Computer Organization Reference Solution # HW3

3.9
$$-105 - 42 = -128 (-147)$$

3.10
$$-105 + 42 = -63$$

3.11
$$151 + 214 = 255 (365)$$

3.13 62×12

$$(62)_{16} = (0110_0010)_2$$

 $(12)_{16} = (0001_0010)_2 \qquad (12)_{16} \qquad (62)_{16}$

		$(12)_{16}$	$(62)_{16}$	
Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0000_0000_0001_0010	0000_0000_ 0110_0010	0000_0000_0000_0000
1	1: 0 → no operation	0000_0000_0001_0010	0000_0000_ 0110_0010	0000_0000_0000_0000
	2: Shift left Multiplicand	0000_0000_0001_0010	0000_000 0_1100_0100	0000_0000_0000_0000
	3: Shift right Multiplier	0000_0000_0 000_1001	0000_000 0_1100_0100	0000_0000_0000_0000
2	1: 1 → Prod = Prod + Mcand	0000_0000_0 000_1001	0000_000 0_1100_0100	0000_0000_0000_0000 + 0000_0000_1100_0100 0000_0000_1100_0100
	2: Shift left Multiplicand	0000_0000_0 000_1001	0000_000 1_1000_1000	0000_0000_1100_0100
	3: Shift right Multiplier	0000_0000_0000_0100	0000_000 1_1000_1000	0000_0000_1100_0100
3	1: 0 → no operation	0000_0000_0000_0100	0000_000 1_1000_1000	0000_0000_1100_0100
	2: Shift left Multiplicand	0000_0000_0000_0100	0000_00 11_0001_0000	0000_0000_1100_0100
	3: Shift right Multiplier	0000_0000_000 0_0010	0000_00 11_0001_0000	0000_0000_1100_0100
4	1: 0 → no operation	0000_0000_0000_0010	0000_00 11_0001_0000	0000_0000_1100_0100
	2: Shift left Multiplicand	0000_0000_0000_0010	0000_0 110_0010_0000	0000_0000_1100_0100
	3: Shift right Multiplier	0000_0000_0000 _0001	0000_0 110_0010_0000	0000_0000_1100_0100
5	1: 1 → Prod = Prod + Mcand	0000_0000_0000_ 0001	0000_0110_0010_0000	0000_0000_1100_0100 + 0000_0110_0010_0000 0000_0110_1110_0100
	2: Shift left Multiplicand	0000_0000_0000_ 0001	0000 _1100_0100_0000	0000_0110_1110_0100
	3: Shift right Multiplier	0000_0000_0000_ 0000	0000 _1100_0100_0000	0000_0110_1110_0100
6~8	1: 0 → no operation 2: Shift left Multiplicand 3: Shift right Multiplier	判下的怎麼移, LSB都是0	省略	0000_0110_1110_0100

得
$$(06E4)_{16}$$

= $(1764)_{10}$

3.19.

送分

3.22

 $0\times 0C000000 = 0000\ 1100\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000$ $= 0\ 0001\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000$ sign is positive $\exp = 0\times 18 = 24 - 127 = -103$ there is a hidden 1
mantissa = 0
answer = 1.0×2^{-103}

 $= 0100\ 0010\ 0111\ 1101\ 0000\ 0000\ 0000\ 0000 = 0x427D0000$

3.27
$$-1.5625 \times 10^{-1} = -.15625 \times 10^{0}$$

= $-.00101 \times 2^{0}$
move the binary point 3 to the right, = -1.01×2^{-3}
exponent = $-3 = -3 + 15 = 12$, fraction = $-.01000000000$
answer: 10110001000000000

```
3.32 (3.984375 \times 10^{-1} + 3.4375 \times 10^{-1}) + 1.771 \times 10^{3})
      3.984375 \times 10^{-1} = 1.1001100000 \times 2^{-2}
      3.4375 \times 10^{-1} = 1.01100000000 \times 2^{-2}
      1.771 \times 10^3 = 1771 = 1.1011101011 \times 2^{10}
      shift binary point of smaller left 12 so exponents match
     (A)
                   1.1001100000
     (B) + 1.0110000000
                  10.1111100000 Normalize,
     (A+B) 1.0111110000 \times 2<sup>-1</sup>
     (C)
                +1.1011101011
                   .00000000000 10 1111110000 Guard = 1,
     (A+B)
                          Round = 0, Sticky = 1
     (A+B)+C +1.1011101011 10 1 Round up
```

 $(A+B)+C = 1.1011101100 \times 2^{10} = 0110101011101100 = 1772$