
COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 6
Parallel Processors from
Client to Cloud

Introduction
 Goal: connecting multiple computers

to get higher performance
 Multiprocessors
 Scalability, availability, power efficiency

 Task-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

§6.1 Introduction

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software
 Hardware

 Serial: e.g., Pentium 4
 Parallel: e.g., quad-core Xeon e5345

 Software
 Sequential: e.g., matrix multiplication
 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware
 Challenge: making effective use of parallel

hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

What We’ve Already Covered
 §2.11: Parallelism and Instructions

 Synchronization
 §3.6: Parallelism and Computer Arithmetic

 Subword Parallelism
 §4.10: Parallelism and Advanced

Instruction-Level Parallelism
 §5.10: Parallelism and Memory Hierarchies

 Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 4

Parallel Programming
 Parallel software is the problem
 Need to get significant performance

improvement
 Otherwise, just use a faster uniprocessor,

since it’s easier!
 Difficulties

 Partitioning
 Coordination
 Communications overhead

§6.2 The D
ifficulty of C

reating P
arallel P

rocessing P
rogram

s

Chapter 6 — Parallel Processors from Client to Cloud — 5

Amdahl’s Law
 Sequential part can limit speedup
 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential

 Solving: Fparallelizable = 0.999
 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

Chapter 6 — Parallel Processors from Client to Cloud — 6

Scaling Example
 Workload: sum of 10 scalars, and 10 × 10 matrix

sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd
 10 processors

 Time = 10 × tadd + 100/10 × tadd = 20 × tadd
 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd
 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 7

Scaling Example (cont)
 What if matrix size is 100 × 100?
 Single processor: Time = (10 + 10000) × tadd

 10 processors
 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)
 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)
 Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 8

Strong vs Weak Scaling
 Strong scaling: problem size fixed

 As in example
 Weak scaling: problem size proportional to

number of processors
 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Instruction and Data Streams
 An alternate classification

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

 SPMD: Single Program Multiple Data
 A parallel program on a MIMD computer
 Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

§6.3 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and Vector

Example: DAXPY (Y = a × X + Y)
 Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load

loop: l.d $f2,0($s0) ;load x(i)
mul.d $f2,$f2,$f0 ;a × x(i)
l.d $f4,0($s1) ;load y(i)
add.d $f4,$f4,$f2 ;a × x(i) + y(i)
s.d $f4,0($s1) ;store into y(i)
addiu $s0,$s0,#8 ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

 Vector MIPS code
l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector x
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector y
addv.d $v4,$v2,$v3 ;add y to product
sv $v4,0($s1) ;store the result

Chapter 6 — Parallel Processors from Client to Cloud — 11

Vector Processors
 Highly pipelined function units
 Stream data from/to vector registers to units

 Data collected from memory into registers
 Results stored from registers to memory

 Example: Vector extension to MIPS
 32 × 64-element registers (64-bit elements)
 Vector instructions

 lv, sv: load/store vector
 addv.d: add vectors of double
 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 12

Vector vs. Scalar
 Vector architectures and compilers

 Simplify data-parallel programming
 Explicit statement of absence of loop-carried

dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops
 More general than ad-hoc media

extensions (such as MMX, SSE)
 Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 13

SIMD
 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time
 Each with different data address, etc.

 Simplifies synchronization
 Reduced instruction control hardware
 Works best for highly data-parallel

applications

Chapter 6 — Parallel Processors from Client to Cloud — 14

Vector vs. Multimedia Extensions
 Vector instructions have a variable vector width,

multimedia extensions have a fixed width
 Vector instructions support strided access,

multimedia extensions do not
 Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 15

Multithreading
 Performing multiple threads of execution in

parallel
 Replicate registers, PC, etc.
 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle
 Interleave instruction execution
 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)
 Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading

Chapter 6 — Parallel Processors from Client to Cloud — 16

Simultaneous Multithreading
 In multiple-issue dynamically scheduled

processor
 Schedule instructions from multiple threads
 Instructions from independent threads execute

when function units are available
 Within threads, dependencies handled by

scheduling and register renaming
 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 17

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 18

Future of Multithreading
 Will it survive? In what form?
 Power considerations simplified

microarchitectures
 Simpler forms of multithreading

 Tolerating cache-miss latency
 Thread switch may be most effective

 Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 19

Shared Memory
 SMP: shared memory multiprocessor

 Hardware provides single physical
address space for all processors

 Synchronize shared variables using locks
 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 20

§6.5 M
ulticore and O

ther S
hared M

em
ory M

ultiprocessors

Example: Sum Reduction
 Sum 100,000 numbers on 100 processor UMA

 Each processor has ID: 0 ≤ Pn ≤ 99
 Partition 1000 numbers per processor
 Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer
 Half the processors add pairs, then quarter, …
 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 21

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 22

History of GPUs
 Early video cards

 Frame buffer memory with address generation for
video output

 3D graphics processing
 Originally high-end computers (e.g., SGI)
 Moore’s Law lower cost, higher density
 3D graphics cards for PCs and game consoles

 Graphics Processing Units
 Processors oriented to 3D graphics tasks
 Vertex/pixel processing, shading, texture mapping,

rasterization

§6.6 Introduction to G
raphics P

rocessing U
nits

Chapter 6 — Parallel Processors from Client to Cloud — 23

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 24

GPU Architectures
 Processing is highly data-parallel

 GPUs are highly multithreaded
 Use thread switching to hide memory latency

 Less reliance on multi-level caches
 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader Language

(HLSL)
 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 25

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Chapter 6 — Parallel Processors from Client to Cloud — 26

Example: NVIDIA Tesla
 Streaming Processors

 Single-precision FP and integer units
 Each SP is fine-grained multithreaded

 Warp: group of 32 threads
 Executed in parallel,

SIMD style
 8 SPs

× 4 clock cycles
 Hardware contexts

for 24 warps
 Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 27

Classifying GPUs
 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation
 Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level
Parallelism

VLIW Superscalar

Data-Level
Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 28

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 29

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 30

Feature Multicore with SIMD GPU
SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for
SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to
double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD
processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 31

Message Passing
 Each processor has private physical

address space
 Hardware sends/receives messages

between processors

§6.7 C
lusters, W

S
C

, and O
ther M

essage-P
assing M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 32

Loosely Coupled Clusters
 Network of independent computers

 Each has private memory and OS
 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks
 Web servers, databases, simulations, …

 High availability, scalable, affordable
 Problems

 Administration cost (prefer virtual machines)
 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 33

Sum Reduction (Again)
 Sum 100,000 on 100 processors
 First distribute 100 numbers to each

 The do partial sums
sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

 Reduction
 Half the processors send, other half receive

and add
 The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 34

Sum Reduction (Again)
 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization
 Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 35

Grid Computing
 Separate computers interconnected by

long-haul networks
 E.g., Internet connections
 Work units farmed out, results sent back

 Can make use of idle time on PCs
 E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 36

Interconnection Networks
 Network topologies

 Arrangements of processors, switches, and links

§6.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 37

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 38

Network Characteristics
 Performance

 Latency per message (unloaded network)
 Throughput

 Link bandwidth
 Total network bandwidth
 Bisection bandwidth

 Congestion delays (depending on traffic)
 Cost
 Power
 Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 39

Parallel Benchmarks
 Linpack: matrix linear algebra
 SPECrate: parallel run of SPEC CPU programs

 Job-level parallelism
 SPLASH: Stanford Parallel Applications for

Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§6.10 M
ultiprocessor B

enchm
arks and P

erform
ance M

odels

Chapter 6 — Parallel Processors from Client to Cloud — 40

Code or Applications?
 Traditional benchmarks

 Fixed code and data sets
 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns
 Would foster innovation in approaches to

parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 41

Modeling Performance
 Assume performance metric of interest is

achievable GFLOPs/sec
 Measured using computational kernels from

Berkeley Design Patterns
 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed
 For a given computer, determine

 Peak GFLOPS (from data sheet)
 Peak memory bytes/sec (using Stream

benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 42

Roofline Diagram

Attainable GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 43

Comparing Systems
 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs.
2.3GHz

 Same memory system

 To get higher performance
on X4 than X2
 Need high arithmetic intensity
 Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 44

Optimizing Performance
 Optimize FP performance

 Balance adds & multiplies
 Improve superscalar ILP

and use of SIMD
instructions

 Optimize memory usage
 Software prefetch

 Avoid load stalls
 Memory affinity

 Avoid non-local data
accesses

Chapter 6 — Parallel Processors from Client to Cloud — 45

Optimizing Performance
 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is
not always fixed
 May scale with

problem size
 Caching reduces

memory accesses
 Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 46

i7-960 vs. NVIDIA Tesla 280/480
§6.11 R

eal S
tuff: B

enchm
arking and R

ooflines i7 vs. Tesla

Chapter 6 — Parallel Processors from Client to Cloud — 47

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 48

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 49

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 50

 GPU (480) has 4.4 X the memory bandwidth
 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels
with strided data

 Lack of synchronization and memory consistency
support on GPU limits performance for some kernels

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 51

§6.12 G
oing Faster: M

ultiple P
rocessors and M

atrix M
ultiply

 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE)
do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 52

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 53

Fallacies
 Amdahl’s Law doesn’t apply to parallel

computers
 Since we can achieve linear speedup
 But only on applications with weak scaling

 Peak performance tracks observed
performance
 Marketers like this approach!
 But compare Xeon with others in example
 Need to be aware of bottlenecks

§6.13 Fallacies and P
itfalls

Chapter 6 — Parallel Processors from Client to Cloud — 54

Pitfalls
 Not developing the software to take

account of a multiprocessor architecture
 Example: using a single lock for a shared

composite resource
 Serializes accesses, even if they could be done in

parallel
 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 55

Concluding Remarks
 Goal: higher performance by using multiple

processors
 Difficulties

 Developing parallel software
 Devising appropriate architectures

 SaaS importance is growing and clusters are a
good match

 Performance per dollar and performance per
Joule drive both mobile and WSC

§6.14 C
oncluding R

em
arks

Chapter 6 — Parallel Processors from Client to Cloud — 56

Concluding Remarks (con’t)
 SIMD and vector

operations match
multimedia applications
and are easy to
program

Chapter 6 — Parallel Processors from Client to Cloud — 57

