
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 3

Arithmetic for
Computers

Chapter 3 — Arithmetic for Computers — 2

Integer Addition
 Example: 7 + 6

§3.2 A
ddition and S

ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow
 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 3

Integer Subtraction
 Add negation of second operand
 Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow
 Subtracting +ve from –ve operand

 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 4

Dealing with Overflow
 Some languages (e.g., C) ignore overflow

 Use MIPS addu, addui, subu instructions

 Saturated arithmetic

 Other languages (e.g., Ada, Fortran) require raising an
exception
 Use MIPS add, addi, sub instructions

 On overflow, invoke exception handler
 Save PC in exception program counter (EPC) register

 Jump to predefined handler address

 mfc0 (move from coprocessor reg) instruction can retrieve EPC
value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 5

Detecting Overflow
 No overflow when adding a positive and a negative number
 No overflow when signs are the same for subtraction
 Overflow occurs when the value affects the sign:

 overflow when adding two positives yields a negative
 or, adding two negatives gives a positive
 or, subtract a negative from a positive and get a negative
 or, subtract a positive from a negative and get a positive

 Consider the operations A + B, and A – B
 Can overflow occur if B is 0 ?
 Can overflow occur if A is 0 ?

 Overflow detection

Chapter 3 — Arithmetic for Computers — 6

Overflow Detection Logic
 Overflow occurs when adding:

 2 positive numbers and the sum is negative

 2 negative numbers and the sum is positive

=> sign bit is set with the value of the result

 Overflow if: Carry into MSB Carry out of MSB

 Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Designing ALU for MIPS
 Arithmetic logic unit (ALU) performs arithmetic and logical operations

 add, sub: two’s complement adder/subtractor with overflow
detection

 and, or, nor : logical AND, logical OR, logical NOR
 slt (set on less than): two’s complement adder with inverter,

check sign bit of result

A
LU

32

32

32

A

B

Result

Overflow

Zero

4ALUop

CarryOut

(ALUop) Function
0000 and
0001 or
0010 add
0110 subtract
0111 set-on-less-than
1100 nor

— 8

ALU31

a31 b31
m

cinc31
s31

A B

ALUop

Result

32 32

32

4

Overflow

ALU0

a0 b0
m

cinc0
s0

Zero

 Design trick 1: divide and conquer
 Break the problem into simpler problems, solve them and glue together

the solution
 Design trick 2: solve part of the problem and extend

32-Bit ALU Bit-slice ALU

A 4-bit ALU Example
 Design trick 3: take pieces you know (or can imagine) and try to put

them together

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

Operation

0

1

2

1-bit ALU

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Operation

4-bit ALU

— 10

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

Overflow Detection Logic
 Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Chapter 3 — Arithmetic for Computers — 11

Arithmetic for Multimedia
 Graphics and media processing operates on

vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable value

 e.g. 2’s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 12

Multiplication
 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

multiplicand

multiplier

product

§3.3 M
ultiplication

Length of product is
the sum of operand
lengths

Initially 0

mult $t1, $t2 # t1 * t2
 No destination register: product could be ~264; need two

special registers to hold it
 3-step process:

Chapter 3 — Arithmetic for Computers — 13

00011111111111111111111111111111 11000000000000000000000000000000

Hi Lo

01000000000000000000000000000000X $t2

01111111111111111111111111111111$t1

00011111111111111111111111111111$t3

11000000000000000000000000000000$t4mflo $t4

mfhi $t3

Multiplication in MIPS

— 14

3. Shift Multiplier register right 1 bit

2. Shift Multiplicand register left 1 bit

Multiply Algorithm (Ver. 1)

0010 x 0011

Product Multiplier Multiplicand
0000 0000 0011 0000 0010
0000 0010 0001 0000 0100
0000 0110 0000 0000 1000
0000 0110 0000 0001 0000
0000 0110 0000 0010 0000 Done

Done
Yes: 32 repetitions

No: < 32 repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to product and
place the result in Product register

32nd
repetition?

Start

Initially 0

Chapter 3 — Arithmetic for Computers — 15

Observations
 1 clock per cycle => too slow

 Ratio of multiply to add 5:1 to 100:1

 Half of the bits in multiplicand always 0
=> 64-bit adder is wasted

 0’s inserted in right of multiplicand as shifted
=> least significant bits of product never changed once formed

 Instead of shifting multiplicand to left, shift product to
right?

 Product register wastes space => combine Multiplier and
Product register

— 16

32nd
repetition?

2. Shift Product register right 1 bit

1a. Add multiplicand to left half of product and
place the result in left half of Product register

Multiply Algorithm (Ver. 2)

Multiplicand Product
0010 0000 0011

0010 0011
0010 0001 0001

0011 0001
0010 0001 1000
0010 0000 1100
0010 0000 0110

Done
Yes: 32 repetitions

No: < 32 repetitions

1. Test
Product0

Product0 = 0Product0 = 1

Start

Add & shift perform in parallel

Chapter 3 — Arithmetic for Computers — 17

Optimized Multiplier
 Perform steps in parallel: add/shift

 One cycle per partial-product addition
 That’s ok, if frequency of multiplications is low

0-bit Multiplier register

Chapter 3 — Arithmetic for Computers — 18

Concluding Remarks
 2 steps per bit because multiplier and product registers

combined
 MIPS registers Hi and Lo are left and right half of Product

register
=> this gives the MIPS instruction MultU

 What about signed multiplication?
 The easiest solution is to make both positive and remember

whether to complement product when done (leave out sign bit,
run for 31 steps)

 Apply definition of 2’s complement
 sign-extend partial products and subtract at end

 Booth’s Algorithm is an elegant way to multiply signed numbers
using same hardware as before and save cycles

Chapter 3 — Arithmetic for Computers — 19

Faster Multiplier
 Uses multiple adders

 Cost/performance tradeoff

 Can be pipelined
 Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 20

MIPS Multiplication Instructions
 Two 32-bit registers for product

 HI: most-significant 32 bits
 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO
 mfhi rd / mflo rd

 Move from HI/LO to rd
 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 21

Division
 Check for 0 divisor
 Long division approach

 If divisor ≤ dividend bits
 1 bit in quotient, subtract

 Otherwise
 0 bit in quotient, bring down next

dividend bit

 Restoring division
 Do the subtract, and if remainder

goes < 0, add divisor back
 Signed division

 Divide using absolute values
 Adjust sign of quotient and remainder

as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Chapter 3 — Arithmetic for Computers — 22

Division Hardware

Initially dividend

Initially divisor
in left half

— 23

No: < 33 repetitions

2b. Restore original value by
adding Divisor to Remainder,
place sum in Remainder, shift
Quotient to the left, setting new
least significant bit to 0

Divide Algorithm

Test
Remainder

Remainder < 0Remainder 0

1. Subtract Divisor register from
Remainder register, and place the
result in Remainder register

2a. Shift Quotient
register to left,
setting new
rightmost bit to 1

3. Shift Divisor register right 1 bit

Done

Yes: 33 repetitions

Start: Place Dividend in Remainder

33rd
repetition?

Quot. Divisor Rem.
0000 00100000 00000111

11100111
00000111

0000 00010000 00000111
11110111
00000111

0000 00001000 00000111
11111111
00000111

0000 00000100 00000111
00000011

0001 00000011
0001 00000010 00000011

00000001
0011 00000001
0011 00000001 00000001

Chapter 3 — Arithmetic for Computers — 24

Observations
 Half of the bits in divisor register always 0

=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

 Instead of shifting divisor to right,
shift remainder to left?

 1st step cannot produce a 1 in quotient bit
(otherwise quotient is too big for the register)
=> switch order to shift first and then subtract
=> save 1 iteration

 Eliminate Quotient register by combining with Remainder
register as shifted left

— 25

Test
Remainder

No: < 32 repetitions

Divide Algorithm
(Version 2)

Step Remainder Div.
0 0000 0111 0010
1.1 0000 1110
1.2 1110 1110
1.3b 0001 1100
2.2 1111 1100
2.3b 0011 1000
3.2 0001 1000
3.3a 0011 0001
4.2 0001 0001
4.3a 0010 0011

0001 0011

3b. Restore original value by adding
Divisor to left half of Remainder, and
place sum in left half of Remainder.
Also shift Remainder to left, setting
the new least significant bit to 0

Remainder < 0Remainder 0

2. Subtract Divisor register from the
left half of Remainder register, and place the
result in the left half of Remainder register

3a. Shift
Remainder to left,
setting new
rightmost bit to 1

1. Shift Remainder register left 1 bit

Done. Shift left half of Remainder right 1 bit
Yes: 32 repetitions

32nd
repetition?

Start: Place Dividend in Remainder

Chapter 3 — Arithmetic for Computers — 26

Concluding Remarks
 Observations: Divide vs. Multiply

 Same hardware as multiply:

 just need ALU to add or subtract, and 64-bit
register to shift left or shift right

 Hi and Lo registers in MIPS combine to act as
64-bit register for multiply and divide

Chapter 3 — Arithmetic for Computers — 27

Optimized Divider

 One cycle per partial-remainder subtraction
 Looks a lot like a multiplier!

 Same hardware can be used for both

0-bit Multiplier/Quotient register

Chapter 3 — Arithmetic for Computers — 28

Faster Division
 Can’t use parallel hardware as in multiplier

 Subtraction is conditional on sign of remainder
 Faster dividers (e.g. SRT devision)

generate multiple quotient bits per step
 Still require multiple steps

Chapter 3 — Arithmetic for Computers — 29

MIPS Division
 Use HI/LO registers for result

 HI: 32-bit remainder
 LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 30

Floating Point
 Representation for non-integral numbers

 Including very small and very large numbers
 Like scientific notation

 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary
 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Chapter 3 — Arithmetic for Computers — 31

Floating Point Standard
 Defined by IEEE Std 754-1985
 Developed in response to divergence of

representations
 Portability issues for scientific code

 Now almost universally adopted
 Two representations

 Single precision (32-bit)
 Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 32

IEEE 754 Standard (1/2)
 Regarding single precision (SP), DP similar

 Sign bit:
1 means negative
0 means positive

 Significand:
 To pack more bits, leading 1 implicit for normalized numbers

 1 + 23 bits single, 1 + 52 bits double

 always true: 0 Significand < 1
(for normalized numbers)

 Note: 0 has no leading 1, so reserve exponent value 0
just for number 0

Chapter 3 — Arithmetic for Computers — 33

0 1111 1111 000 0000 0000 0000 0000 00001/2

0 0000 0001 000 0000 0000 0000 0000 00002

 Exponent:
 Need to represent positive and negative exponents
 Also want to compare FP numbers as if they were integers, to

help in value comparisons

 If use 2’s complement to represent?
e.g., 1.0 x 2-1 versus 1.0 x2+1 (1/2 versus 2)

IEEE 754 Standard (2/2)

If we use integer comparison for these two
words, we will conclude that 1/2 > 2!!!

Chapter 3 — Arithmetic for Computers — 34

Biased (Excess) Notation
 let notation 0000 be most negative, and 1111 be most positive
 Example: Biased 7

0000 -7
0001 -6
0010 -5
0011 -4
0100 -3
0101 -2
0110 -1
0111 0
1000 1
1001 2
1010 3
1011 4
1100 5
1101 6
1110 7
1111 8

Chapter 3 — Arithmetic for Computers — 35

1/2 0 0111 1110 000 0000 0000 0000 0000 0000

0 1000 0000 000 0000 0000 0000 0000 00002

 Using biased notation
 the bias is the number subtracted to get the real number

 IEEE 754 uses bias of 127 for single precision:
Subtract 127 from Exponent field to get actual value for exponent

 1023 is bias for double precision

 The example becomes ….

IEEE 754 Standard

Chapter 3 — Arithmetic for Computers — 36

IEEE Floating-Point Format

 S: sign bit (0 non-negative, 1 negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored
 Exponent: excess representation: actual exponent + Bias

 Ensures exponent is unsigned
 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x

Chapter 3 — Arithmetic for Computers — 37

Single-Precision Range
 Exponents 00000000 and 11111111 reserved
 Smallest value

 Exponent: 00000001
 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0
 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value
 exponent: 11111110
 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0
 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 38

Double-Precision Range
 Exponents 0000…00 and 1111…11 reserved
 Smallest value

 Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0
 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value
 Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0
 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 39

Floating-Point Precision
 Relative precision

 all fraction bits are significant
 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 40

Floating-Point Example
 Represent –0.75

 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1
 Fraction = 1000…002

 Exponent = –1 + Bias
 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00
 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 41

Floating-Point Example
 What number is represented by the single-

precision float
11000000101000…00
 S = 1
 Fraction = 01000…002
 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Chapter 3 — Arithmetic for Computers — 42

Concluding Remarks
 What have we defined so far? (single precision)

Exponent Significand Object

0 0 ???

0 nonzero ???

1-254 anything +/- floating-point

255 0 ???

255 nonzero ???

Chapter 3 — Arithmetic for Computers — 43

Zero and Special Numbers
 Represent 0?

 exponent all zeroes
 significand all zeroes too
 What about sign?
 +0: 0 00000000 00000000000000000000000

 -0: 1 00000000 00000000000000000000000

 Why two zeroes?
 Helps in some limit comparisons

 Special numbers
 Range: 1.0 2-126 1.8 10-38

 What if result too small? (>0, < 1.8x10-38 => Underflow!)
 What if result too large? (> 3.4x1038 => Overflow!)

Chapter 3 — Arithmetic for Computers — 44

Gradual Underflow
 Represent denormalized numbers (denorms)

 Exponent : all zeroes

 Significand : non-zeroes

 Allow a number to degrade in significance until it
become 0 (gradual underflow)

 The smallest normalized number

 1.0000 0000 0000 0000 0000 0000 2-126

Chapter 3 — Arithmetic for Computers — 45

Representation for +/- Infinity
 In FP, divide by zero should produce +/- infinity, not

overflow

 Why?
 OK to do further computations with infinity, e.g., X/0 > Y may be

a valid comparison

 IEEE 754 represents +/- infinity
 Most positive exponent reserved for infinity

 Significands all zeroes

S 1111 1111 0000 0000 0000 0000 0000 000

Chapter 3 — Arithmetic for Computers — 46

Representation for Not a Number

 What do I get if I calculate sqrt(-4.0) or 0/0?
 If infinity is not an error, these should not be either

 They are called Not a Number (NaN)

 Exponent = 255, Significand nonzero

 Why is this useful?
 Hope NaNs help with debugging?

 They contaminate: op(NaN,X) = NaN

 OK if calculate but don’t use it

Chapter 3 — Arithmetic for Computers — 47

IEEE 754 Encoding of FP Numbers
 What have we defined so far? (single-precision)

Exponent Significand Object
0 0 0
0 nonzero denom
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero NaN

Chapter 3 — Arithmetic for Computers — 48

Floating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
 1. Align binary points

 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Floating-Point Addition Algorithm
Basic addition algorithm:

compute Ye - Xe (to align binary point)

(1) right shift the smaller number, say Xm, that many
positions to form Xm 2Xe-Ye

(2) compute Xm 2Xe-Ye + Ym

if demands normalization, then normalize:

(3) left shift result, decrement result exponent

right shift result, increment result exponent

(3.1) check overflow or underflow during the shift

(4) round the mantissa
continue until MSB of data is 1
(NOTE: Hidden bit in IEEE Standard)

(5) if result is 0 mantissa, set the exponent

Chapter 3 — Arithmetic for Computers — 50

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 51

Floating-Point Multiplication
 Now consider a 4-digit binary example

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

 1. Add exponents
 Unbiased: –1 + –2 = –3
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve –ve
 –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 52

FP Arithmetic Hardware
 Much more complex than integer arithmetic
 Doing it in one clock cycle would take too long
 FP multiplier is of similar complexity to FP adder

 But uses a multiplier for significand instead of an
adder

 FP arithmetic hardware usually does
 Addition, subtraction, multiplication, division,

reciprocal, square-root
 FP integer conversion

 Operations usually takes several cycles
 Can be pipelined

Chapter 3 — Arithmetic for Computers — 53

FP Instructions in MIPS
 FP hardware is coprocessor 1

 Adjunct processor that extends the ISA

 Separate FP registers
 32 single-precision: $f0, $f1, … $f31
 Paired for double-precision: $f0/$f1, $f2/$f3, …

 Release 2 of MIPS ISA supports 32 × 64-bit FP reg’s

 FP instructions operate only on FP registers
 Programs generally don’t do integer ops on FP data, or vice

versa
 More registers with minimal code-size impact

 FP load and store instructions
 lwc1, ldc1, swc1, sdc1

 e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 54

FP Instructions in MIPS
 Single-precision arithmetic

 add.s, sub.s, mul.s, div.s
 e.g., add.s $f0, $f1, $f6

 Double-precision arithmetic
 add.d, sub.d, mul.d, div.d

 e.g., mul.d $f4, $f4, $f6

 Single- and double-precision comparison
 c.xx.s, c.xx.d (xx is eq, lt, le, …)
 Sets or clears FP condition-code bit

 e.g. c.lt.s $f3, $f4

 Branch on FP condition code true or false
 bc1t, bc1f

 e.g., bc1t TargetLabel
more examples,
please refer to Fig. 3.17, p. 200

Chapter 3 — Arithmetic for Computers — 55

FP Example: °F to °C
 C code:

float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));

}

 fahr in $f12, result in $f0, literals in global memory space

 Compiled MIPS code:
f2c: lwc1 $f16, const5($gp) #$f16=5.0(in Mem.)

lwc1 $f18, const9($gp) #$f18=9.0(in Mem.)
div.s $f16, $f16, $f18 #$f16=5.0/9.0
lwc1 $f18, const32($gp) #$f18=32.0(in Mem)
sub.s $f18, $f12, $f18 #f18=fahr-32.0
mul.s $f0, $f16, $f18 #$f0=(5/9)*(fahr-32)
jr $ra

Chapter 3 — Arithmetic for Computers — 56

FP Example: Array Multiplication
 X = X + Y × Z

 All 32 × 32 matrices, 64-bit double-precision elements

 C code:
void mm (double x[][],

double y[][], double z[][]) {
int i, j, k;
for (i = 0; i! = 32; i = i + 1)
for (j = 0; j! = 32; j = j + 1)
for (k = 0; k! = 32; k = k + 1)
x[i][j] = x[i][j]

+ y[i][k] * z[k][j];
}

 Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 57

FP Example: Array Multiplication
 MIPS code:

li $t1, 32 # $t1 = 32 (row size/loop end)

li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

addu $t2, $t2, $s1 # $t2 = i * size(row) + j

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

addu $t0, $t0, $s1 # $t0 = k * size(row) + j

sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

…

Chapter 3 — Arithmetic for Computers — 58

FP Example: Array Multiplication
…

sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

addu $t0, $t0, $s2 # $t0 = i*size(row) + k

sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

addiu $s2, $s2, 1 # $k k + 1

bne $s2, $t1, L3 # if (k != 32) go to L3

s.d $f4, 0($t2) # x[i][j] = $f4

addiu $s1, $s1, 1 # $j = j + 1

bne $s1, $t1, L2 # if (j != 32) go to L2

addiu $s0, $s0, 1 # $i = i + 1

bne $s0, $t1, L1 # if (i != 32) go to L1

Chapter 3 — Arithmetic for Computers — 59

Accurate Arithmetic
 IEEE Std 754 specifies additional rounding control

 Extra bits of precision (guard, round, sticky)

 Choice of rounding modes

 Allows programmer to fine-tune numerical behavior of a
computation

 Not all FP units implement all options
 Most programming languages and FP libraries just use defaults

 Trade-off between hardware complexity, performance,
and market requirements

Chapter 3 — Arithmetic for Computers — 60

Extra Bits for Rounding
 Why rounding after addition?

 Because not every intermediate results is truncated

 To keep more precision

 Guard and round bits: extra bits to guard against loss of bits during
intermediate additions
 to the right of significand

 can later be shifted left into significand during normalization

 Sticky bit
 Additional bit to the right of the round digit

 Better fine tune rounding

Chapter 3 — Arithmetic for Computers — 61

Example
 Try to add 2.98x100 and 2.34x102

 only 3 decimal digits are allowed

 with 2 more guard bits during computation

 perform rounding at last

 With guard bits and rounding more accurate results

2.34
+ 0.02

2.36
without guard bits

2.3400
+ 0.0298

2.3698 rounding 2.37

Chapter 3 — Arithmetic for Computers — 62

Interpretation of Data

 Bits have no inherent meaning
 Interpretation depends on the instructions

applied
 Computer representations of numbers

 Finite range and precision
 Need to account for this in programs

The BIG Picture

Chapter 3 — Arithmetic for Computers — 63

Associativity
 Parallel programs may interleave

operations in unexpected orders
 Assumptions of associativity may fail

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

 Need to validate parallel programs under
varying degrees of parallelism

Subword Parallellism
 Graphics and audio applications can take

advantage of performing simultaneous
operations on short vectors
 Example: 128-bit adder:

 16x8-bit adds; 8x16-bit adds; 4x32-bit adds

 Also called data-level parallelism, vector
parallelism, or Single Instruction, Multiple
Data (SIMD) (sec. 6.6)
 ARM NEON multimedia instruction extension
 Intel SSE, SSE2 FP instructions

Chapter 3 — Arithmetic for Computers — 64

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: S
ubw

ord P
arallelism

ARM NEON Instructions
 NEON supports all the subword data type you can

imagine except 64-bit FP numbers
 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned

integers
 32-bit FP numbers

Chapter 3 — Arithmetic for Computers — 65

Chapter 3 — Arithmetic for Computers — 66

x86 FP Architecture
 Originally based on 8087 FP coprocessor

 8 × 80-bit extended-precision registers
 Used as a push-down stack
 Registers indexed from TOS: ST(0), ST(1), …

 FP values are 32-bit or 64 in memory
 Converted on load/store of memory operand
 Integer operands can also be converted

on load/store
 Very difficult to generate and optimize code

 Result: poor FP performance

§3.7 R
eal S

tuff: S
tream

ing S
IM

D
 E

xtensions and AV
X

 in x86

Chapter 3 — Arithmetic for Computers — 67

x86 FP Instructions

 Optional variations
 I: integer operand
 P: pop operand from stack
 R: reverse operand order
 But not all combinations allowed

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 68

Streaming SIMD Extension 2 (SSE2)

 Adds 4 × 128-bit registers
 Extended to 8 registers in AMD64/EM64T

 Can be used for multiple FP operands
 2 × 64-bit double precision
 4 × 32-bit double precision
 Instructions operate on them simultaneously

 Single-Instruction Multiple-Data

Matrix Multiply
 Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }

Chapter 3 — Arithmetic for Computers — 69

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
 x86 assembly code:
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx # register %rcx = %rsi
3. xor %eax,%eax # register %eax = 0
4. vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1
5. add %r9,%rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,

element of A
7. add $0x1,%rax # register %rax = %rax + 1
8. cmp %eax,%edi # compare %eax to %edi
9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
11. add $0x1,%r11d # register %r11 = %r11 + 1
12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element

Chapter 3 — Arithmetic for Computers — 70

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
 Optimized C code:
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j]

*/
7. for(int k = 0; k < n; k++)
8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */
9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),
10. _mm256_broadcast_sd(B+k+j*n)));
11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */
12. }
13. }

Chapter 3 — Arithmetic for Computers — 71

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
 Optimized x86 assembly code:
1. vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx # register %rcx = %rbx
3. xor %eax,%eax # register %eax = 0
4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element
5. add $0x8,%rax # register %rax = %rax + 8
6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements
7. add %r9,%rcx # register %rcx = %rcx + %r9
8. cmp %r10,%rax # compare %r10 to %rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
11. add $0x1,%esi # register % esi = % esi + 1
12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements

Chapter 3 — Arithmetic for Computers — 72

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Chapter 3 — Arithmetic for Computers — 73

Right Shift and Division
 Left shift by i places multiplies an integer

by 2i

 Right shift divides by 2i?
 Only for unsigned integers

 For signed integers
 Arithmetic right shift: replicate the sign bit
 e.g., –5 / 4

 111110112 >> 2 = 111111102 = –2
 Rounds toward –∞

 c.f. 111110112 >>> 2 = 001111102 = +62

§3.9 Fallacies and P
itfalls

Chapter 3 — Arithmetic for Computers — 74

Concluding Remarks
 ISAs support arithmetic

 Signed and unsigned integers
 Floating-point approximation to reals

 Bounded range and precision
 Operations can overflow and underflow

 MIPS ISA
 Core instructions: 54 most frequently used

 100% of SPECINT, 97% of SPECFP
 Other instructions: less frequent

Chapter 3 — Arithmetic for Computers — 75

Rounding Methods
 Round to zero or Truncation

 The result closet to zero is returned.

 Nothing is added to the least significant bit.

 Round up
 The more positive result closest to the infinitely precise result is returned.

 If the result is positive and either the guard or the sticky bit is 1, the
result is rounded.

 If the result is negative, the result is not rounded because the unrounded
result is the most positive result that is closest to the infinitely precise
result.

 Round down
 The more negative result is returned.

 Round to nearest

