

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 6

Parallel Processors from Client to Cloud

Introduction

- Goal: connecting multiple computers to get higher performance
 - Multiprocessors
 - Scalability, availability, power efficiency
- Task-level (process-level) parallelism
 - High throughput for independent jobs
- Parallel processing program
 - Single program run on multiple processors
- Multicore microprocessors
 - Chips with multiple processors (cores)

Hardware and Software

- Hardware
 - Serial: e.g., Pentium 4
 - Parallel: e.g., quad-core Xeon e5345
- Software
 - Sequential: e.g., matrix multiplication
 - Concurrent: e.g., operating system
- Sequential/concurrent software can run on serial/parallel hardware
 - Challenge: making effective use of parallel hardware

What We've Already Covered

- §2.11: Parallelism and Instructions
 - Synchronization
- §3.6: Parallelism and Computer Arithmetic
 - Subword Parallelism
- §4.10: Parallelism and Advanced Instruction-Level Parallelism
- §5.10: Parallelism and Memory Hierarchies
 Cache Coherence

Parallel Programming

- Parallel software is the problem
- Need to get significant performance improvement
 - Otherwise, just use a faster uniprocessor, since it's easier!
- Difficulties
 - Partitioning
 - Coordination
 - Communications overhead

Amdahl's Law

Sequential part can limit speedup

Example: 100 processors, 90× speedup?

• Speedup =
$$\frac{1}{(1 - F_{\text{parallelizable}}) + F_{\text{parallelizable}}/100} = 90$$

Need sequential part to be 0.1% of original time

Scaling Example

- Workload: sum of 10 scalars, and 10 × 10 matrix sum
 - Speed up from 10 to 100 processors
- Single processor: Time = (10 + 100) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 100/10 \times t_{add} = 20 \times t_{add}$
 - Speedup = 110/20 = 5.5 (55% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 100/100 \times t_{add} = 11 \times t_{add}$
 - Speedup = 110/11 = 10 (10% of potential)
- Assumes load can be balanced across processors

Scaling Example (cont)

- What if matrix size is 100 × 100?
- Single processor: Time = (10 + 10000) × t_{add}
- 10 processors
 - Time = $10 \times t_{add} + 10000/10 \times t_{add} = 1010 \times t_{add}$
 - Speedup = 10010/1010 = 9.9 (99% of potential)
- 100 processors
 - Time = $10 \times t_{add} + 10000/100 \times t_{add} = 110 \times t_{add}$
 - Speedup = 10010/110 = 91 (91% of potential)
- Assuming load balanced

Strong vs Weak Scaling

- Strong scaling: problem size fixed
 - As in example
- Weak scaling: problem size proportional to number of processors
 - 10 processors, 10 × 10 matrix
 - Time = 20 × t_{add}
 - 100 processors, 32 × 32 matrix
 - Time = 10 × t_{add} + 1000/100 × t_{add} = 20 × t_{add}
 - Constant performance in this example

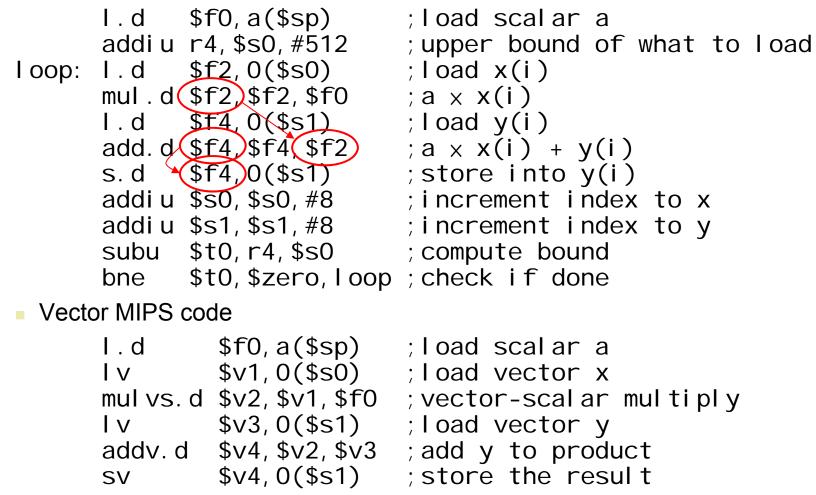
An alternate classification

		Data Streams	
		Single	Multiple
Instruction Streams	Single	SISD: Intel Pentium 4	SIMD : SSE instructions of x86
	Multiple	MISD: No examples today	MIMD: Intel Xeon e5345

- SPMD: Single Program Multiple Data
 - A parallel program on a MIMD computer
 - Conditional code for different processors

Example: DAXPY (Y = a \times X + Y)

Conventional MIPS code



Vector Processors

- Highly pipelined function units
- Stream data from/to vector registers to units
 - Data collected from memory into registers
 - Results stored from registers to memory
- Example: Vector extension to MIPS
 - 32 × 64-element registers (64-bit elements)
 - Vector instructions
 - I v, sv: load/store vector
 - addv. d: add vectors of double
 - addvs. d: add scalar to each element of vector of double
- Significantly reduces instruction-fetch bandwidth

Vector vs. Scalar

- Vector architectures and compilers
 - Simplify data-parallel programming
 - Explicit statement of absence of loop-carried dependences
 - Reduced checking in hardware
 - Regular access patterns benefit from interleaved and burst memory
 - Avoid control hazards by avoiding loops
- More general than ad-hoc media extensions (such as MMX, SSE)

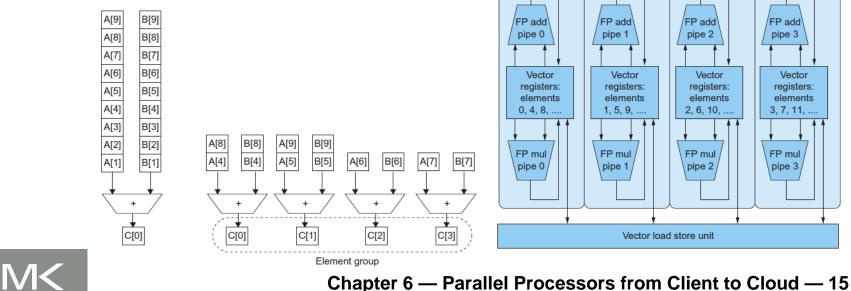
Better match with compiler technology

SIMD

- Operate elementwise on vectors of data
 - E.g., MMX and SSE instructions in x86
 - Multiple data elements in 128-bit wide registers
- All processors execute the same instruction at the same time
 - Each with different data address, etc.
- Simplifies synchronization
- Reduced instruction control hardware
- Works best for highly data-parallel applications

Vector vs. Multimedia Extensions

- Vector instructions have a variable vector width, multimedia extensions have a fixed width
- Vector instructions support strided access, multimedia extensions do not
- Vector units can be combination of pipelined and arrayed functional units:



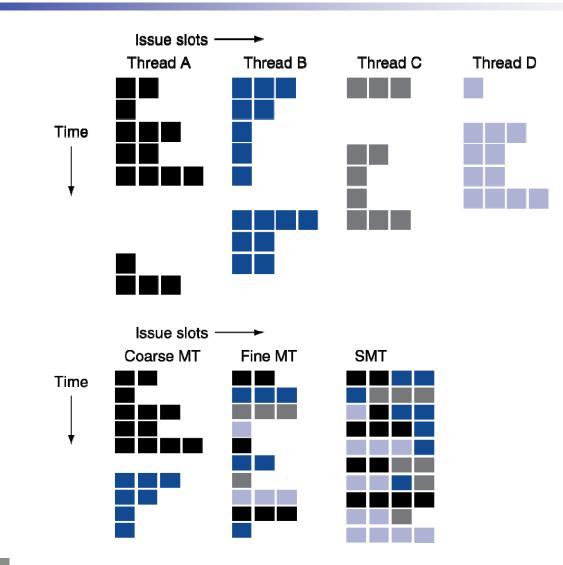
Multithreading

- Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
- Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls (eg, data hazards)

Simultaneous Multithreading

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches

Multithreading Example



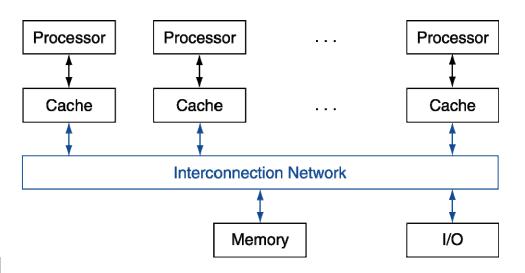
Chapter 6 — Parallel Processors from Client to Cloud — 18

Future of Multithreading

- Will it survive? In what form?
- Power considerations ⇒ simplified microarchitectures
 - Simpler forms of multithreading
- Tolerating cache-miss latency
 - Thread switch may be most effective
- Multiple simple cores might share resources more effectively

Shared Memory

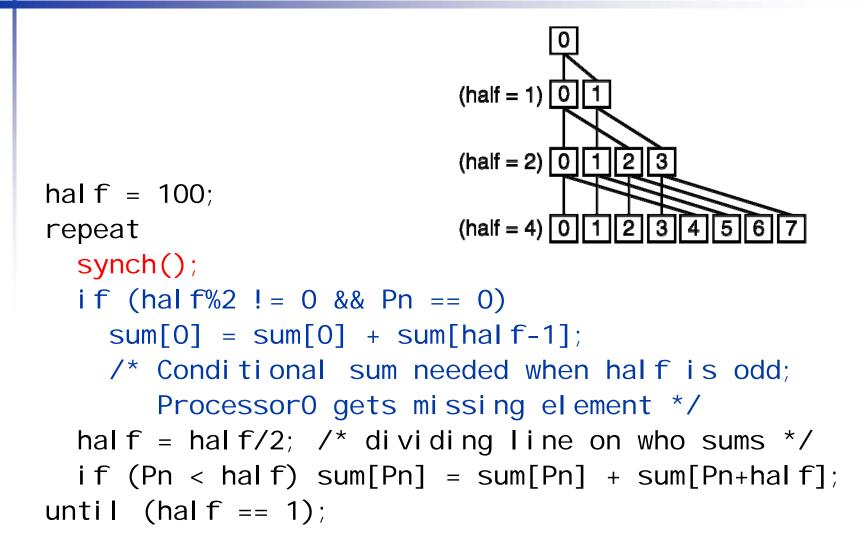
- SMP: shared memory multiprocessor
 - Hardware provides single physical address space for all processors
 - Synchronize shared variables using locks
 - Memory access time
 - UMA (uniform) vs. NUMA (nonuniform)



Example: Sum Reduction

- Sum 100,000 numbers on 100 processor UMA
 - Each processor has ID: $0 \le Pn \le 99$
 - Partition 1000 numbers per processor
 - Initial summation on each processor sum[Pn] = 0; for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1) sum[Pn] = sum[Pn] + A[i];
- Now need to add these partial sums
 - Reduction: divide and conquer
 - Half the processors add pairs, then quarter, ...
 - Need to synchronize between reduction steps

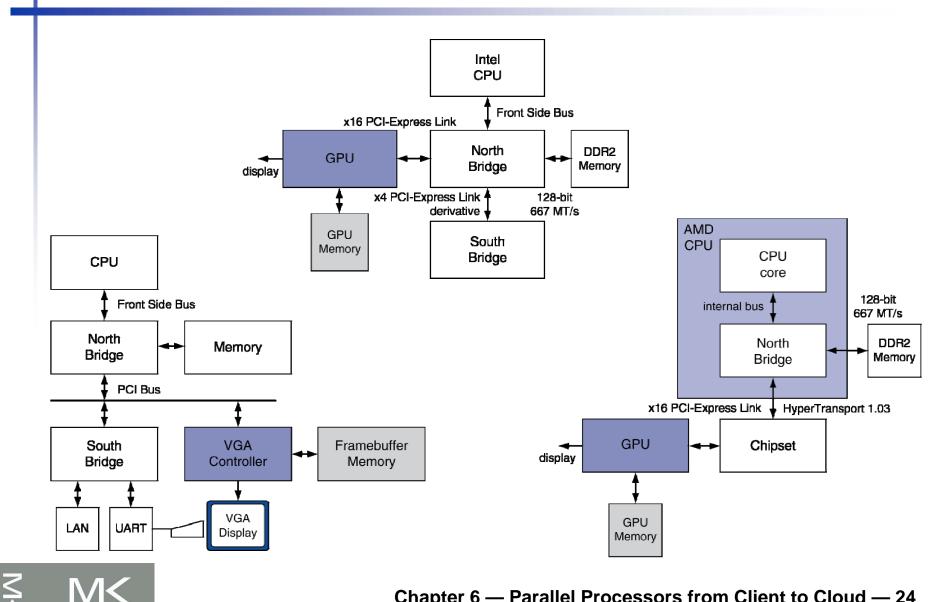
Example: Sum Reduction



History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output
- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore's Law \Rightarrow lower cost, higher density
 - 3D graphics cards for PCs and game consoles
- Graphics Processing Units
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization

Graphics in the System

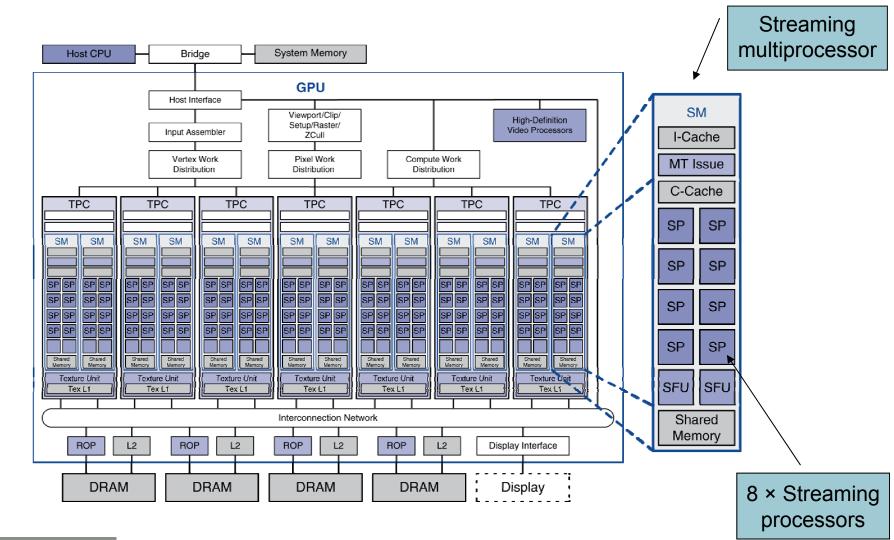


Chapter 6 — Parallel Processors from Client to Cloud — 24

GPU Architectures

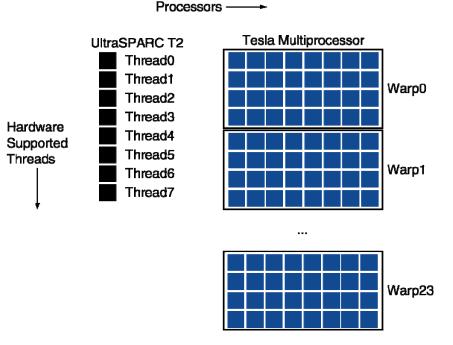
- Processing is highly data-parallel
 - GPUs are highly multithreaded
 - Use thread switching to hide memory latency
 - Less reliance on multi-level caches
 - Graphics memory is wide and high-bandwidth
- Trend toward general purpose GPUs
 - Heterogeneous CPU/GPU systems
 - CPU for sequential code, GPU for parallel code
- Programming languages/APIs
 - DirectX, OpenGL
 - C for Graphics (Cg), High Level Shader Language (HLSL)
 - Compute Unified Device Architecture (CUDA)

Example: NVIDIA Tesla



Example: NVIDIA Tesla

- Streaming Processors
 - Single-precision FP and integer units
 - Each SP is fine-grained multithreaded
- Warp: group of 32 threads
 - Executed in parallel, SIMD style
 - 8 SPs
 - × 4 clock cycles
 - Hardware contexts for 24 warps
 - Registers, PCs, …

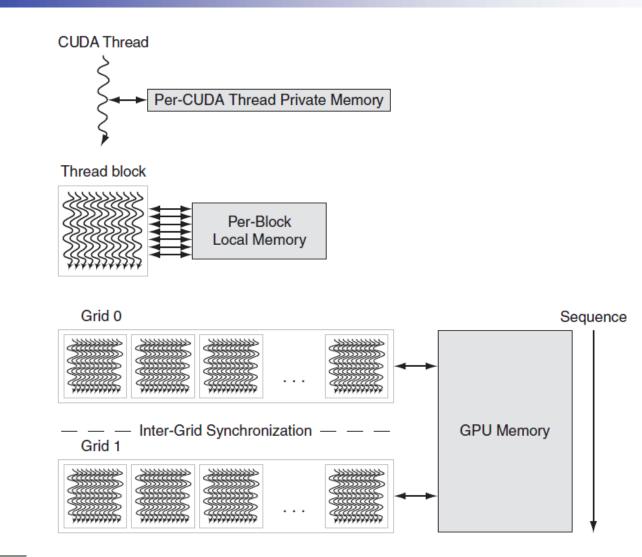


Classifying GPUs

- Don't fit nicely into SIMD/MIMD model
 - Conditional execution in a thread allows an illusion of MIMD
 - But with performance degredation
 - Need to write general purpose code with care

	Static: Discovered at Compile Time	Dynamic: Discovered at Runtime
Instruction-Level Parallelism	VLIW	Superscalar
Data-Level Parallelism	SIMD or Vector	Tesla Multiprocessor

GPU Memory Structures



Putting GPUs into Perspective

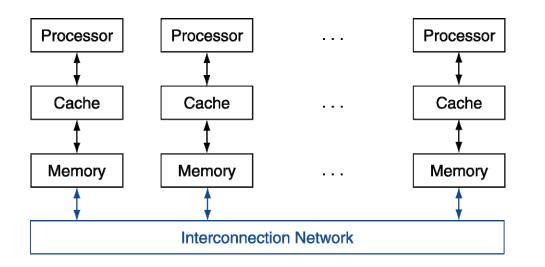
Feature	Multicore with SIMD	GPU
SIMD processors	4 to 8	8 to 16
SIMD lanes/processor	2 to 4	8 to 16
Multithreading hardware support for SIMD threads	2 to 4	16 to 32
Typical ratio of single precision to double-precision performance	2:1	2:1
Largest cache size	8 MB	0.75 MB
Size of memory address	64-bit	64-bit
Size of main memory	8 GB to 256 GB	4 GB to 6 GB
Memory protection at level of page	Yes	Yes
Demand paging	Yes	No
Integrated scalar processor/SIMD processor	Yes	No
Cache coherent	Yes	No

Guide to GPU Terms

_				
Туре	More descriptive name	Closest old term outside of GPUs	Official CUDA/ NVIDIA GPU term	Book definition
tions	Vectorizable Loop	Vectorizable Loop	Grid	A vectorizable loop, executed on the GPU, made up of one or more Thread Blocks (bodies of vectorized loop) that can execute in parallel.
Program abstractions	Body of Vectorized Loop	Body of a (Strip-Mined) Vectorized Loop	Thread Block	A vectorized loop executed on a multithreaded SIMD Processor, made up of one or more threads of SIMD instructions. They can communicate via Local Memory.
Prog	Sequence of SIMD Lane Operations	One iteration of a Scalar Loop	CUDA Thread	A vertical cut of a thread of SIMD instructions corresponding to one element executed by one SIMD Lane. Result is stored depending on mask and predicate register.
Machine object	A Thread of SIMD Instructions	Thread of Vector Instructions	Warp	A traditional thread, but it contains just SIMD instructions that are executed on a multithreaded SIMD Processor. Results stored depending on a per-element mask.
Mach	SIMD Instruction	Vector Instruction	PTX Instruction	A single SIMD instruction executed across SIMD Lanes.
	Multithreaded SIMD Processor	(Multithreaded) Vector Processor	Streaming Multiprocessor	A multithreaded SIMD Processor executes threads of SIMD instructions, independent of other SIMD Processors.
Processing hardware	Thread Block Scheduler	Scalar Processor	Giga Thread Engine	Assigns multiple Thread Blocks (bodies of vectorized loop) to multithreaded SIMD Processors.
	SIMD Thread Scheduler	Thread scheduler in a Multithreaded CPU	Warp Scheduler	Hardware unit that schedules and issues threads of SIMD instructions when they are ready to execute; includes a scoreboard to track SIMD Thread execution.
L L	SIMD Lane	Vector lane	Thread Processor	A SIMD Lane executes the operations in a thread of SIMD instructions on a single element. Results stored depending on mask.
ware	GPU Memory	Main Memory	Global Memory	DRAM memory accessible by all multithreaded SIMD Processors in a GPU.
Memory hardware	Local Memory	Local Memory	Shared Memory	Fast local SRAM for one multithreaded SIMD Processor, unavailable to other SIMD Processors.
	SIMD Lane Registers	Vector Lane Registers	Thread Processor Registers	Registers in a single SIMD Lane allocated across a full thread block (body of vectorized loop).

Message Passing

- Each processor has private physical address space
- Hardware sends/receives messages between processors



Loosely Coupled Clusters

- Network of independent computers
 - Each has private memory and OS
 - Connected using I/O system
 - E.g., Ethernet/switch, Internet
- Suitable for applications with independent tasks
 - Web servers, databases, simulations, …
- High availability, scalable, affordable
- Problems
 - Administration cost (prefer virtual machines)
 - Low interconnect bandwidth
 - c.f. processor/memory bandwidth on an SMP

Sum Reduction (Again)

- Sum 100,000 on 100 processors
- First distribute 100 numbers to each
 - The do partial sums

sum = 0; for (i = 0; i <1000; i = i + 1) sum = sum + AN[i];

- Reduction
 - Half the processors send, other half receive and add
 - The quarter send, quarter receive and add, ...

Sum Reduction (Again)

Given send() and receive() operations

Send/receive also provide synchronization

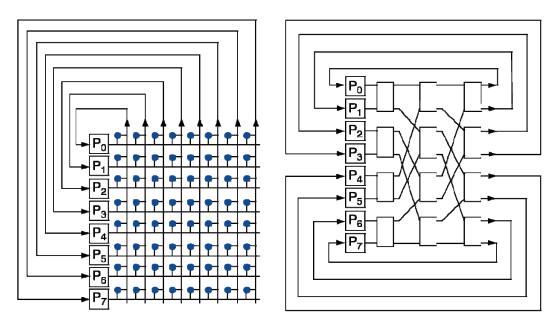
Assumes send/receive take similar time to addition

Grid Computing

- Separate computers interconnected by long-haul networks
 - E.g., Internet connections
 - Work units farmed out, results sent back
- Can make use of idle time on PCs
 - E.g., SETI@home, World Community Grid

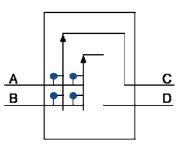
Interconnection Networks Network topologies Arrangements of processors, switches, and links Ring Bus N-cube (N = 3)2D Mesh Fully connected

Multistage Networks



a. Crossbar

b. Omega network



c. Omega network switch box

Chapter 6 — Parallel Processors from Client to Cloud — 38

Network Characteristics

- Performance
 - Latency per message (unloaded network)
 - Throughput
 - Link bandwidth
 - Total network bandwidth
 - Bisection bandwidth
 - Congestion delays (depending on traffic)
- Cost
- Power
- Routability in silicon

Parallel Benchmarks

- Linpack: matrix linear algebra
- SPECrate: parallel run of SPEC CPU programs

Job-level parallelism

- SPLASH: Stanford Parallel Applications for Shared Memory
 - Mix of kernels and applications, strong scaling
- NAS (NASA Advanced Supercomputing) suite
 - computational fluid dynamics kernels
- PARSEC (Princeton Application Repository for Shared Memory Computers) suite
 - Multithreaded applications using Pthreads and OpenMP

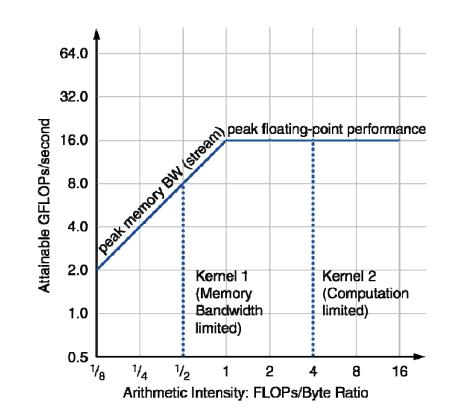
Code or Applications?

- Traditional benchmarks
 - Fixed code and data sets
- Parallel programming is evolving
 - Should algorithms, programming languages, and tools be part of the system?
 - Compare systems, provided they implement a given application
 - E.g., Linpack, Berkeley Design Patterns
- Would foster innovation in approaches to parallelism

Modeling Performance

- Assume performance metric of interest is achievable GFLOPs/sec
 - Measured using computational kernels from Berkeley Design Patterns
- Arithmetic intensity of a kernel
 - FLOPs per byte of memory accessed
- For a given computer, determine
 - Peak GFLOPS (from data sheet)
 - Peak memory bytes/sec (using Stream benchmark)

Roofline Diagram

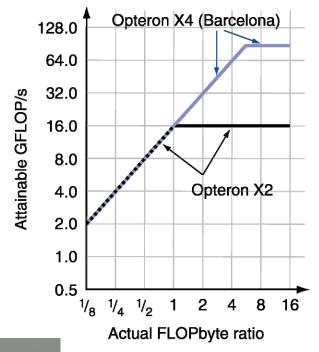


Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Comparing Systems

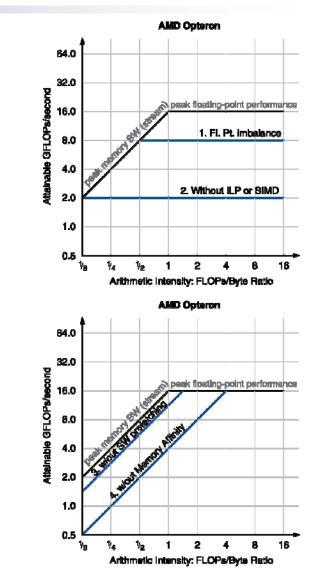
- Example: Opteron X2 vs. Opteron X4
 - 2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs.
 2.3GHz
 - Same memory system



- To get higher performance on X4 than X2
 - Need high arithmetic intensity
 - Or working set must fit in X4's 2MB L-3 cache

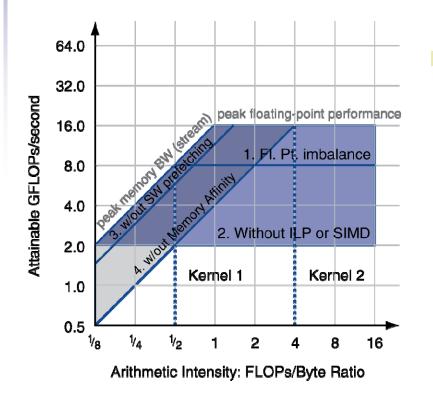
Optimizing Performance

- Optimize FP performance
 - Balance adds & multiplies
 - Improve superscalar ILP and use of SIMD instructions
- Optimize memory usage
 - Software prefetch
 - Avoid load stalls
 - Memory affinity
 - Avoid non-local data accesses



Optimizing Performance

 Choice of optimization depends on arithmetic intensity of code



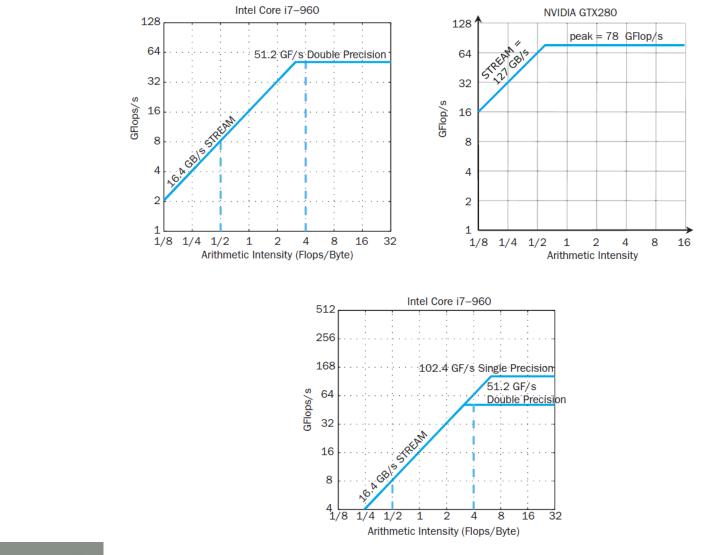
Arithmetic intensity is not always fixed

- May scale with problem size
- Caching reduces memory accesses
 - Increases arithmetic intensity

i7-960 vs. NVIDIA Tesla 280/480

	Core i7- 960	GTX 280	GTX 480	Ratio 280/17	Ratio 480/i7
Number of processing elements (cores or SMs)	4	30	15	7.5	3.8
Clock frequency (GHz)	3.2	1.3	1.4	0.41	0.44
Die size	263	576	520	2.2	2.0
Technology	Intel 45 nm	TCMS 65 nm	TCMS 40 nm	1.6	1.0
Power (chip, not module)	130	130	167	1.0	1.3
Transistors	700 M	1400 M	3100 M	2.0	4.4
Memory brandwith (GBytes/sec)	32	141	177	4.4	5.5
Single frecision SIMD width	4	8	32	2.0	8.0
Dobule precision SIMD with	2	1	16	0.5	8.0
Peak Single frecision scalar FLOPS (GFLOP/sec)	26	117	63	4.6	2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec)	102	311 to 933	515 to 1344	3.0-9.1	6.6-13.1
(SP 1 add or multiply)	N.A.	(311)	(515)	(3.0)	(6.6)
(SP 1 instruction fused)	N.A	(622)	(1344)	(6.1)	(13.1)
(face SP dual issue fused)	N.A	(933)	N.A	(9.1)	_
Peal double frecision SIMD FLOPS (GFLOP/sec)	51	78	515	1.5	10.1

Rooflines



Chapter 6 — Parallel Processors from Client to Cloud — 48

Benchmarks

Kernel	Units	Core i7-960	GTX 280	GTX 280/ i7-960
SGEMM	GFLOP/sec	94	364	3.9
MC	Billion paths/sec	0.8	1.4	1.8
Conv	Million pixels/sec	1250	3500	2.8
FFT	GFLOP/sec	71.4	213	3.0
SAXPY	GBytes/sec	16.8	88.8	5.3
LBM	Million lookups/sec	85	426	5.0
Solv	Frames/sec	103	52	0.5
SpMV	GFLOP/sec	4.9	9.1	1.9
GJK	Frames/sec	67	1020	15.2
Sort	Million elements/sec	250	198	0.8
RC	Frames/sec	5	8.1	1.6
Search	Million queries/sec	50	90	1.8
Hist	Million pixels/sec	1517	2583	1.7
Bilat	Million pixels/sec	83	475	5.7

Performance Summary

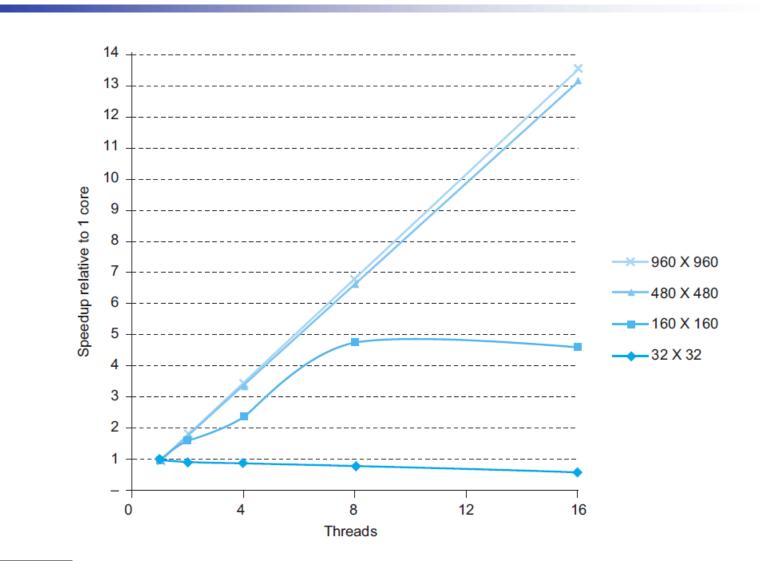
- GPU (480) has 4.4 X the memory bandwidth
 - Benefits memory bound kernels
- GPU has 13.1 X the single precision throughout, 2.5 X the double precision throughput
 - Benefits FP compute bound kernels
- CPU cache prevents some kernels from becoming memory bound when they otherwise would on GPU
- GPUs offer scatter-gather, which assists with kernels with strided data
- Lack of synchronization and memory consistency support on GPU limits performance for some kernels

Multi-threading DGEMM

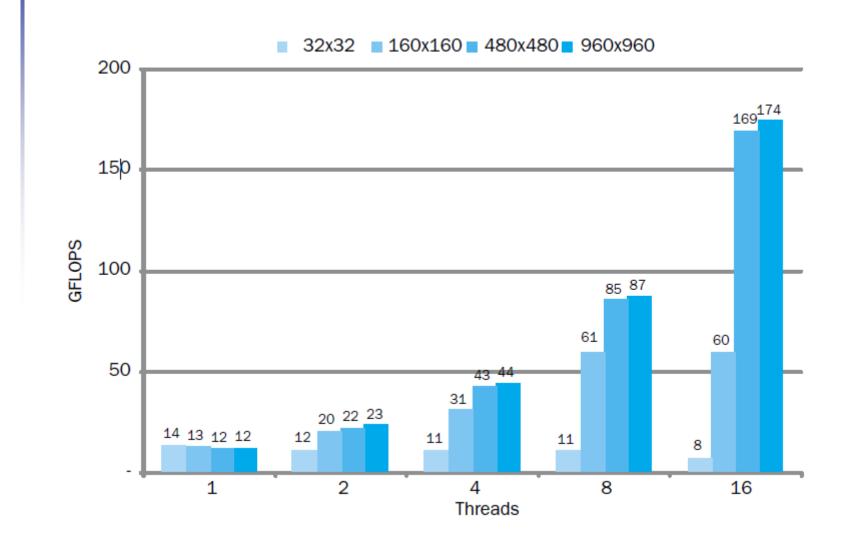
Use OpenMP:

```
void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for ( int sj = 0; sj < n; sj += BLOCKSIZE )
for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do_block(n, si, sj, sk, A, B, C);
}</pre>
```


Multithreaded DGEMM



Multithreaded DGEMM



Fallacies

- Amdahl's Law doesn't apply to parallel computers
 - Since we can achieve linear speedup
 - But only on applications with weak scaling
- Peak performance tracks observed performance
 - Marketers like this approach!
 - But compare Xeon with others in example
 - Need to be aware of bottlenecks

Pitfalls

- Not developing the software to take account of a multiprocessor architecture
 - Example: using a single lock for a shared composite resource
 - Serializes accesses, even if they could be done in parallel
 - Use finer-granularity locking

Concluding Remarks

- Goal: higher performance by using multiple processors
- Difficulties
 - Developing parallel software
 - Devising appropriate architectures
- SaaS importance is growing and clusters are a good match
- Performance per dollar and performance per Joule drive both mobile and WSC

Concluding Remarks (con't)

 SIMD and vector operations match multimedia applications and are easy to program

