EXFlush | :
IF.Flush ' | . ; ;
; ID.Flush | | l
! Hazard | ! !
detection : | |
__unlt /) ! M ! !
IDEX uP—% ! !
0 pog 0 1. |x I I
v [B 0 . EX/MEM :

contral ¥ LAY S U el MEM/WB

170, Ur'D—o-L’ds.a =N 0al g

BOOCO180 o

- 18

memery

b’
> ‘orwarding?
unlt
|
:

Chapter 4 —The Processor — 142

pipr. OF ELECTROMICS ¢, 2%
ENaNEERING ¢ 4
tist. O ELECTIROMCS ™

Multiple Exceptions

Pipelining overlaps multiple instructions
Could have multiple exceptions at once

Simple approach: deal with exception from
earliest instruction

Flush subsequent instructions

“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle

Out-of-order completion

Maintaining precise exceptions is difficult! (discussed
in CA course)

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 143

Imprecise Exceptions

Just stop pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions

Which to complete or flush
May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 144

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in parallel
To increase ILP

Deeper pipeline (increase clock rate)

Less work per stage = shorter clock cycle

Multiple issue (using multiple ALUs)
Replicate pipeline stages = muiltiple pipelined datapaths
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue (upto 4 parallel instructions)
16 BIPS, peak CPI = 0.25, peak IPC =4, ideally

But dependencies reduce this in practice

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 145

Multiple Issue Processor

Static multiple issue or VLIW processor

Compiler solves hazards, groups instructions to be issued
together, and packages them into “issue slots”

Compiler detects and avoids hazards

Dynamic multiple issue or Superscalar processor

CPU examines instruction stream and chooses instructions
to issue each cycle

Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at
runtime
Rescheduling and loop unrolling techniques for
multiple issue processors

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 146

MIPS with Static Dual Issue

Two-issue packets

One for ALU/branch instruction and the other for
load/store instruction

64-bit aligned, 2-issue slot
Pad an unused instruction with nop

Peak IPC =2
Address Instruction type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n+4 Load/store IF ID EX MEM WB
n+38 ALU/branch IF ID EX MEM WB
n+12 Load/store IF ID EX MEM WB
n+16 ALU/branch IF ID EX MEM WB
n+ 20 Load/store IF ID EX MEM WB

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 147

Loop: Iw $t0, 0($sd)
addu $t0, $t0, $s2

Sw $t0, 0($sl)
addi $s1, $s1, -4
bne $s1, $zero, Loop

After code rescheduling:
Loop: Iw $t0, 0($sd)
addi $s1, $s1, -4
addu $t0, $tO, $s2
SwW $t0, 4($sl)
bne $s1, $zero, Loop

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Code Rescheduling

Chapter 4 — The Processor — 148

Loop Unrolling

Replicate loop body to expose more parallelism

Reduces loop-control overhead

Use different registers per replication
Called “register renaming”

Avoid loop-carried “anti-dependencies’
Store followed by a load of the same register

Aka “name dependence”

Reuse of a register name

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s Of ELECTROMICS . \ | U Chapter 4 — The Processor — 149

Multiple-Issue Code Scheduling

2-issue processor

- ALU or branch instruction Data transfer instruction m

Loop: $t0, 0(%sl)
addi $s1,%s1,-4

addu $t0,%$t0, $s2
bne $s1,%zero,Loop S $t0, 4(%s1)

= CPI: 4/5=0.8 (or IPC = 1.25)
Assume the loop index is a multiple of four
After four-times loop unrolling and code scheduling

- ALU or branch instruction Data transfer instruction m

plwlno|~

Blank is nop

Loop: addi $s1.%s1, $t0, O($sl) 1
| w $t1,12(%s1) 2

addu $t0,5t0,$s2 Tw $t2, B8(%sl) 3

addu $t1.5t1,8s2 Tw $t3, 4(%s1) 4

addu $t2,8t2,%s2 Sw $t0, 16(%s1) b

addu $t3,8t3,8s2 sw $t1,12(%s1) 6

S $t2, 8(%s1) 7

brne $s1,%zero,lLoop SW $t3, 4($s1) 8

- CPI: 8/14 = 0.57 (or IPC = 1.75)
HGU Closer to 2, but at cost of registers and code size

pipr. OF ELECTRONICS o
ENaNEERING ¢ 4

st Of FECTROMCS Chapter 4 — The Processor — 150

Static Multiple Issue Processor

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between
packets

Varies between ISAs; compiler must know!
Insert nop(s), if necessary

Software complexityﬂ Hardware complexityﬂ

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 151

Two-lssue MIPS VLIW Processor

ﬁ
— N m — —
u >
4 r’ > X
- ~ A >
R Y
_ » » M
| " | Registers u »
Instruction | —- - X
80000180 4 L —® >
memory [| [- N = | Write
- > data
Data
- AL | memory [] [
Address
'
> =M
- — 1 - o
- N . .
_/

pipr. OF ELECTROMCS ¢
ENAINEERING « P
list. OF ELECIROMCS

Chapter 4 — The Processor — 152

Dynamic Multiple Issue Processor

CPU decides whetherto issue 0O, 1, 2, ... each
cycle (out-of-order execution and completion)

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help

Code semantics ensured by the CPU

Old code still run

May not re-compile the code for new version

Hardware complexityﬂ Software complexity ﬂ

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 153

Instruction fetch
and decode unit

Superscalar Processor

—

In-order issue

l

l

l

l

Reservation | | Reservation Reservation || Reservation| <
station station station station

Funct_ional Integer Integer Floa_ting Load- Out-of-order execute

units point store

«—
_ » Commit In-order commit

Reorders buffer for unit

register writes

9 Can supply

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

operands for
issued instructions

Preserves
dependencies

Hold pending
operands

Results also sent
to any waiting
reservation stations

Chapter 4 — The Processor — 154

Speculation

Predict and continue to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples

Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 155

Compiler/Hardware Speculation

Compiler can reorder instructions

e.g., move load before branch
Can include “fix-up” instructions to recover from
Incorrect guess
Hardware can look ahead for instructions to
execute

Buffer results until it determines they are actually
needed

Flush buffers on incorrect speculation

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 156

Speculation and Exceptions

What if exception occurs on a speculatively
executed instruction?

e.g., speculative load before null-pointer check
Static speculation

Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction completion
(which may not occur)

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & @
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 157

Does Multiple Issue Work?

Yes, but not as much as we’d like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing
Some parallelism is hard to expose

Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

pipr. OF ELECTRONC 3”& N #7T
ENGIEERING & -,
s OF FLECIROMICS . \ | U Chapter 4 — The Processor — 158

Multicore/Multiprocessor is the Trend

Complexity of multiple-issue processors requires power

Multiple simpler cores may be better
10000

??%lyear
1000 -

100 ---mmmmmsmmmmnmmmmne oo

Performance (vs. VAX-11/780)

10 4

1 “f T T T T T T T T T

1980,,1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
Chapter 4 — The Processor — 159

o o HECRONG 68,
GNERING o+ e}
inst. OF ELECTROIICS

Cortex A8 and Intel 17

Market Personal Mobile Device Server, cloud
Thermal design power 2 Watts 130 Watts
Clock rate 1 GHz 2.66 GHz
Cores/Chip 1 4

Floating point? No Yes

Multiple issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4

Pipeline stages 14 14

Pipeline schedule

Static in-order

Dynamic out-of-order
with speculation

Branch prediction 2-level 2-level

1st level caches/core 32KiB 1,32 KiBD 32 KiB 1,32 KiB D
2"d level caches/core 128-1024 KiB 256 KiB

3rd |evel caches (shared) - 2- 8 MB

pipr. OF ELECTROMCS o1&
ENGINEERING a
tist. OF ELECTROMICS

Chapter 4 — The Processor — 16

Fallacies

Pipelining is easy (!)
The basic idea is easy
The devil is in the details
e.g., detecting data hazards
Pipelining is independent of technology
So why haven’t we always done pipelining?

More transistors make more advanced techniques
feasible
Pipeline-related ISA design needs to take account of

technology trends
e.g., predicated instructions

pipr. OF ELECIRONMC 2 R b g
ENGINEERING 4 @
st OF ELECTROMCS . 4! Chapter y e broceccor — 161

Pitfalls

Poor ISA design can make pipelining
harder
e.g., complex instruction sets (VAX, 1A-32)

Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.dg., delayed branches
Advanced pipelines have long delay slots

pipr. OF ELECIRONMC 2 R b g
ENGINEERING 4 @
st OF ELECTROMCS . 4! Chapter y e roceccor — 169

Concluding Remarks

ISA influences design of datapath and control
Datapath and control influence design of ISA

Pipelining improves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall

pipr. OF ELECIRONMC 2 R b g
ENGINEERING 4 @
st OF ELECTROMCS . 4! Chapter 4 e roceccor — 163

