
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 2
Instructions: Language
of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set
 The repertoire of instructions of a computer
 Different computers have different instruction

sets
 But with many aspects in common

 Early computers had very simple instruction
sets
 Simplified implementation

 Many modern computers also have simple
instruction sets
 All have a common goal: to find a language that

makes it easy to build the hardware

§2.1 Introduction

Chapter 2 — Instructions: Language of the Computer — 3

 A specification of a standardized programmer-visible interface to hardware,
comprises of:
 A set of instructions

 instruction types
 with associated argument fields, assembly syntax, and machine

encoding.
 A set of named storage locations

 registers
 memory

 A set of addressing modes (ways to name locations)
 Often an I/O interface

 memory-mapped

Instruction Set Architecture, ISA

Instruction Set Architecture

software

hardware

High level language code : C, C++, Java, Fortan,

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

compiler

assembler

Chapter 2 — Instructions: Language of the Computer — 4

ISA Design Issue
 Where are operands stored?

 How many explicit operands are there?

 How is the operand location specified?

 What type & size of operands are supported?

 What operations are supported?

Before answering these questions, let’s consider more about

 Memory addressing

 Data operand

 Operations

Chapter 2 — Instructions: Language of the Computer — 5

Memory Addressing
 Most CPUs are byte-addressable and provide access for

 Byte (8-bit)
 Half word (16-bit)
 Word (32-bit)
 Double words (64-bit)

 How memory addresses are interpreted and how they
are specified?
 Little Endian or Big Endian

 for ordering the bytes within a larger object within memory
 Alignment or misaligned memory access

 for accessing to an abject larger than a byte from memory
 Addressing modes

 for specifying constants, registers, and locations in memory

Chapter 2 — Instructions: Language of the Computer — 6

Byte-Order (“Endianness”)
 Little Endian

 The byte order put the byte whose address is “xx…x000” at the
least-significant position in the double word

 E.g. Intel, DEC, …
 The bytes are numbered as

 Big Endian
 The byte order put the byte whose address is “xx…x000” at the

most-significant position in the double word
 E.g. MIPS, IBM, Motorolla, Sun, HP, …
 The byte address are numbered as

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

LSBMSB

LSBMSB

Chapter 2 — Instructions: Language of the Computer — 7

Little or Big Endian ?
 No absolute advantage for one over the other, but

Byte order is a problem when exchanging data among computers

 Example
 In C, int num = 0x12345678; // a 32-bit word,

 how is num stored in memory?

.

.

56

.

.

34
124n+0

78

4n+1
4n+2
4n+3

Big Endian

.

.

34

.

.

56
784n+0

12

4n+1
4n+2
4n+3

Little Endian

Chapter 2 — Instructions: Language of the Computer — 8

Data Alignment
 The memory is typically aligned on a word or double-

word boundary.
 An access to object of size S bytes at byte address A is

called aligned if A mod S = 0.
 Access to an unaligned operand may require more

memory accesses !!

32

32

32

Mis-aligned word reference

To Processor

Chapter 2 — Instructions: Language of the Computer — 9

Remarks
 Unrestricted Alignment

 Software is simple

 Hardware must detect misalignment and make more memory accesses

 Expensive logic to perform detection

 Can slow down all references

 Sometimes required for backwards compatibility

 Restricted Alignment
 Software must guarantee alignment

 Hardware detects misalignment access and traps

 No extra time is spent when data is aligned

 Since we want to make the common case fast, having restricted alignment
is often a better choice, unless compatibility is an issue.

Chapter 2 — Instructions: Language of the Computer — 10

Summary: Endians & Alignment

01234567

4

1

Word-aligned word at byte address 4.

Byte-aligned (non-aligned) word, at byte address 1.

2

Halfword-aligned word at byte address 2.

Increasing byte
address

0 (LSB)123 (MSB)

3 (MSB)210 (LSB)

Little-endian byte order

Big-endian byte order

4

4

Chapter 2 — Instructions: Language of the Computer — 11

Addressing Mode ?
 It answers the question:

 Where can operands/results be located?

 Recall that we have two types of storage in computer :
registers and memory
 A single operand can come from either a register or a memory

location

 Addressing modes offer various ways of specifying the specific
location

Chapter 2 — Instructions: Language of the Computer — 12

Addressing Modes Visualization (1)

immImmediate

Register reg

Instr. Field(s)Mode
Name Reg. File Memory

Register
Indirect

reg

Direct addr

Displacement reg imm
+

“base”
address

all your base are belong to us

offset

Instr. Field(s)Mode
Name Reg. File Memory

Indexed reg1 reg2
+

“base”
address

offset

Memory
Indirect

reg

Scaled reg1 reg2 rowsz +

×

Example row size = 8 locations
Base

address

index

(r1)[r2]

Addressing Modes Visualization (2)

Chapter 2 — Instructions: Language of the Computer — 14

Addressing Mode Example

Addressing Mode Example Action
1. Register direct Add R1, R2, R3 R1 <- R2 + R3
2. Immediate Add R1, R2, #3 R1 <- R2 + 3
3. Register indirect Add R1, R2,(R3) R1 <- R2 + M[R3]
4. Displacement LD R1, 100(R2) R1 <- M[100 + R2]
5. Indexed LD R1, (R2 + R3) R1 <- M[R2 + R3]
6. Direct LD R1, (1000) R1 <- M[1000]
7. Memory Indirect Add R1, R2, @(R3) R1 <- R2 + M[M[R3]]
8. Auto-increment LD R1, (R2)+ R1 <- M[R2]

R2 <- R2 + d
9. Auto-decrement LD R1, (R2)- R1 <- M[R2]

R2 <- R2 – d
10. Scaled LD R1, 100(R2)[R3] R1 <- M[100+R2+R3*d]

R: Register, M: Memory

How Many Addressing Mode ?
 A Tradeoff: complexity vs. instruction count

 Should we add more modes?
 Depends on the application class
 Special addressing modes for DSP/GPU processors

 Modulo or circular addressing
 Bit reverse addressing
 Stride, gather/scatter addressing

 Need to support at least three types of addressing mode
 Displacement, immediate, and register indirect
 They represent 75% -- 99% of the addressing modes in benchmarks

 The size of the address for displacement mode to be at least 12—16
bits (75% – 99%)

 The size of immediate field to be at least 8 – 16 bits (50%— 80%)
 DSPs rely on hand-coded libraries to exercise novel addressing modes

Chapter 2 — Instructions: Language of the Computer — 15

Chapter 2 — Instructions: Language of the Computer — 16

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 17

Arithmetic Operations
 Add/subtract, 3-operand instruction

 Two sources and one destination
add a, b, c # a = b + c

 The words to the right of the sharp symbol (#) are
comments for the human reader

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors regularity

 Regularity makes implementation simpler
 Simplicity enables higher performance at lower

cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 18

Arithmetic Example
 C code:
f = (g + h) - (i + j);

 Compiled MIPS code:
 break a C statement into several assembly

instructions
 introduce temporary variables

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 19

Register Operands
 Arithmetic instructions use register operands
 Registers are primitives used in hardware design

that are also visible to the programmer
 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 20

Register Operand Example
 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

operands are all registers !!

Chapter 2 — Instructions: Language of the Computer — 21

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 22

Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

addressing mode

Chapter 2 — Instructions: Language of the Computer — 23

Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 24

Registers vs. Memory
 Registers are faster to access than memory

 Operating on memory data requires loads and
stores
 More instructions to be executed

 Compiler must use registers for variables as
much as possible
 Only spill to memory for less frequently used variables

 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 25

Immediate Operands
 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant:

addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 26

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers
add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 27

MIPS Registers
 32 32-bit Registers with R0:=0

 These registers are general purpose, any one can be used as an
operand/result of an operation

 But making different pieces of software work together is easier if
certain conventions are followed concerning which registers are
to be used for what purposes.

 Reserved registers: R1, R26, R27
 R1 for assembler, R26-27 for OS

 Special usage:
 R28: pointer register
 R29: stack pointer
 R30: frame pointer
 R31: return address

Chapter 2 — Instructions: Language of the Computer — 28

Policy of Use Conventions

Name Register num ber Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system
These conventions are usually suggested by the vendor and supported by the compilers

Chapter 2 — Instructions: Language of the Computer — 29

Binary Representation of Integers
 Number can be represented in any base

 Hexadecimal/Binary/Decimal representations
ACE7hex = 1010 1100 1110 0111bin = 44263dec
 most significant bit, MSB, usually the leftmost bit

 least significant bit, LSB, usually the rightmost bit

 Ideally, we can represent any integer if the bit width is
unlimited

 Practically, the bit width is limited and finite…
 for a 8-bit byte 0~255 (0~28 – 1)

 for a 16-bit halfword 0~65,535 (0~216 – 1)

 for a 32-bit word 0~4,294,967,295 (0~232 – 1)

Chapter 2 — Instructions: Language of the Computer — 30

Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 31

Signed Number
 Unsigned number is mandatory

 Eg. Memory access, PC, SP, RA

 Sometimes, negative integers are required in arithmetic
operation
 a representation that can present both positive and negative

integers is demanded

 3 well-known methods for signed integers
 Sign and Magnitude

 1’s complement

 2’s complement

Chapter 2 — Instructions: Language of the Computer — 32

Sign and Magnitude
 Use the MSB as the sign bit

 0 for positive and 1 for negative

 If the bit width is n
 range –(2n–1 – 1) ~ 2n–1 – 1; 2n – 1 different numbers
 e.g., for a byte –127 ~ 127

 Examples
 00000110 +6

 10000111 –7

 Shortcomings
 2 0’s; positive 0 and negative 0; 00000000 and 10000000

 relatively complicated HW design (e.g., adder)

Chapter 2 — Instructions: Language of the Computer — 33

1’s Complement
+7 0000 0111

–7 1111 1000 (bit inverting)

 If the bit width is n
 range –(2n–1 – 1) ~ 2n–1 – 1; 2n – 1 different numbers
 e.g., for a byte –127 ~ 127

 The MSB implicitly serves as the sign bit
 except for –0

 Shortcomings
 2 0’s; positive 0 and negative 0; 00000000 and 11111111

 relatively complicated HW design (e.g., adder)

Chapter 2 — Instructions: Language of the Computer — 34

2’s Complement
+7 0000 0111
–7 1111 1001 (bit inverting first then add 1)

 The MSB implicitly serves as the sign bit
 2’s complement of 10000000 10000000

 this number is defined as –128

 If the bit width is n
 range –2n–1 ~ 2n–1 – 1; 2n different numbers
 e.g., for a byte –128 ~ 127

 Relatively easy hardware design

 Virtually, all computers use 2’s complement
representation

Chapter 2 — Instructions: Language of the Computer — 35

2’s-Complement Signed Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: –2n – 1 ~ +2n – 1 – 1

 Example

 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 ~ +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 36

2’s-Complement Signed Integers
 Bit 31 is sign bit

 1 for negative numbers

 0 for non-negative numbers

 –(–2n – 1) can’t be represented

 Non-negative numbers have the same unsigned and 2’s-
complement representation

 Some specific numbers
 0: 0000 0000 … 0000

 –1: 1111 1111 … 1111

 Most-negative: 1000 0000 … 0000

 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 37

Signed Negation
 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 38

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 39

lbu vs lb
 We want to load a BYTE into $s3 from the address 2000

After the load, what is the value of $s3 ?

 A1: 0000 0000 0000 0000 0000 0000 1111 1111 (255) ?

 A2: 1111 1111 1111 1111 1111 1111 1111 1111 (–1) ?

 Signed (A2) lb $s3, 0($s0)

 Unsigned (A1) lbu$s3, 0($s0) 1111 1111
1111 1111

:

Assume
$s0 = 2000

1999
2000
2001

1111 1111
1111 1111

Chapter 2 — Instructions: Language of the Computer — 40

Representing Instructions
 Instructions are encoded in binary

 Called machine code
 MIPS instructions

 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers (5-bit representation)
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

Chapter 2 — Instructions: Language of the Computer — 41

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 42

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)
 rs: first source register number
 rt: second source register number
 rd: destination register number
 shamt: shift amount (00000 for now)
 funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 43

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 44

Hexadecimal
 Base 16

 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 45

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Concluding Remarks

 reg: means a register number between 0 and 31
 address/constant: means a 16-bit address/constant
 n.a.: means not applicable
 All the R-format instructions have the same value in the op-field. The

hardware uses the funct-field to decide the variant of the R-type
operation

 R-type and I-type instructions have similar formats with the same
length

Chapter 2 — Instructions: Language of the Computer — 46

Translating MIPS Assembly Language
into Machine Language
 A[300] = h + A[300];

 h in $s2, base address of A in $t1
 Compiled MIPS code:

lw $t0, 1200($t1)
add $t0, $s2, $t0
sw $t0, 1200($t1)

Chapter 2 — Instructions: Language of the Computer — 47

Chapter 2 — Instructions: Language of the Computer — 48

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 49

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Sll $t2, $s0, 4 # $t2 = $s0 << 4 bits

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 50

AND Operations
 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 51

OR Operations
 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 52

NOT Operations
 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 In keeping with the 3-operand format, MIPS uses
the NOR instruction instead of the NOT instruction
 a NOR b == NOT (a OR b)

 nor $t0, $t1, $t3 # $t0 = ~ ($t1 | $t3)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 53

Program Flow Control
 Decision making instructions

 alter the control flow, i.e., change the "next" instruction to be executed

 Branch classifications
 Unconditional branch

 Always jump to the desired (specified) address

 Conditional branch
 Only jump to the desired (specified) address if the condition is true;

otherwise, continue to execute the next instruction

 Destination addresses can be specified in the same way as other
operands (combination of register, immediate constant, and memory
location), depending on what addressing modes are supported in the
ISA

§2.7 Instructions for M
aking D

ecisions

Chapter 2 — Instructions: Language of the Computer — 54

MIPS Branch Operations
 Conditional branches

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 Unconditional branches
 j L1

 unconditional jump to instruction labeled L1
 jal L1

 Jump and link
 jr $ra

 Jump register

Chapter 2 — Instructions: Language of the Computer — 55

Compiling If Statements
 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, h, i, j… in $s0, $s1, …, $s4

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: … Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 56

Compiling Loop Statements
 C code:

while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Why ?

Chapter 2 — Instructions: Language of the Computer — 57

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 58

More Conditional Operations
 Set result to 1 if a condition is true; Otherwise, set to 0

 slt rd, rs, rt
 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant
 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

 MIPS compiler uses the slt, beq, bne, $zero to
create , , , , .

Chapter 2 — Instructions: Language of the Computer — 59

Branch Instruction Design
 beq and bne are the common case
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 MIPS compiler uses the slt, beq, bne,
$zero to create , , , , . is a good
design compromise

Chapter 2 — Instructions: Language of the Computer — 60

Branches on LT/LE/GT/GE
 How to implement an equivalent blt $s0, $s1, L1?

slt $t0, $s0, $s1

bne $t0, $zero, L1 # $zero is always 0

 bge $s0, $s1, L1?

slt $t0, $s0, $s1

beq $t0, $zero, L1

 bgt $s0, $s1, L1?

slt $t0, $s1, $s0

bne $t0, $zero, L1
Try ble yourself !!

Chapter 2 — Instructions: Language of the Computer — 61

Signed vs. Unsigned Comparison

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed
 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned
 +4,294,967,295 > +1 $t0 = 0

Case/Switch Statement
 Case statement in C

switch (k){
case 0: f=i+j;
case 1: f=g+h;
case 2: f=g-h;
case 3: f=i-j;

}

 A simplest way to implement case/switch is via a sequence of
conditional tests, turning the case/switch statement into a
chain of if-then-else statement

 One more efficient way is via a jump address table or jump
table. And, the program needs only to index into the table and
then jump to the appropriate label of sequence

Chapter 2 — Instructions: Language of the Computer — 62

L3
L2
L1
L0

Jump address table in memory

JumpTable[k] k=3
 k=2
 k=1
 k=0

Jump Register, jr

 Case statement in C
switch (k){

case 0: f=i+j;
case 1: f=g+h;
case 2: f=g-h;
case 3: f=i-j;

}
 Assume f, g, h,i, j, k are stored in registers

$s0, $s1,…, and $s5, respectively
 Assume $t2 contains 4
 Assume starting address contained in $t4,

corresponding to labels L0, L1, L2, and L3,
respectively

slt $t3, $s5, $zero #test if k<0
bne $t3, $zero, Exit #if k<0,exit
slt $t3, $s5, $t2 #test if k<4
beq $t3, $zero, Exit #if k4,exit
add $t1, $s5, $s5 #2k
add $t1, $t1, $t1 #$t1=4k
add $t1, $t1, $t4
lw $t0, 0($t1)
jr $t0

L0:add $s0, $s3, $s4,
j Exit

L1:add $s0, $s1, $s2
j Exit

L2:sub $s0, $s1, $s2
j Exit

L3:sub $s0, $s3, $s4
Exit:L3

L2
L1
L0

Jump address table in memory

JumpTable[k] 4n+12 k=3
4n+8 k=2
4n+4 k=1
4n+0 k=0

Use variable k to index a jump address tabke

A switch statement for 0k4

Chapter 2 — Instructions: Language of the Computer — 64

Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Caller Callee

Note that you have only one set of registers !!

Chapter 2 — Instructions: Language of the Computer — 65

Recall: Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)

 Used to pass parameters
 $v0, $v1: result values (reg’s 2 and 3)

 Used to return values
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

 Used to return to the point of origin

Chapter 2 — Instructions: Language of the Computer — 66

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction is saved in $ra

 Jumps to target address

 Procedure return: jump register
jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps
 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 67

Leaf Procedure Example
 C code:
int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 68

Leaf Procedure Example
 MIPS code:

leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Adjust stack for one item

Chapter 2 — Instructions: Language of the Computer — 69

Nested Procedures
 Procedures that call other procedures
 For nested call, caller needs to save on the

stack:
 Its return address
 Any arguments and temporaries needed after

the call
 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 70

A Recursive C Procedure Example

 C code:
int fact (int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 71

Non-Leaf Procedure Example
 MIPS code:

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1 # if n1, go to L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Remark
 What is and what is not preserved across a

procedure call

 $sp is itself preserved by the callee adding exactly the
same amount that was subtracted from it

 The other registers are preserved by saving them on
the stack (if they are used) and restoring them from
there

Chapter 2 — Instructions: Language of the Computer — 72

Chapter 2 — Instructions: Language of the Computer — 73

Local Data on the Stack

 Local data allocated by callee (local variables to the procedure, but do
not fit in registers)
 e.g., C automatic variables, arrays or structures, …

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 74

Memory Layout
 Text: program code
 Static data: constants and other

static (global) variables
 e.g., static variables in C, constant

arrays and strings
 $gp initialized to 1000 8000H

allowing ±offsets into this segment
 Dynamic data: heap

 E.g., malloc in C, new in Java
 Stack: automatic storage

 Start in the high end of memory
and grows down

 Stack and heap are grown
toward each other

Chapter 2 — Instructions: Language of the Computer — 75

Character Data
 Byte-encoded character sets

 ASCII (American standard code for information
interchange): 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set (universal encoding)
 Used in Java (16-bit character), C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings
 UTF-32: 32-bit character

Chapter 2 — Instructions: Language of the Computer — 76

Byte/Halfword Operations
 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

 Sign extend to 32 bits in rt

lb rt, offset(rs) lh rt, offset(rs)

 Zero extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

 Store just rightmost byte/halfword
sb rt, offset(rs) sh rt, offset(rs)

Chapter 2 — Instructions: Language of the Computer — 77

String Copy Example
 C code (naïve):

 Null-terminated string: used to mark the end of the string

void strcpy (char x[], char y[])
{ int i;

i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}
 Addresses of x, y in $a0, $a1

 i in $s0

Chapter 2 — Instructions: Language of the Computer — 78

String Copy Example
 MIPS code:

strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0 for i
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] y[i]
beq $t2, $zero, L2 # exit loop if y[i] == ‘\0’
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 79

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant; load upper immediate
 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0, $s0, 2304

4000000 (22-bit)>16-bit

§2.9 A
ddressing for 32-bit Im

m
ediate and address

The Effect of the lui Instruction

 Either the compiler or the assembler must break large
constants into pieces and then resemble them into a register.
 The immediate field’s size is restricted
 The assembler must have a temporary register available in which

to create the long values for resembling them into a register.
 That is why $at (assembler temporary) is reserved for the

assembler.

Chapter 2 — Instructions: Language of the Computer — 80

Chapter 2 — Instructions: Language of the Computer — 81

Jump Addressing

 Jump (j and jal) instruction is J-type

 The target address could be anywhere in text
segment: Encode full address in instruction

op address
6 bits 26 bits

 (Pseudo) Direct jump addressing
 Target address = PC31…28 : (address × 4)

append

j L1

Chapter 2 — Instructions: Language of the Computer — 82

Conditional Branch Addressing

 Branch instructions specify: opcode, two registers,
and target address

 Most target address is near to the PC
 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4

 PC already incremented by 4 by this time

Note: Word-alignment access

offset
beq $t2, $zero, L2

Chapter 2 — Instructions: Language of the Computer — 83

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 84

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code

 Example
beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

(larger than 16-bit offset)

Chapter 2 — Instructions: Language of the Computer — 85

MIPS Addressing Modes

Decoding Machine Code
 Decoding: Reverse-engineer machine language to create the

assembly language
 Example: 00af 8020hex

1. Convert hexadecimal to binary
0000 0000 1010 1111 1000 0000 0010 0000

2. Look at the op field to determine the operation
The op-field is 000000. It is an R-type instruction

3. Decode the rest of the instruction by looking at the field values

4. Reveal the assembly instruction
add $s0, $a1, $t7

Chapter 2 — Instructions: Language of the Computer — 86

Chapter 2 — Instructions: Language of the Computer — 87

Synchronization Issue
 Two processors sharing an area of memory

 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize
 Result depends on order of accesses

 Hardware-supplied synchronization is required
 Atomic read/write memory operation

 No other access to the location allowed between the read and
write

 Could be a single instruction (but hard to implement)
 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§2.10 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 88

Synchronization in MIPS
 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed

 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4
The contents of $s4 and the memory location specified by $s1 have been exchanged

lock-free atomic L/S

Chapter 2 — Instructions: Language of the Computer — 89

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.11 Translating and S
tarting a P

rogram

Chapter 2 — Instructions: Language of the Computer — 90

Assembler Pseudoinstructions

 Most assembler instructions represent machine
instructions one-to-one

 Pseudoinstructions: figments of the assembler’s
imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

 The cost of pseudoinstructions is reserving one
register, $at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 91

Producing an Object Module
 Assembler (or compiler) translates program into machine

instructions and keeps track of labels used in branches and
data transfer instruction in a symbol table.

 Object module provides information for building a complete
program from the sixe distinct pieces (the object file for UNIX)
 Header: used to describe the contents of the object module
 Text segment: translated machine codes
 Static data segment: data allocated for the life of the program
 Relocation info: for contents that depend on absolute location when

the program is loaded into memory
 Symbol table: global definitions and external refs (or remaining

labels) that are not defined
 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 92

Linking Object Modules
 Linker: takes all the independently assembled program

and stiches them together
 3 steps for linker to produce an executable image

1. Merges segments (i.e. place code and data modules
symbolically in memory)

2. Resolve labels (determine their addresses)
3. Patch location-dependent and external refs

 Could leave location dependencies for fixing by a
relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location in virtual

memory space Reading Assignment:
P-122 Example

Chapter 2 — Instructions: Language of the Computer — 93

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes
2. Create (virtual) address space, which is large enough for

the text and data
3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4. Set up arguments on stack, if necessary
5. Initialize registers (including $sp, $fp, $gp to the first free

location)
6. Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit system-call

Chapter 2 — Instructions: Language of the Computer — 94

Dynamic Linking
 Static linking problem

 The library routines become part of the executable code. It
keeps using the old version of the library even though a
new one is released.

 It loads all routines in the library that are called anywhere
in he executable, even if those calls are not executed.

 Dynamically linked libraries (DLL): only link/load library
procedure when it is called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of all

(transitively) referenced libraries
 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 95

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Chapter 2 — Instructions: Language of the Computer — 96

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

void swap(int v[], int k)
{
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0

§2.13 A C
 S

ort E
xam

ple to P
ut It A

ll Together

Chapter 2 — Instructions: Language of the Computer — 97

The Procedure Swap
swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 98

The Sort Procedure in C
 Non-leaf (calls swap)

void sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 99

The Procedure Body
move $s2, $a0 # save $a0 into $s2

move $s3, $a1 # save $a1 into $s3

move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)

addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

sll $t1, $s1, 2 # $t1 = j * 4

add $t2, $s2, $t1 # $t2 = v + (j * 4)

lw $t3, 0($t2) # $t3 = v[j]

lw $t4, 4($t2) # $t4 = v[j + 1]

slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3

move $a0, $s2 # 1st param of swap is v (old $a0)

move $a1, $s1 # 2nd param of swap is j

jal swap # call swap procedure

addi $s1, $s1, –1 # j –= 1

j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1

j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 100

sort: addi $sp,$sp, –20 # make room on stack for 5 registers

sw $ra, 16($sp) # save $ra on stack

sw $s3,12($sp) # save $s3 on stack

sw $s2, 8($sp) # save $s2 on stack

sw $s1, 4($sp) # save $s1 on stack

sw $s0, 0($sp) # save $s0 on stack

… # procedure body

…

exit1: lw $s0, 0($sp) # restore $s0 from stack

lw $s1, 4($sp) # restore $s1 from stack

lw $s2, 8($sp) # restore $s2 from stack

lw $s3,12($sp) # restore $s3 from stack

lw $ra,16($sp) # restore $ra from stack

addi $sp,$sp, 20 # restore stack pointer

jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 101

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.14 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Chapter 2 — Instructions: Language of the Computer — 102

Compare and Branch in ARM
 Uses condition codes for result of an

arithmetic/logical instruction
 Negative, zero, carry, overflow
 Compare instructions to set condition codes

without keeping the result
 Each instruction can be conditional

 Top 4 bits of instruction word: condition value
 Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 103

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 104

The Intel x86 ISA
 Evolution with backward compatibility

 8080 (1974): 8-bit microprocessor
 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations
 Paged memory mapping as well as segments

§2.15 R
eal S

tuff: x86 Instructions

Chapter 2 — Instructions: Language of the Computer — 105

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension) instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers
 Pentium 4 (2001)

 New microarchitecture
 Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 106

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

Chapter 2 — Instructions: Language of the Computer — 107

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 108

Basic x86 Addressing Modes
 Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
 Address = Rbase + 2scale × Rindex + displacement

Chapter 2 — Instructions: Language of the Computer — 109

x86 Instruction Encoding
 Variable length

encoding
 Postfix bytes specify

addressing mode
 Prefix bytes modify

operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 110

Implementing IA-32
 Complex instruction set makes

implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1
 Complex instructions: 1–many

 Microengine similar to RISC
 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

ARM v8 Instructions
 In moving to 64-bit, ARM did a complete

overhaul
 ARM v8 resembles MIPS

 Changes from v7:
 No conditional execution field
 Immediate field is 12-bit constant
 Dropped load/store multiple
 PC is no longer a GPR
 GPR set expanded to 32
 Addressing modes work for all word sizes
 Divide instruction
 Branch if equal/branch if not equal instructions

Chapter 2 — Instructions: Language of the Computer — 111

§2.16 R
eal S

tuff: A
R

M
 v8 (64-bit) Instructions

Chapter 2 — Instructions: Language of the Computer — 112

Fallacies
 Powerful instruction higher performance

 Fewer instructions required
 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors
 More lines of code more errors and less

productivity

§2.17 Fallacies and P
itfalls

Chapter 2 — Instructions: Language of the Computer — 113

Fallacies
 Backward compatibility instruction set

doesn’t change
 But they do accrete more instructions

x86 instruction set

Chapter 2 — Instructions: Language of the Computer — 114

Concluding Remarks
 Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.20 C
oncluding R

em
arks

Chapter 2 — Instructions: Language of the Computer — 115

Concluding Remarks
 Measure MIPS instruction executions in

benchmark programs
 Consider making the common case fast
 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu, lh,
lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt, slti,
sltiu

34% 8%

Jump j, jr, jal 2% 0%

