

Integer Addition

Example: $7+6$

- Overflow if result out of range
- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands
- Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: $7-6=7+(-6)$

| $+7:$ | $00000000 \ldots 00000111$ |
| :--- | :--- | :--- | :--- |
| -6: | $11111111 \ldots 11111010$ |
| $+1:$ | $00000000 \ldots 00000001$ |

Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
- Use MIPS addu, addui, subu instructions
- Saturated arithmetic
- Other languages (e.g., Ada, Fortran) require raising an exception
- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler
- Save PC in exception program counter (EPC) register
- Jump to predefined handler address
mf co (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

IIISS: Of ELECTROMICS
ICII
Chapter 3 - Arithmetic for Computers - 4

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive
- Consider the operations $A+B$, and $A-B$
- Can overflow occur if B is 0 ?
- Can overflow occur if A is 0 ?
- Overflow detection

Operation	A	B	Result indicating overflow
$A+B$	$>=0$	$>=0$	<0
$A+B$	<0	<0	$>=0$
$A-B$	$>=0$	<0	<0
$A-B$	<0	$>=0$	$>=0$

Overflow Detection Logic

Overflow occurs when adding:

- 2 positive numbers and the sum is negative
- 2 negative numbers and the sum is positive
=> sign bit is set with the value of the result
- Overflow if: Carry into MSB \neq Carry out of MSB
- Overflow = Carryln[N-1] XOR CarryOut[N-1]

Designing ALU for MIPS

Arithmetic logic unit (ALU) performs arithmetic and logical operations

- add, sub: two's complement adder/subtractor with overflow detection
- and, or, nor : logical AND, logical OR, logical NOR
- slt (set on less than): two's complement adder with inverter, check sign bit of result

32-Bit ALU \leftarrow Bit-slice ALU

Design trick 1: divide and conquer

- Break the problem into simpler problems, solve them and glue together the solution
Design trick 2: solve part of the problem and extend

A 4-bit ALU Example

Design trick 3: take pieces you know (or can imagine) and try to put them together

4-bit ALU

Overflow Detection Logic

Overflow = Carryln[N-1] XOR CarryOut[N-1]

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit and 16 -bit data

- Use 64-bit adder, with partitioned carry chain
- Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
- SIMD (single-instruction, multiple-data)

Saturating operations

- On overflow, result is largest representable value
- e.g. 2's-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication

- Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication in MIPS

mult \$t1, \$t2 \# t1 * t2

No destination register: product could be $\sim 2^{64}$; need two special registers to hold it

- 3-step process:

| 00011111111111111111111111111 | 111000000000000000000000000000000 |
| :--- | :--- | :--- |

Multiply Algorithm (Ver. 1)

Observations

1 clock per cycle => too slow

- Ratio of multiply to add 5:1 to 100:1
- Half of the bits in multiplicand always 0
=> 64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
=> least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?
- Product register wastes space => combine Multiplier and Product register

Multiply Algorithm (Ver. 2)

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Concluding Remarks

2 steps per bit because multiplier and product registers combined

- MIPS registers Hi and Lo are left and right half of Product register
=> this gives the MIPS instruction MultU
- What about signed multiplication?
- The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
- Apply definition of 2's complement
- sign-extend partial products and subtract at end
- Booth's Algorithm is an elegant way to multiply signed numbers using same hardware as before and save cycles
lins: Of ElECTRONICS

Faster Multiplier

Uses multiple adders
 - Cost/performance tradeoff

Can be pipelined

- Several multiplication performed in parallel

MIPS Multiplication Instructions

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

Instructions

- malt rs, rt / malturs, rt
- 64-bit product in HI/LO
- mf hi rd / mflord
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mell rd, rs, rt
- Least-significant 32 bits of product $->$ rd

Division

n-bit operands yield n-bit quotient and remainder

Check for 0 divisor
Long division approach

- If divisor \leq dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit
Restoring division
- Do the subtract, and if remainder goes < 0, add divisor back
Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Divide Algorithm

Start: Place Dividend in Remainder

1. Subtract Divisor register from Remainder register, and place the result in Remainder register

00000001000000000111 ${ }_{0}^{1} 1110111$

00000000100000000111
01111111 00000111
00000000010000000111
(1)0000011

000100000011
00010000001000000011 (1)0000001

```
0 0 1 1 0 0 0 0 0 0 0 1
```

00110000000100000001

Observations

Half of the bits in divisor register always 0
=> $1 / 2$ of 64 -bit adder is wasted
=> $1 / 2$ of divisor is wasted

- Instead of shifting divisor to right, shift remainder to left?

1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
=> switch order to shift first and then subtract
=> save 1 iteration

- Eliminate Quotient register by combining with Remainder register as shifted left

Divide Algorithm (Version 2)

Concluding Remarks

Observations: Divide vs. Multiply

- Same hardware as multiply:
just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Optimized Divider

One cycle per partial-remainder subtraction

- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
- Still require multiple steps

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient
- Instructions
- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mf hi, mf l o to access result

Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation
-2.34×10^{56}
normalized

- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

In binary
$\pm \pm 1 . x x x x x x x_{2} \times 2^{\text {ysyy }}$
Types float and double in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted

- Two representations
- Single precision (32-bit)
- Double precision (64-bit)

IEEE 754 Standard (1/2)

- Regarding single precision (SP), DP similar
- Sign bit:

1 means negative
0 means positive
Significand:

- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- always true: $0 \leq$ Significand <1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Standard (2/2)

Exponent:

- Need to represent positive and negative exponents
- Also want to compare FP numbers as if they were integers, to help in value comparisons
- If use 2's complement to represent? e.g., 1.0×2^{-1} versus $1.0 \times 2^{+1}$ ($1 / 2$ versus 2)

$1 / 2$| 0 | 11111111 | 00000000000000000000000 |
| :--- | :--- | :--- |

2 | 0 | 00000001 | 00000000000000000000000 |
| :--- | :--- | :--- |

If we use integer comparison for these two words, we will conclude that 1/2 > 2 !!!

Biased (Excess) Notation

- let notation 0000 be most negative, and 1111 be most positive Example: Biased 7

0000	-7
0001	-6
0010	-5
0011	-4
0100	-3
0101	-2
0110	-1
0111	0
1000	1
1001	2
1010	3
1011	4
1100	5
1101	6
1110	7
1111	8

IEEE 754 Standard

Using biased notation

- the bias is the number subtracted to get the real number
- IEEE 754 uses bias of 127 for single precision:

Subtract 127 from Exponent field to get actual value for exponent

- 1023 is bias for double precision
- The example becomes

$1 / 2$	0	01111110	00000000000000000000000
	0	10000000	00000000000000000000000

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S	Exponent	Fraction

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) })}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved Smallest value

- Exponent: 00000001
\Rightarrow actual exponent = $1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: 111... $11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2-52
- Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- $S=1$
- Fraction = 1000...002
- Exponent = -1 + Bias
- Single: $-1+127=126=0111111_{2}$
- Double: $-1+1023=1022=01111111110_{2}$
- Single: 1011111101000... 00

Double: 1011111111101000... 00

Floating-Point Example

What number is represented by the singleprecision float
11000000101000... 00

- $\mathrm{S}=1$
- Fraction = 01000...00
- Fxponent $=10000001_{2}=129$

$$
\begin{aligned}
x & =(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Concluding Remarks

What have we defined so far? (single precision)

Exponent	Significand	Object
0	0	???
0	nonzero	???
1-254	anything	+/- floating-point
255	0	???
255	nonzero	???

Zero and Special Numbers

Represent 0 ?

- exponent all zeroes
- significand all zeroes too
- What about sign?
- +0: 0 00000000 00000000000000000000000
- -0: 10000000000000000000000000000000

Why two zeroes?

- Helps in some limit comparisons
- Special numbers
- Range: $1.0 \times 2^{-126} \approx 1.8 \times 10^{-38}$
- What if result too small? ($>0,<1.8 \times 10^{-38}=>$ Underflow!)
- What if result too large? ($>3.4 \times 10^{38}=>$ Overflow!)

Gradual Underflow

Represent denormalized numbers (denorms)

- Exponent : all zeroes
- Significand : non-zeroes
- Allow a number to degrade in significance until it become 0 (gradual underflow)
- The smallest normalized number
$1.000000000000000000000000 \times 2^{-126}$

Representation for +|- Infinity

In FP, divide by zero should produce +/- infinity, not overflow

Why?

- OK to do further computations with infinity, e.g., $\mathrm{X} / 0>\mathrm{Y}$ may be a valid comparison
IEEE 754 represents +/- infinity
- Most positive exponent reserved for infinity
- Significands all zeroes

S	11111111	00000000000000000000000

Representation for Not a Number

What do I get if I calculate sqrt(-4.0) or $0 / 0$?

- If infinity is not an error, these should not be either
- They are called Not a Number (NaN)
- Exponent = 255, Significand nonzero

Why is this useful?

- Hope NaNs help with debugging?
- They contaminate: op(NaN,X)=NaN
- OK if calculate but don't use it

IEEE 754 Encoding of FP Numbers

What have we defined so far? (single-precision)

Exponent	Significand	Object
0	0	0
0	nonzero	denom
1-254	anything	+/- fl. pt. \#
255	0	+/- infinity
255	nonzero	NaN

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$

3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000 \times{ }^{-4}$ (no change) $=0.0625$

Floating-Point Addition Algorithm

Basic addition algorithm:
compute Ye - Xe (to align binary point)
(1) right shift the smaller number, say Xm , that many positions to form $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}$
(2) compute $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}+\mathrm{Ym}$
if demands normalization, then normalize:
(3) left shift result, decrement result exponent right shift result, increment result exponent
(3.1) check overflow or underflow during the shift
(4) round the mantissa
continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)
(5) if result is 0 mantissa, set the exponent

FP Adder Hardware

Floating-Point Multiplication

- Now consider a 4-digit binary example
- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

$$
-1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}
$$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow

4. Round and renormalize if necessary

- $1.110_{2} \times 2^{-3}$ (no change)

5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$

- $-1.110_{2} \times 2^{-3}=-0.21875$

FP Arithmetic Hardware

Much more complex than integer arithmetic
Doing it in one clock cycle would take too long
FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significand instead of an adder
FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
- Adjunct processor that extends the ISA
- Separate FP registers
- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- Release 2 of MIPS ISA supports 32×64-bit FP reg's

FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact
- FP load and store instructions
- lwc1, ldc1, swc1, sdc1
- e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
- add.s, sub.s, mul.s, div.s
- e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add.d, sub.d, mul.d, div.d
- e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
- C. $\boldsymbol{x x}$.s, $\mathbf{c} . \boldsymbol{x x} . \mathbf{d}(x x$ is eq, $1 t, 1$ e, ...)
- Sets or clears FP condition-code bit
= e.g.c.lt.s \$f3, \$f4
Branch on FP condition code true or false
- bc1t, bc1f
- e.g., bc1t TargetLabel
more examples,
please refer to Fig. 3.17, p. 200

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:
float f2c (float fahr) \{ return ((5.0/9.0)*(fahr - 32.0));
\}

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp) #$f16=5.0(in Mem.)
    lwc1 $f18, const9($gp) #$f18=9.0(in Mem.)
    div.s $f16, $f16, $f18 #$f16=5.0/9.0
    lwc1 $f18, const32($gp) #$f18=32.0(in Mem)
    sub.s $f18, $f12, $f18 #f18=fahr-32.0
    mul.s $f0, $f16, $f18 #$f0=(5/9)*(fahr-32)
    jr $ra
```


FP Example: Array Multiplication

$X=X+Y \times Z$

- All 32×32 matrices, 64 -bit double-precision elements

C code:
void mm (double x[][], double $y[][]$, double $z[][])$ \{
int i, j, k;
for (i = 0; i! = 32; i = i + 1)
for ($\mathrm{j}=0$; j ! $=32$; $\mathrm{j}=\mathrm{j}+1$)
for (k = 0; k! = 32; k = k + 1)
x[i][j] = x[i][j]
+ y[i][k] * z[k][j];
\}

- Addresses of x, y, z in \$a0, \$a1, \$a2, and i , j , k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

FP Example: Array Multiplication

addu sll addu I . d	\$t O, \$sO, 5 \$t O, \$t O, \$s2 \$t O, \$t O, 3 \$t O, \$al, \$t O \$f 18, O (\$t O)	$\#$ \$t O $=\mathrm{i} * 32$ (size of row of y) \# \$tO $=$ i*size(row) $+k$ \# \$t O = byte offset of [i][k] $\#$ \$t O $=$ byte address of y[i][k] $\#$ \$f $18=8$ bytes of y[i][k]
mil . d add. d	\$f 16, \$f 18, \$f 16 \$f 4, \$f 4, \$f 16	\# \$f $\mathbf{1 6}=y[i][k] * z[k][j]$ \# f 4 $=x[i][j]+y[i][k] * z[k][j]$
addi u bne s. d	$\begin{array}{lll} \$ s 2, & \$ s 2, & 1 \\ \$ s 2, & \$ t 1, & L 3 \\ \$ f 4, & O(\$ t 2) \end{array}$	\# $\$ k k+1$ \# if (k ! = 32) go to L3 $\# \times[i][j]=\$ f 4$
addi u bne	$\begin{array}{lll} \$ s 1, & \$ s 1, & 1 \\ \$ s 1, & \text { \$tll, } & \text { L2 } \end{array}$	$\# \$ \mathbf{j}=\mathbf{j}+\mathbf{1}$ \# if ($\mathrm{j} \quad!=32$) go to L2
addi u bne	$\begin{array}{lll} \$ s 0, & \$ s 0, & 1 \\ \$ s 0, & \$ t 1, & L 1 \end{array}$	$\# \$ \mathbf{i}=\mathbf{i}+1$ \# if (i $\quad=32$) go to Ll

Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Extra Bits for Rounding

Why rounding after addition?

- Because not every intermediate results is truncated
- To keep more precision
- Guard and round bits: extra bits to guard against loss of bits during intermediate additions
- to the right of significand
- can later be shifted left into significand during normalization
- Sticky bit
- Additional bit to the right of the round digit
- Better fine tune rounding

- Get the same results as if the intermediate results were calculated to infinite precision and then rounded.

Example

Try to add 2.98×10^{0} and 2.34×10^{2}

- only 3 decimal digits are allowed

- with 2 more guard bits during computation
- perform rounding at last
2.3400
$\begin{array}{r} \\ +0.0298 \\ \hline\end{array}$
2.3698
\rightarrow rounding $\boldsymbol{\rightarrow} \mathbf{2 . 3 7}$
- With guard bits and rounding \rightarrow more accurate results

Interpretation of Data

The BIG Picture
Bits have no inherent meaning

- Interpretation depends on the instructions applied
Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Associativity

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 E+38$		$-1.50 E+38$
y	$1.50 \mathrm{E}+38$	$0.00 \mathrm{E}+00$	
z	1.0	1.0	$1.50 \mathrm{E}+38$
		$1.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$

Need to validate parallel programs under varying degrees of parallelism

Subword Parallellism

Graphics and audio applications can take advantage of performing simultaneous operations on short vectors

- Example: 128-bit adder:

16x8-bit adds; 8x16-bit adds; 4x32-bit adds
Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD) (sec. 6.6)

- ARM NEON multimedia instruction extension
- Intel SSE, SSE2 FP instructions

ARM NEON Instructions

NEON supports all the subword data type you can imagine except 64-bit FP numbers

- 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers
- 32-bit FP numbers

Data transfer	Arithmetic	Logical/Compare
VLDR.F32	VADD.F32, VADD $\{$ L,WYS8, U8,S16,U16,S32,U32\}	VAND.64, VAND. 128
VSTR.F32	VSUB.F32, VSUB\{L,W\}S8,U8,S16,U16,S32,U32\}	VORR.64, VORR. 128
VLD $\{1,2,3.4\} .\{18,116,132\}$	VMUL.F32, VMULL\{S8,U8,S16,U16,S32,U32\}	VEOR.64, VEOR. 128
VST\{1,2,3.4\}. $\{18,116,132\}$	VMLA.F32, VMLAL\{S8,U8,S16,U16,S32,U32\}	VBIC.64, VBIC. 128
VMOV.\{18,116,132,F32\}, \#imm	VMLS.F32, VMLSL\{S8,U8,S16,U16,S32,U32\}	VORN.64, VORN. 128
VMVN.\{18,116,I32,F32\}, \#imm	VMAX.\{S8,U8,S16,U16,S32,U32,F32\}	VCEQ.(I8,I16,I32,F32\}
VMOV. $\{164,1128\}$	VMIN.\{S8,U8,S16,U16,S32,U32,F32\}	VCGE.(S8,U8,S16,U16,S32,U32,F32\}
VMVN. $\{164,1128$ \}	VABS. $\{\mathrm{S} 8, \mathrm{~S} 16, \mathrm{~S} 32, \mathrm{~F} 32\}$	VCGT.\{S8,U8,S16,U16,S32,U32,F32\}
	VNEG.\{S8,S16,S32,F32\}	VCLE.\{S8,U8,S16,U16,S32,U32,F32\}
	VSHL. \{S8,U8,S16,U16,S32,S64,U64\}	VCLT.\{S8,U8,S16,U16,S32,U32,F32\}
	VSHR.\{S8,U8,S16,U16,S32,S64,U64\}	VTST. $\{18,116,132\}$

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...

FP values are 32-bit or 64 in memory

- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental		
F\\|LD memx ST(i)	F\\|ADD menx ST(i)	F $/$ COM	FPATAN		
F\\|STP memx ST(i)	FISUBRP menx ST(i)	FI UCOMP	F2XM		
FLDPI	F\\| MULP menx ST(i)	FSTSW AX/ mem	FCOS		
F LDI	F\| DI VRP nemx ST(i)		FPTAN		
FLDZ	FSQRT		FPREM		
	FABS		FPSI N		
	FRNDI NT		FYL2X		

Optional variations

- । : integer operand
- p: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit double precision
- Instructions operate on them simultaneously

Single-Instruction Multiple-Data

Matrix Multiply

Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)
2. \{
3. for (int $i=0 ; i<n ;++i)$
4. for (int $j=0 ; j<n$; ++j)
5. \{
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for (int $k=0 ; k<n ; k++$)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. $C[i+j * n]=c i j ; ~ / * ~ C[i][j]=c i j * /$
10. \}
11. \}

Matrix Multiply

x86 assembly code:

1. vmovsd (\%r10),\%xmm0
2. mov \%rsi,\%rcx
\# register \%rcx = \%rsi
3. xor \%eax,\%eax
\# register \%eax = 0
4. vmovsd (\%rcx),\%xmm1
\# Load 1 element of B into \%xmm1
5. add \%r9,\%rcx \# register \%rcx = \%rcx + \%r9
6. vmulsd (\%r8,\%rax,8),\%xmm1,\%xmm1 \# Multiply \%xmm1, element of A
7. add \$0x1,\%rax \# register \%rax = \%rax + 1
8. cmp \%eax,\%edi \# compare \%eax to \%edi
9. vaddsd \%xmm1,\%xmm0,\%xmm0 \# Add \%xmm1, \%xmm0
10. jg 30 <dgemm+0x30> \# jump if \%eax > \%edi
11. add \$0x1,\%r11d \# register \%r11 = \%r11 + 1
12. vmovsd \%xmm0,(\%r10) \# Store \%xmm0 into C element

Matrix Multiply

Optimized C code:

1. \#include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. \{
4. for (int $i=0 ; i<n ; i+=4$)
5. for (int $j=0 ; j<n ; j++$) \{
6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i][j]
7. for (int $k=0 ; k<n ; k++$)
8. $\quad \mathrm{c} 0=$ _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */
9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),
10. _mm256_broadcast_sd(B+k+j*n)));
11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */
12. \}
13. \}

Matrix Multiply

Optimized x86 assembly code:

1. vmovapd (\%r11),\%ymm0
2. mov \%rbx,\%rcx
3. xor \%eax,\%eax
4. vbroadcastsd (\%rax,\%r8,1),\%ymm1 \# Make 4 copies of B element
5. add \$0x8,\%rax
6. vmulpd (\%rcx),\%ymm1,\%ymm1
7. add \%r9,\%rcx
8. cmp \%r10,\%rax
9. vaddpd \%ymm1,\%ymm0,\%ymm0
10. jne 50 <dgemm+0x50>
11. add \$0x1,\%esi
12. vmovapd \%ymm0,(\%r11)
\# Load 4 elements of C into \%ymm0
\# register \%rcx = \%rbx
\# register \%eax = 0
\# register \%rax = \%rax + 8
\# Parallel mul \%ymm1,4 A elements
\# register \%rcx = \%rcx + \%r9
\# compare \%r10 to \%rax
\# Parallel add \%ymm1, \%ymm0
\# jump if not \%r10 != \%rax
\# register \% esi = \% esi + 1
\# Store \%ymm0 into 4 C elements

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- $11111011_{2} \gg 2=11111110_{2}=-2$

Rounds toward $-\infty$

- c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals
- Bounded range and precision
- Operations can overflow and underflow
- MIPS ISA
- Core instructions: 54 most frequently used - 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

Rounding Methods

- Round to zero or Truncation
- The result closet to zero is returned.
- Nothing is added to the least significant bit.
- Round up
- The more positive result closest to the infinitely precise result is returned.
- If the result is positive and either the guard or the sticky bit is 1 , the result is rounded.
- If the result is negative, the result is not rounded because the unrounded result is the most positive result that is closest to the infinitely precise result.
- Round down
- The more negative result is returned.
- Round to nearest

