M(COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Sth

Edition

Chapter 5

Large and Fast:
Exploiting Memory
Hierarchy

Different Storage Memories

A B Current
Speed Processor Size Cost ($/bit) technology
Fastest Memory Smallest Highest SRAM
Memory DRAM
Slowest Memory Biggest Lowest Magnetic disk
- N

pipr. OF ELECTROMICS ¢, 2%
ENAINEERING «
tist. O ELECTIROMCS ™

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality

Programs access a small proportion of their
address space at any time

Temporal locality (locality in time)

ltems accessed recently are likely to be accessed
again soon

e.g., instructions in a loop, induction variables

Spatial locality (locality in space)

ltems near those accessed recently are likely to
be accessed soon

E.g., sequential instruction access, array data

pipt. OF ELECIRONC R, M A7
HIGNEERIG o @ _ . .
1 O FLECRONCS . WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items
from disk to smaller DRAM memory

Main memory

Copy more recently accessed (and nearby)
items from DRAM to smaller SRAM memory

Cache memory attached to CPU

pipt. OF ELECIRONC R, M A7
HIGNEERIG o @ _ . .
1 O FLECRONCS . WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

Block (aka line): unit of copying

Processor May be multiple words
upper | If accessed data is present in
level | upper level
= cache Hit: access satisfied by upper level
Hit ratio: hits/accesses
:g:'/\/;f | Data is transferred ~ If accessed data is absent
1 - Miss: block copied from lower level
rl\r/:glr?lory Time taken: miss penalty
Miss ratio: misses/accesses
N = 1 — hit ratio
Then accessed data supplied from
upper level

pibt. OF ELECIROMCE 2 nes. N #T
EIGINEERING -, _ . .
i, O ELECTROMCS . WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Structure of a Memory Hierarchy

CPU

Increasing distance
Level 1 from the CPU in

access time
Levels in the / Level 2 \
memory hierarchy
/ Level n \

P
-

3

Size of the memory at each level

piper. OF ELECTROMC 5o

mgtglg&fg;gq@ﬁ,@ HCIU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Memory Technologies

Static RAM (SRAM)
0.5 —2.5ns, $500 — $1000 per GB
Dynamic RAM (DRAM)
50 — 70ns, $10 — $20 per GB
Flash memory
5,000 — 50,000ns, $0.75 — $1.00 per GB
Magnetic disk
5,000,000 — 20,000,000ns, $0.05 — $0.10 per GB

ldeal memory
Access time of SRAM
Capacity and cost/GB of disk

pipt. OF ELECIRONICS 2 . N 4
HIGNEERIG o @ _ . .
1 O FLECRONCS . WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Four Memory Technologies

DRAM (dynamic random access memory)
Main memory

SRAM (static random access memory)
Cache levels closer to the processor

Flash memory
Nonvolatile memory
Secondary memory in PMD

Magnetic disk

The largest and slowest level in the memory
hierarchy

pipt. OF ELECIRONC R, M A7
HIGNEERIG o @ _ . .
1 O FLECRONCS . WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

SRAM Technology

6-8 Transistors per bit

Require minimal power to retain the
charge in standby mode

Do not need to refresh
The access time Is almost the cycle time

pibt. OF ELECIROMCE 2 nes. N #T
EIGINEERING @ _ . .
i, O ELECTROMCS . WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Technology

A single transistor per bit

Data stored as a charge in a capacitor

Must periodically be refreshed (i.e. read the content and
write it back)
Performed on a DRAM “row”

Two-level decoding structure

Refresh an entire row (which shares a word line) with a read cycle
followed by a write cycle

Bank |
Column I
I

Rd/Wr Activate

Act

Row addfegs

<

|| Pre —

Pre-charge

Row
pier. OF ELECTROMC o % W #7T

HIGUIEERIG o { b
inst. OF ELECTROMCS e

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Advanced DRAM Organization

Bits in a DRAM are organized as a rectangular
array

DRAM accesses an entire row

Burst mode: supply successive words from a row with
reduced latency

Double data rate (DDR) DRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
Separate DDR inputs and outputs

Dual inline memory module (DIMM)
DIMMSs typically contain 4-16 DRAMSs

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

DRAM name based on Peak Chip Transfers / Sec
DIMM name based on Peak DIMM MBytes / Sec

| Stan- Clock Rate M tfransfers / Mbytes/s/ DIMM
dard (MHz) Sim Name Dﬂ/\i\ﬁ’\l\la‘me
DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400

pier. OF ELECTROMC % N #7F

HIGUIEERIG o { b
inst. OF ELECTROMCS e

DRAM Generations

——Trac
-=— Tcac

Year Capacity | $/GB 300
1980 | 64Kbit | $1500000 |
1983 | 256Kbit | $500000

1985 | 1Mbit | $200000 200
1989 | 4Mbit | $50000

1992 | 16Mbit | $15000 150
1996 | 64Mbit | $10000 100
1998 | 128Mbit | $4000

2000 | 256Mbit | $1000 >0
2004 | 512Mbit | $250 0
2007 |1Gbit | $50

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

‘80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Main Memory Supporting Caches

Use DRAMSs for main memory
Fixed width (e.g., 1 word)
Connected by fixed-width clocked bus
Bus clock is typically slower than CPU clock
Example cache block read

1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM
Miss penalty = 1 + 4x15 + 4x1 = 65 bus cycles
Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

pipr. OF fLECIROMCS 5 e
mtgggg{ggﬁm ._ 4l Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Increasing Memory Bandwidth

Processor Processor Processor

> > >

Cache
/

’/\\ ’/\\
Bus Bus Bus
\\/’ T \\ /’
Memory Memory || Memory || Memory || Memory
bank O bank 1 bank 2 bank 3
b. Wider memaory organization c. Interleaved memary organization
Memory 4-word wide memory

Miss penalty =1 + 15+ 1 = 17 bus cycles
Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
4-bank interleaved memory
a. ggﬁ;g;rg-r;vgﬁzaﬁm Miss penalty = 1 + 15 + 4x1 = 20 bus cycles
Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

pipr. OF fLECIROMCS 5 e
EGINEERING « <z b
lisi. OF ELECTROMCS y 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Flash Memory

A type of electrically erasable programmable read-only
memory (EEPROM)
Nonvolatile semiconductor storage

100x — 1000x faster than disk

Smaller, lower power, more robust

But more $/GB (between disk and DRAM)

piper. OF ELECTROMC 5o

lmfﬁ‘?&?{,ﬁgﬁm i HCIU Chapter 6 — Storage and Other 1/0O Topics — 16

Disk Memory

Nonvolatile, rotating magnetic storage

piper. OF ELECTROMC 5o
ENAINEERING «

st Of ELECTROMICS 3 Chapter 6 — Storage and Other I/O Topics — 17

Disk Sectors and Access

Each sector records
Sector ID

Data (512 bytes, 4096 bytes proposed)

Error correcting code (ECC)
Used to hide defects and recording errors

Synchronization fields and gaps
Access to a sector involves

Queuing delay if other accesses are pending
Seek: move the heads

Rotational latency

Data transfer

Controller overhead

pier. OF ELECTROMICS 9 % N #7T
mgfﬂﬂ'?&ff{gg‘;m - WU Chapter 6 — Storage and Other I/O Topics — 18

Disk Access Example

Given

512B sector, 15,000rpm, 4ms average seek time,

100MB/s transfer rate, 0.2ms controller overhead,
Idle disk

Average read time

4ms seek time
+ 14 [(15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time Is 1ms

Average read time = 3.2ms

pier. OF ELECTROMICS 9 % N #7T
mﬂﬁ'?&?{ﬂ?jﬁm - WU Chapter 6 — Storage and Other I/O Topics — 19

Cache Memory

Cache memory

The level of the memory hierarchy closest to the CPU

Given accesses Xy, ..., X, 1, X,
Xy Xy
xX12 xx‘z How do we know if the
data is present?
Xo-1 Xo-1 Where do we look?
Xg X,
X,
X X Location.... Search....

a. Before the reference to X, b. After the reference to X,

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Direct Mapped Cache

Location determined by address

Direct mapped: one and only one choice

(Block address) modulo (#Blocks in cache)

C

g

/qf N .
i N N #Blocks is a
\ power of 2
>< ‘ Use low-order
\ N address bits
\ N

ooco1 o©0to1 01001 01101 10001 10101 11001 11101

Memory
pier. OF ELECTROMC % N #7F

HIGUIEERIG o { b
inst. OF ELECTROMCS e

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Tags and Valid Bits

How do we know which particular block is
stored In a cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there is no data in a location?

Valid bit: 1 = present, O = not present

Initially O

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Low-order high-order
bits bits

Index
000
001
010
011
100
101
110
111

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Tag Data

ZlIZ2|1Z2|Z2|1Z2|Z2(Z2|2|<

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

ZlIZ2|1Z2|1Z2|12|2|<

111 N

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index \% Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Tag Data

11 Mem[11010]

10 Mem[10110]

Z|I<|Z2|Z2|Z2|<[(Z2|Z2|<

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index \% Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010

Index \% Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Total Number of Bits for a Cache

A function of the cache size and the address
size
Direct-mapped cache example:
32-bit addresses
2" block cache
Block size: 2™ words (or 2™*2 bytes or 2M*° bits)
=» Tag field requires 32—(n+m+2) bits

=» Total number of bits for a direct-mapped cache
IS 2" x (block size + tag size + valid bit)

> 2"x(2™ +(32-n-m+2)+1)

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

pipt. OF FLECIROMICS 5% oe

ENAINEERING o

i1 Of FLECIRONCS HF==g

Hit

Address Subdivision

Address (showing bit positions)
3130 -+ 131211--:2 10

ot Block size: 1 word
420 J10
Tag N N
Index Data
Index Valid Tag Daia
] ~
X
2
1 1 >Tota|
cache size=?
1021
1022
1023)
\\20 - 32

2 % (32+20+1) bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Larger Block Size Example

64 blocks, 16 bytes/block 64x16=21

To what block number does address 1200 map?
Block address =|1200/16 = 75

Block number = 75 modulo 64 = 11

+——— 10-bit —s

31 10 9 4 3 0

Tag Index Offset
22 bits 6 bits 4 bits

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Block Size Considerations

Larger blocks should reduce miss rate

Due to spatial locality

But In a fixed-sized cache

Larger blocks = fewer of them

More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate

Early restart and critical-word-first can help

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

1 o HICIRONCS A Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Misses

On cache hit, CPU proceeds normally
On cache miss

Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Instruction cache miss example
Send the original PC (i.e. current PC-4) to the memory

Instruct main memory to perform a read and wait for the memory to
complete its access

Write the cache entry (putting the data from memory, writing the tag field,
and turning the valid bit on)

Restart the instruction fetch

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Write-Through Cache

On data-write hit, could just update the block in cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer

e.g., if base CPI =1, 10% of instructions are stores, write to
memory takes 100 cycles

Effective CPI =1 + 0.1x100 =11
Solution: write buffer

Holds data waiting to be written to memory
CPU continues immediately

Only stalls on write if write buffer is already full

pibr. OF fLECIROMC o™ v N T
ENGINEERING « iz
tist. OF ELECIROMCS Hye

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Write-Back Cache

Alternative: On data-write hit, just update the
block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block to be
read first

pipl. Of fLECIROMC #*onee N 7T
ENGINEERING o =)
inst. OF ELECTROMCS e

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Allocation

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block (then overwrite it)

Write around: don’t fetch the block (but update the
portion of the block in memory)

Since programs often write a whole block before reading it
(e.qg., initialization)

For write-back
Usually fetch the block

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Example: Intrinsity FastMATH

Embedded MIPS processor
12-stage pipeline
Instruction and data access on each cycle
Split cache: separate I-cache and D-cache
Each 16KB: 256 blocks x 16 words/block
D-cache: write-through or write-back
SPEC2000 miss rates
|-cache: 0.4%

D-cache: 11.4%
Weighted average: 3.2%

pipt. OF ELECTIROIMICS 2”2 :
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Example: Intrinsity FastMATH

Address (showing bit positions)

31 - 1413:--65--:210
. J18 8 4/ Byte Data
Hit Tag N T T oﬁy;et
b
Index Block offset
18 bits; 512 bits
V Tag Data
Iy
256
? L 4 entries
d18 432 432 4 32
(= | .
~
Mux
(e)
0..\32

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Measuring Cache Performance

Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

Memory stall cycles

_ Memory accesses

x Miss rate x Miss penalty
Program

Instructions Misses .
= X x Miss penalty

Program Instruction

pipt. OF ELECIRONICS 2 . N 4
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Performance Example

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: 0.02 x 100 = 2
D-cache: 0.36 x 0.04 x 100 = 1.44

Actual CPI =2+ 2 +1.44 =5.44
ldeal CPU iIs 5.44/2 =2.72 times faster

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Average Access Time

Hit time Is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss penalty =
20 cycles, I-cache miss rate = 5%

AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Performance Summary

When CPU performance increased

Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory stalls

Increasing clock rate

Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating
system performance

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Associlative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

n-way set associative
Each set contains n entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

pibr. OF ELECIROMC s N T
FNGINEERING ¢ =2

5 of HECIROICS j Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Assoclative Cache Example

Direct mapped Set associative Fully assoclative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
Ta Ta
Tag 2 gl |, 9 2

soarch 1 Seareh T | s T

pipr. OF fLECIROMCS 5 e
EGINEERING « <z b
lisi. OF ELECTROMCS y 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Spectrum of Associativity

For a cache with 8 entries

One-way set associative

(direct mapped)

Block Tag Data
0
] Two-way set associative
2 Set Tag Data Tag Data
3 0
4 1
5 2
6 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0
1

Eight-way set associative {fully associative}
Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

I N .

pipr. OF fLECIROMCS 5 e
ENGINEERING 4 '

o TS S Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Associlativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8,0, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem[8]
0 0 miss Mem[O]
6 2 miss Mem|O]
8 0 miss Mem[8] Mem|[6]

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

2-way set associative

Associlativity Example

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem[0]
0 0 hit Mem[O] Mem[8]
6 0 miss Mem]O0] Mem[6]
8 0 miss Mem[8] Mem|[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem([0]
0 hit Mem[O] Mem|8]
6 miss Mem([0] Mem|[8]
8 hit Mem|O] Mem[8] Mem|[6]

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

How Much Associativity

Increased associativity decreases miss rate

But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

pibr. OF fLECIROMC o™ v N T
ENGINEERING « g

1 o HICIRONCS A Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Set Associlative Cache Organization

Address
3130-:12111098:::3210
422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
[] [] L J) L J ® L p 4
253
254
255
422 J32
| . 4 : 2 I~ ™
(— @ (— (=
il.

i
t% ﬁ-toJ multiplex@
Hit Da!ta

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard beyond
that

Random

Gives approximately the same performance as LRU
for high associativity

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Multilevel Caches

Primary cache attached to CPU

Small, but fast

Level-2 cache services misses from primary
cache
Larger, slower, but still faster than main memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Multilevel Cache Example

Given
CPU base CPI =1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

pibt. Of FECROMCS 2w N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Example (cont.)

Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%
Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 400 cycles

CPI=1+0.02x20+0.005x400=3.4

Performance ratio = 9/3.4 = 2.6

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact

Results
L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Interactions with Advanced CPUs

Out-of-order CPUs can execute instructions
during cache miss
Pending store stays in load/store unit

Dependent instructions wait in reservation stations

Independent instructions continue

Effect of miss depends on program data flow

Much harder to analyze

Use system simulation

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Interactions with Software

Radix sort? Quicksort? ;o -
For larger arrays, radix-sort Ez:
has an algorithmic advantage | ®o ~—
over quicksort in terms of T e e e
number of operations 00
Quicksort has fewer misses 3:
per item to be sorted -

5

| M

4 B8 16 32 64 128 256 512 1024 2048 4096

Misses depend on memory .

access patterns [
Algorithm behavior N
Compiler optimization for g
Memory access Joe T "

4 ' 8 I 16 I 32 I 64 I 123 I 256 I 512 I1024‘204BI4(196
pibr. OF fLECIROMC o™ v N T ¢ Size (K items to sort)
FNGINEERING o gz

51 Of FLICRONICS W=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Software Optimization via Blocking

Goal: maximize accesses to data before it is replaced
Reuse the data with the cache to lower miss rate
Consider inner loops of DGEMM:

for (int Jj=0: 3 < n: ++])
{
double cij = C[i+j*n]; /* cij = CLil[j] */
for(int k = 02 k € n: k++)
cij += ALi+k*n] * B[k+j*n]l; /* cij += A[iJLkI*BLkILj] */
CLi+j*n] = cij: /* CLilljl = cij */

I

It reads all n-by-n elements of B, reads the same n elements in what
corresponds to one row of A repeatedly, and writes what corresponds

to one row of n elements of C

pibr. OF fLECIROMC o™ v N T
ENGINEERING ¢ { g

i o HECROIIC HF Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

DGEMM Access Pattern

A snapshot of the three arrays C, A, and B when
n=6 and i=1

older accesses

recent accesses

pipr. OF ELECTROMICS g5
ENaNEERING ¢ 4

15 O HECROINCS B Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Cache Blocked DGEMM

1 #define BLOCKSIZE 32

2 void do block (int n, int si, Int sj, int sk, double *A, double
3 *B, double *C)

4 {

5 for (int 1 = si; 1 < si+BLOCKSIZE; ++1)

6 for (int jJ = sj; J < sj+BLOCKSIZE; ++j)

7 A

8 double ci1j = Cl[i+j*n];/* cij = C[i][}1] */

9 for(Int k = sk; k < sk+BLOCKSIZE; k++)

10 cij += A[i+k*n] * Bl[k+j*n];/* cij+=A[i][K]1*B[KI1Li] */
11 CLi+j*n] = cij;/* CLi][J] = cij */

12 3}

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16 for (int sjJ = 0; sJ < n; sj += BLOCKSIZE)

17 for (int si = 0; si < n; si += BLOCKSIZE)

18 for (int sk = 0; sk < n; sk += BLOCKSIZE)

19 do block(n, si, sj, sk, A, B, C);

20 }

pipt. OF ELECTIROIMICS 2”2 77
mf?ﬂ'?&ff{gg‘;m '- ql Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Blocked DGEMM Access Pattern

j K j
01 2 3 4 5 Y 0 1 2 3 a4 5 2 0 3 4 5
0 0 0
2 2 2
i i k
3 3 3
4 4 4
5 5 5
B 32x32 @ 160x160 O 480x480 O 960x960
s
% _____
5
Unoptimized Blocked

pipr. OF ELECTROMCE 5
ENaNEERING ¢ 4

. o HECRONCS 3, Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Summary for Memory Hierarchy

The number of memory-stall cycles depends on
both the miss rate and the miss penalty

Using associativity to reduce miss rates
Allow more flexible placement of blocks within the cache

Using multilevel cache hierarchies to reduce miss
penalties

Allow a larger secondary cache to handle misses to the
primary cache.

Using software optimization to improve effectiveness
of caches

Change algorithm (e.g. with blocking technique to deal with a
large array) to improve cache behavior

pipt. OF ELECTIROIMICS 2”2 P
O ' N Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Two-state system model:

Service accomplishment
Service delivered
as specified

[\

Restoration Failure

__/

Service interruption
Deviation from
specified service

pipr. OF ELECTRONIC ¢ % N #7
ENGINEERING a -
tist. OF ELECTROMCS

Dependable Memory Hierarchy

Dependability is redundancy !!

Fault: failure of a
component

May or may not lead
to system failure

Chapter 6 — Storage and Other I/O Topics — 62

Dependability Measures

Reliability: mean time to failure (MTTF)

A measure of the continuous service accomplishment from
a reference point

Service interruption: mean time to repair (MTTR)

Mean time between failures (MTBF)
MTBF = MTTF + MTTR

Availability = MTTF / (MTTF + MTTR)

Improving Availability
Increase MTTF: fault avoidance, fault tolerance, fault
forecasting
Reduce MTTR: improved tools and processes for
diagnosis and repair

pier. OF ELECTROMICS 9 % N #7T
mgfﬂﬂ'?&ff{gg‘;m - WU Chapter 6 — Storage and Other I/O Topics — 63

The Hamming SEC Code

Hamming distance

Number of bits that are different between two
bit patterns

Minimum distance = 2 provides single bit
error detection

E.g. parity code
Minimum distance = 3 provides single
error correction, 2 bit error detection

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Hamming SEC Encoding

To calculate Hamming code:

Number bits from 1 on the left
All bit positions that are a power 2 are parity bits

Each parity bit checks certain data bits:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Encodeddate bits | p1 p2
pl | X X X X X X
Pzﬁtv p2 X | X X | X X | X
cove[:ate pd X | XX | X X
p8 X[X | X | X | X

Set parity bits to create even parity for each group

piper. OF ELECTROMC 5o
ENaNERING ¢ 4

i o FLECIROICS HSm= g Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Decoding SEC

Value of parity bits indicates which bits are
In error
Use numbering from encoding procedure
E.Q.
Parity bits = 0000 indicates no error
Parity bits = 1010 indicates bit 10 was flipped

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

SEC/DED Code

Add an additional parity bit for the whole word
(Pp)

Make Hamming distance = 4
Decoding:

Let H = SEC parity bits
H even, p, even, no error
H odd, p,, odd, correctable single bit error

H even, p, odd, error in p, bit

H odd, p,, even, double error occurred
Note: ECC DRAM uses SEC/DED with 8 bits
protecting each 64 bits

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Virtual Machines (VMSs)

Host computer emulates guest operating system
and machine resources

Improved isolation of multiple guests
Avoids security and reliability problems
Aids sharing of resources

Virtualization has some performance impact
Feasible with modern high-performance computers

Examples
IBM VM/370 (1970s technology!)
VMWare
Microsoft Virtual PC

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Virtual Machine Monitor (VMM)

The software that supports VMs is called a VMM
The VMM is much smaller than a traditional OS

Maps virtual resources to physical resources
Memory, 1/O devices, CPUs

Guest OS may be different from host OS

Guest code runs on native machine in user mode

Traps to VMM on privileged instructions and access to
protected resources

VMM handles real I/O devices
Emulates generic virtual 1/0 devices for guest

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Example: Timer Virtualization

In native machine, on timer interrupt

OS suspends current process, handles interrupt,
selects and resumes next process

With Virtual Machine Monitor

VMM suspends current VM, handles interrupt,
selects and resumes next VM

If a VM requires timer interrupts
VMM emulates a virtual timer

Emulates interrupt for VM when physical timer
Interrupt occurs

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Instruction Set Support for VMM

Requirements for a VMM
It presents a software interface to guest software
It isolates the state of guests from each other
It protect itself from guest software
At least two processor modes in ISA:
User mode and System mode
Privileged instructions only available in system mode
Trap to system if executed in user mode

All physical resources only accessible using privileged
Instructions

Including page tables, interrupt controls, 1/O registers
Renaissance of virtualization support
Current ISAs (e.g., x86) adapting

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Virtual Memory

Use main memory as a “cache” for secondary (disk)
storage (= main memory is not enough...)
Managed jointly by CPU hardware and the operating system (OS)

Programs share main memory

Each gets a private virtual address space holding its frequently
used code and data

Protected from other programs

CPU and OS translate virtual addresses to physical
addresses

VM “block” is called a page

VM translation “miss” is called a page fault

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Virtual Address vs Physical Address

Virtual addresses Physicel addresses
. Address translation
*— /
: 7
*—
ha
.——)<
. N —
7
4
T —p—

Disk addresses

The processor generates virtual addresses, while the memory is accessed
using physical addresses.

Both the virtual memory and physical memory are broken into pages.
A virtual page is mapped to a physical page

It is possible for a virtual page to be absent from main memory (i.e. not be mapped to a
physical addresses). In this case, the page resides on disk or flash memory

A physical page can be shared by having two virtual addresses point to the same
physical address

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

Address Translation Example

Virtual address

3180292827 «evveeeerirnnnennns 1514131211 1098 +oeveveeess 3210

Virtual page number Page offset

DG DB D7 «vrruerecdienriinnnn. 1514 1312111098 «--f---oo: 3210

Physical page number Page offset

Physical address
The page size is 212 = 4 KB

The number of physical pages is 218

Hence, main memory can have at most 1GB, where the virtual
address space is 4GB

pipr. OF fLECIROMCS 5 e
EGINEERING « <z b
lisi. OF ELECTROMCS y 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Page Fault Penalty

On page fault, the page must be fetched from disk

Page should be large enough to try to amortize the high
access time
4KB — 16KB per page are typical today

Takes millions of clock cycles
Handled by OS code

Try to minimize page fault rate
Fully associative placement

Smart replacement algorithms

Write through will not work for virtual memory

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Page Table

Full search for fully associative placements is impractical
In VM. Instead, it locate pages by using a page table.

Page table stores placement information

Array of page table entries (PTES) is indexed by virtual page
number

Page table resides in main memory

Page table reqister is used in CPU pointing to the page table in
physical memory

If page is present in memory
PTE stores the physical page number
Plus other status bits (valid, referenced, dirty, ...)

If page is not present
PTE can refer to location in swap space on disk

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m - WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Mapping Pages to Storage

Virtual page
number

[] Page table

Physical page or Physical memory
Valid disk address

Il

\

= O | = =]| O = | =2 | O =t | = =] =2

,
{

s
i\

Disk storage

==

Y
N
/

R
/

pipr. OF fLECIROMC
ENAMEERING o '

o TS S Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Translation Using a Page Table

Page table register

Virtual address
31 30 29 28 27 -cceeemcmeneiininiinn, 15 14 13 12 11 10 9 § +=v=r--- 3210
Virtual page number Page offset
420 12
Valid Physical page number
[] []
Page table
| 418
If 0 then page is not
present in memaory
29 28 27--mie ---15 14 13 12 11 10 9 & f----- 3210
Physical page number Page offsetl
Physical address

pipr. OF ELECTROMICS
ENGINEERING a

. o FLECIROINCS 3 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Replacement and Writes

To reduce page fault rate, prefer least-recently used
(LRU) replacement
Reference bit (aka use bit) in PTE set to 1 on access to page
Periodically cleared to 0 by OS
A page with reference bit = 0 has not been used recently

Disk writes take millions of cycles
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

pipt. OF ELECTIROIMICS 2”2 :
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Fast Translation Using a TLB

Address translation would appear to require extra (at
least twice) memory references

One to access the PTE

Then the actual memory access

But access to page tables has temporal and spatial
locality

So use a fast cache of PTEs within the CPU

Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10—-100 cycles for miss,
0.01%—-1% miss rate

Misses could be handled by hardware or software

pipt. OF ELECTIROIMICS 2”2 :
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Fast Translation Using a TLB

TLB
Virtual page Physical page
number ValidDirty Ref Tag address
I | _ _
1101 ..
1111 .~ Physical memo
T[1]1 —— o L
0]0]0 T~
1101 -~
Page table
Physical page
Valid Dirty Ref or disk address
e
~1[0]1 ~—
11070 « i
110]0 - — M
1[0 —
0lo0l0 - / —
101 717 | |
1101 o /
0[0]0 i | |
111 ¢« / | |
1]1[1 « / ~—~
0/0]0 o~
1[1]1 v

pipr. OF fLECIROMC
ENGINEERING o & '
tisi. Of ELECTROMCS °

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

TLB Misses

If a miss in the TLB occurs, we must determine whether it is a
page fault or merely a TLB miss.
If the page is in memory

Load the PTE from memory and retry

Could be handled in hardware
Can get complex for more complicated page table structures

Or in software
Raise a special exception, with optimized handler

If the page is not in memory (a true page fault)
OS handles fetching the page and updating the page table
Then restart the faulting instruction

TLB misses will be much more frequent than true page faults.

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

TLB In Intrinsity FastMATH

Virtual address
1 30 29 cccreciiiaiiiaiiianiienia, 14 13 12 11 10 Q--caveee 3210
| Virtual page number [Page offset |
J20 .|_12
Valid Dirty Tag Physical page number
(=)=
TLB —
TLB hit =—e (=) — .
Ol
[Cham
@_
420
Physical page number | Page ofisst
: Physical address- Block Byte
Physical address tag | Cache index offsat offset
‘~.18 -,.8 ‘h4 *2
48
412 Data
Valid Tag
Cache
—t & L
r=
Cache hit
*
pipr. OF ELECTIRONC
ENQINEERING &] +32
Iisi. Of ELECTROMCS

Integrating TLB, VM, and Cache

Data cannot be in the cache unless it is present in main
memory
A virtual address is translated by the TLB and sent to the cache

where the appropriate data is found, retrieved, and sent back to the
processor

All possible combinations:

Page
H &

Miss | Possible, although the page table is never really checked if TLB hits.
Miss | Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.
Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit | Miss Miss | Impossible: cannot have a translation in TLE if page is not present in memory.

Hit | Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

Worst case: miss in all three components of the memory hierarchy

pipt. OF fLECIROMICS

mi'ﬁ'?&?{ﬂg;,a 3y n(IU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

Memory Protection

Different tasks can share parts of their virtual address
spaces
But need to protect against errant access

Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)

Privileged instructions

Page tables and other state information only accessible in
supervisor mode

System call exception (e.g., syscall in MIPS)

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

The Memory Hierarchy

Caches, TLBs, and VMs may initially look very
different, but common principles apply at all levels of
the memory hierarchy

Four questions at each level in the memory
hierarchy:

Block placement

Finding a block

Replacement on a miss

Write policy

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Block Placement

Determined by associativity

Direct mapped (1-way associative)

One choice for placement

n-way set associative

n choices within a set

Fully associative

Any location

Higher associativity reduces miss rate

But, increases complexity, cost, and access time

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Finding a Block

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set Set index, then search |n
associative entries within the set
Fully associative Search all entries #entries
Full lookup table 0
Hardware caches

Reduce comparisons to reduce cost

Virtual memory

Full table lookup makes full associativity feasible
Benefit in reduced miss rate

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Replacement

Choice of entry to replace on a miss
Least recently used (LRU)

Complex and costly hardware for high associativity

Random

Close to LRU, easier to implement

Virtual memory

LRU approximation with hardware support

pipt. OF ELECTIROIMICS 2”2 :
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Write Policy

Write-through
Update both upper and lower levels
Simplifies replacement, but may require write buffer

Write-back

Update upper level only
Update lower level when block is replaced (or dirty)
Need to keep more state (e.g. dirty bit)

Virtual memory
Only write-back is feasible

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Three Cs: Sources of Misses

Compulsory misses (aka cold-start misses)
First access to a block

Capacity misses
Due to finite cache size
A replaced block is later accessed again

Conflict misses (aka collision misses)

Occur in a non-fully associative cache, due to the
competition for entries in a set

Would not occur in a fully associative cache of the
same total size

pipt. OF ELECIRONC R, M A7
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

3Cs In Miss Rate Example

10%

9% The compulsory miss component is 0.006%

8%

(=)
s Two-way
6% -
Miss rate
per type

59, - Four-way

4% A
3% -
2% A

Capacity
1% -

0%

—

L] T

4 8 16 32 64 128 256 512 1024
Cache size (KiB)

pipr. OF ELECTROMICS g5
ENaNEERING ¢ 4

i o FLECIROICS HSm= g n(IU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Cache Design Trade-offs

Design change Effect on miss rate Negative performance
effect
Increase cache size Decrease capacity May increase access
misses time
Increase associativity | Decrease conflict May increase access
misses time
Increase block size Decrease compulsory | Increases miss
misses penalty. For very large
block size, may
Increase miss rate
due to pollution.

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Cache Control

Interface signals

CPU

/

Cache

Read/Write

Valid

Address 32 R
Write Data 32 R
Read Data %
Ready

pipr. OF ELECTRONC 3”& N #7T
ENGINEERING a
tist. OF ELECTROMCS

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Read/Write

Valid

Address 3 ,
Write Data %> R
Read Data ™%

Ready

Multiple cycles
per access

Memory

Finite State Machines

Use an FSM to sequence
control steps

Set of states, transition on each J—
clock edge Ceontrot logho. L Datapsth conirol outputs
State values are binary outputs 4 ——
encoded
Current state stored in a nputs
register - ERE.
111 -
NEXt State o Inputs from cache State register
. datapsth 'S B t
f, (current state, current inputs)

Control output signals
= f, (current state)

Dbt OF ELECIROMC e
ENQINEERING 4 wol
lisi. Of ELECIROMCS My ¢

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Cache Controller FSM

Cache Hit

idle - Compare Tag
Mark Gache Ready j If Valid 8& Hit, <« Could
: » Set Valid, SetTag, oo .
Valid CPU raquest if Write Set Dirty partltlon Into
separate
States to
reduce clock
Cache c
v Miss cycle time

and and
Old Block Old Block
is Clean is Dirty

Write-Back

Write Old
Block to

Allocate Memory Ready

Read new bilock
from Memory

pipr. OF ELECTROMCS ¢,
ENAINEERING «

s o HECIROMCS) Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Cache Coherence Problem

Suppose two CPU cores share a physical address space

Write-through caches

Time | Event CPU A's CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 CPU B reads X 0 0 0

3 |CPUAwrites1to X 1 0 1

pipt. OF ELECTIROIMICS 2”2 77
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Coherence Defined

Informally:
Reads return most recently written value

Formally:

P writes X; P reads X (no intervening writes)
= read returns written value

P, writes X; P, reads X (sufficiently later)
= read returns written value
c.f. CPU B reading X after step 3 in example

P, writes X, P, writes X
= all processors see writes in the same order
End up with the same final value for X

pipt. OF ELECTIROIMICS 2”2 77
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Cache Coherence Protocols

Operations performed by caches in multiprocessors to
ensure coherence

Migration of data to local caches

Reduces bandwidth for shared memory

Replication of read-shared data

Reduces contention for access
Snooping protocols

Each cache monitors bus reads/writes

Directory-based protocols

Caches and memory record sharing status of blocks in a
directory

pipl. OF FLECIRONMC 3 nec. N T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Invalidating Snooping Protocols

Cache gets exclusive access to a block when it is to be
written

Broadcasts an invalidate message on the bus

Subsequent read in another cache misses

Owning cache supplies updated value

CPU activity Bus activity CPU A's CPU B’s Memory
cache cache
0
CPU Areads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0)
CPU B read X Cache miss for X 1 1 1

pier. OF ELECTROMICS 9 % N #7T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Memory Consistency

When are writes seen by other processors
“Seen” means a read returns the written value
Can’t be instantaneously
Assumptions
A write completes only when all processors have seen it
A processor does not reorder writes with other accesses
Conseguence

P writes X then writes Y
= all processors that see new Y also see new X

Processors can reorder reads, but not writes

pier. OF ELECTROMICS 9 % N #7T
mf?ﬂ'?&ff{gg‘;m '- WU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Concluding Remarks

Fast memories are small, large memories are slow

We really want fast, large memories ®
Caching gives this illusion ©

Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy

L1 cache <« L2 cache « ... &> DRAM memory
<> disk

Memory system design is critical for multiprocessors

pipt. OF ELECTIROIMICS 2”2 77
m;gg'?gggg‘;m - WL Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

