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Principle of Locality
 Programs access a small proportion of their 

address space at any time
 Temporal locality (locality in time)

 Items accessed recently are likely to be accessed 
again soon

 e.g., instructions in a loop, induction variables
 Spatial locality (locality in space)

 Items near those accessed recently are likely to 
be accessed soon

 E.g., sequential instruction access, array data

§5.1 Introduction
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Taking Advantage of Locality
 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby) items 
from disk to smaller DRAM memory
 Main memory

 Copy more recently accessed (and nearby) 
items from DRAM to smaller SRAM memory
 Cache memory attached to CPU
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Memory Hierarchy Levels
 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in 
upper level
 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent
 Miss: block copied from lower level

 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
 Then accessed data supplied from 

upper level

cache

Main
memory

upper
level

lower
level



Structure of a Memory Hierarchy
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Memory Technologies
 Static RAM (SRAM)

 0.5 – 2.5ns, $500 – $1000 per GB
 Dynamic RAM (DRAM)

 50 – 70ns, $10 – $20 per GB
 Flash memory

 5,000 – 50,000ns, $0.75 – $1.00 per GB
 Magnetic disk

 5,000,000 – 20,000,000ns, $0.05 – $0.10 per GB
 Ideal memory

 Access time of SRAM
 Capacity and cost/GB of disk

§5.2 M
em

ory Technologies



Four Memory Technologies 
 DRAM (dynamic random access memory)

 Main memory
 SRAM (static random access memory)

 Cache levels closer to the processor
 Flash memory

 Nonvolatile memory
 Secondary memory in PMD

 Magnetic disk
 The largest and slowest level in the memory 

hierarchy
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SRAM Technology
 6-8 Transistors per bit
 Require minimal power to retain the 

charge in standby mode
 Do not need to refresh
 The access time is almost the cycle time
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DRAM Technology
 A single transistor per bit
 Data stored as a charge in a capacitor

 Must periodically be refreshed (i.e. read the content and 
write it back) 
 Performed on a DRAM “row”
 Two-level decoding structure

 Refresh an entire row (which shares a word line) with a read cycle 
followed by a write cycle
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Pre-charge

Activate 

Row address 
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Advanced DRAM Organization
 Bits in a DRAM are organized as a rectangular 

array
 DRAM accesses an entire row
 Burst mode: supply successive words from a row with 

reduced latency
 Double data rate (DDR) DRAM

 Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

 Separate DDR inputs and outputs
 Dual inline memory module (DIMM)

 DIMMs typically contain 4-16 DRAMs



DRAM name based on Peak Chip Transfers / Sec
DIMM  name based on Peak DIMM MBytes / Sec

Stan-
dard

Clock Rate 
(MHz)

M transfers / 
second DRAM Name

Mbytes/s/ 
DIMM

DIMM 
Name

DDR 133 266 DDR266 2128 PC2100

DDR 150 300 DDR300 2400 PC2400

DDR 200 400 DDR400 3200 PC3200

DDR2 266 533 DDR2-533 4264 PC4300

DDR2 333 667 DDR2-667 5336 PC5300

DDR2 400 800 DDR2-800 6400 PC6400

x 2 x 8
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DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50
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Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)

 Connected by fixed-width clocked bus
 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer

 15 bus cycles per DRAM access

 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle
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Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle
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Flash Memory
 A type of electrically erasable programmable read-only 

memory (EEPROM)
 Nonvolatile semiconductor storage

 100× – 1000× faster than disk
 Smaller, lower power, more robust
 But more $/GB (between disk and DRAM)
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Disk Memory
 Nonvolatile, rotating magnetic storage
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Disk Sectors and Access
 Each sector records

 Sector ID
 Data (512 bytes, 4096 bytes proposed)
 Error correcting code (ECC)

 Used to hide defects and recording errors
 Synchronization fields and gaps

 Access to a sector involves
 Queuing delay if other accesses are pending
 Seek: move the heads
 Rotational latency
 Data transfer
 Controller overhead
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Disk Access Example
 Given

 512B sector, 15,000rpm, 4ms average seek time, 
100MB/s transfer rate, 0.2ms controller overhead, 
idle disk

 Average read time
 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

 If actual average seek time is 1ms
 Average read time = 3.2ms
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Cache Memory
 Cache memory

 The level of the memory hierarchy closest to the CPU

 Given accesses X1, …, Xn–1, Xn

§5.3 The B
asics of C

aches

 How do we know if the 
data is present?

 Where do we look?

Location…. Search….
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Direct Mapped Cache
 Location determined by address

 Direct mapped: one and only one choice
 (Block address) modulo (#Blocks in cache)

 #Blocks is a 
power of 2

 Use low-order 
address bits
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Tags and Valid Bits
 How do we know which particular block is 

stored in a cache location?
 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present

 Initially 0
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Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Low-order 
bits

high-order 
bits
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Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010
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Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000
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Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010



Total Number of Bits for a Cache
 A function of the cache size and the address 

size
 Direct-mapped cache example:

 32-bit addresses
 2n block cache
 Block size: 2m words (or 2m+2 bytes or 2m+5 bits)
 Tag field requires 32(n+m+2) bits
 Total number of bits for a direct-mapped cache 

is 2n  (block size  tag size  valid bit)

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)1)232(2(2 5   mnmn
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Address Subdivision

Total 
cache size=?

bits  )12032(210 

Block size: 1 word



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Larger Block Size Example
 64 blocks, 16 bytes/block

 To what block number does address 1200 map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

10-bit

6416=210
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Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache
 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty
 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help
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Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch

 Data cache miss
 Complete data access

 Instruction cache miss example
 Send the original PC (i.e. current PC4) to the memory
 Instruct main memory to perform a read and wait for the memory to 

complete its access
 Write the cache entry (putting the data from memory, writing the tag field, 

and turning the valid bit on)
 Restart the instruction fetch
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Write-Through Cache
 On data-write hit, could just update the block in cache

 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores, write to 

memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full
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Write-Back Cache
 Alternative: On data-write hit, just update the 

block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory

 Can use a write buffer to allow replacing block to be 
read first
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Write Allocation
 What should happen on a write miss?

 Alternatives for write-through
 Allocate on miss: fetch the block (then overwrite it)

 Write around: don’t fetch the block (but update the 
portion of the block in memory)
 Since programs often write a whole block before reading it 

(e.g., initialization)

 For write-back
 Usually fetch the block
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Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Measuring Cache Performance
 Components of CPU time

 Program execution cycles
 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§5.4 M
easuring and Im

proving C
ache P

erform
ance

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cyclesstallMemory 




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Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time
 Hit time is also important for performance

 Average memory access time (AMAT)
 AMAT = Hit time + Miss rate × Miss penalty

 Example
 CPU with 1ns clock, hit time = 1 cycle, miss penalty = 

20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction
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Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI
 Greater proportion of time spent on memory stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating 
system performance
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Associative Caches
 Fully associative

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries
 Block number determines which set

 (Block number) modulo (#Sets in cache)
 Search all entries in a given set at once
 n comparators (less expensive)
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Associative Cache Example
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Spectrum of Associativity
 For a cache with 8 entries
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Associativity Example
 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block 

address
Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]
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Associativity Example
 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity
 Increased associativity decreases miss rate

 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%
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Set Associative Cache Organization
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Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard beyond 
that

 Random
 Gives approximately the same performance as LRU 

for high associativity
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Multilevel Caches
 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from primary 
cache
 Larger, slower, but still faster than main memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache
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Multilevel Cache Example
 Given

 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)
 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 400 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

 Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations
 Primary cache

 Focus on minimal hit time
 L-2 cache

 Focus on low miss rate to avoid main memory 
access

 Hit time has less overall impact
 Results

 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs

 Out-of-order CPUs can execute instructions 
during cache miss
 Pending store stays in load/store unit

 Dependent instructions wait in reservation stations
 Independent instructions continue

 Effect of miss depends on program data flow
 Much harder to analyze

 Use system simulation
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Interactions with Software
 Radix sort? Quicksort? 

 For larger arrays, radix-sort 
has an algorithmic advantage 
over quicksort in terms of 
number of operations

 Quicksort has fewer misses 
per item to be sorted

 Misses depend on memory 
access patterns
 Algorithm behavior
 Compiler optimization for 

memory access



Software Optimization via Blocking
 Goal:  maximize accesses to data before it is replaced
 Reuse the data with the cache to lower miss rate
 Consider inner loops of DGEMM:
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It reads all n-by-n elements of B, reads the same n elements in what 
corresponds to one row of A repeatedly, and writes what corresponds 
to one row of n elements of C



DGEMM Access Pattern
 A snapshot of the three arrays C, A, and B when 

n=6 and i=1
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older accesses

recent accesses
not yet accessed



Cache Blocked DGEMM
1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)
6   for (int j = sj; j < sj+BLOCKSIZE; ++j)
7   {
8    double cij = C[i+j*n];/* cij = C[i][j] */
9    for( int k = sk; k < sk+BLOCKSIZE; k++ )
10    cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11   C[i+j*n] = cij;/* C[i][j] = cij */
12  }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16  for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17   for ( int si = 0; si < n; si += BLOCKSIZE )
18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);
20 }
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Blocked DGEMM Access Pattern
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Unoptimized Blocked



Summary for Memory Hierarchy
 The number of memory-stall cycles depends on 

both the miss rate and the miss penalty 
 Using associativity to reduce miss rates

 Allow more flexible placement of blocks within the cache

 Using multilevel cache hierarchies to reduce miss 
penalties
 Allow a larger secondary cache to handle misses to the 

primary cache.

 Using software optimization to improve effectiveness 
of caches 
 Change algorithm (e.g. with blocking technique to deal with a 

large array) to improve cache behavior
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Dependable Memory Hierarchy

 Fault: failure of a 
component
 May or may not lead 

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
ependable M

em
ory H

ierarchy

Dependability is redundancy !!
 Two-state system model:
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Dependability Measures
 Reliability: mean time to failure (MTTF)

 A measure of the continuous service accomplishment from 
a reference point

 Service interruption: mean time to repair (MTTR)
 Mean time between failures (MTBF)

 MTBF = MTTF + MTTR
 Availability = MTTF / (MTTF + MTTR)
 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault 
forecasting

 Reduce MTTR: improved tools and processes for 
diagnosis and repair



The Hamming SEC Code
 Hamming distance

 Number of bits that are different between two 
bit patterns

 Minimum distance = 2 provides single bit 
error detection
 E.g. parity code

 Minimum distance = 3 provides single 
error correction, 2 bit error detection
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Hamming SEC Encoding
 To calculate Hamming code:

 Number bits from 1 on the left

 All bit positions that are a power 2 are parity bits

 Each parity bit checks certain data bits:

 Set parity bits to create even parity for each group
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Decoding SEC
 Value of parity bits indicates which bits are 

in error
 Use numbering from encoding procedure
 E.g.

 Parity bits = 0000 indicates no error
 Parity bits = 1010 indicates bit 10 was flipped
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SEC/DED Code
 Add an additional parity bit for the whole word 

(pn)
 Make Hamming distance = 4
 Decoding:

 Let H = SEC parity bits
 H even, pn even, no error
 H odd, pn odd, correctable single bit error
 H even, pn odd, error in pn bit
 H odd, pn even, double error occurred

 Note:  ECC DRAM uses SEC/DED with 8 bits 
protecting each 64 bits
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Virtual Machines (VMs)
 Host computer emulates guest operating system 

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance computers

 Examples
 IBM VM/370 (1970s technology!)
 VMWare
 Microsoft Virtual PC

§5.6 Virtual M
achines
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Virtual Machine Monitor (VMM)
 The software that supports VMs is called a VMM

 The VMM is much smaller than a traditional OS
 Maps virtual resources to physical resources

 Memory, I/O devices, CPUs
 Guest OS may be different from host OS
 Guest code runs on native machine in user mode

 Traps to VMM on privileged instructions and access to 
protected resources

 VMM handles real I/O devices
 Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles interrupt, 
selects and resumes next process

 With Virtual Machine Monitor
 VMM suspends current VM, handles interrupt, 

selects and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support for VMM
 Requirements for a VMM

 It presents a software interface to guest software
 It isolates the state of guests from each other
 It protect itself from guest software

 At least two processor modes in ISA: 
 User mode and System mode

 Privileged instructions only available in system mode
 Trap to system if executed in user mode

 All physical resources only accessible using privileged 
instructions
 Including page tables, interrupt controls, I/O registers

 Renaissance of virtualization support
 Current ISAs (e.g., x86) adapting
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Virtual Memory
 Use main memory as a “cache” for secondary (disk) 

storage  ( main memory is not enough…)
 Managed jointly by CPU hardware and the operating system (OS)

 Programs share main memory
 Each gets a private virtual address space holding its frequently 

used code and data
 Protected from other programs

 CPU and OS translate virtual addresses to physical 
addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault



Virtual Address vs Physical Address

 The processor generates virtual addresses, while the memory is accessed 
using physical addresses.

 Both the virtual memory and physical memory are broken into pages.
 A virtual page is mapped to a physical page
 It is possible for a virtual page to be absent from main memory (i.e. not be mapped to a 

physical addresses). In this case, the page resides on disk or flash memory
 A physical page can be shared by having two virtual addresses point to the same 

physical address
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Address Translation Example

 The page size is 212 = 4 KB
 The number of physical pages is 218
 Hence, main memory can have at most 1GB, where the virtual 

address space is 4GB
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Page Fault Penalty
 On page fault, the page must be fetched from disk

 Page should be large enough to try to amortize the high 
access time
 4KB  16KB per page are typical today

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate
 Fully associative placement

 Smart replacement algorithms

 Write through will not work for virtual memory
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Page Table
 Full search for fully associative placements is impractical 

in VM. Instead, it locate pages by using a page table.
 Page table stores placement information

 Array of page table entries (PTEs) is indexed by virtual page 
number

 Page table resides in main memory
 Page table register is used in CPU pointing to the page table in 

physical memory

 If page is present in memory
 PTE stores the physical page number
 Plus other status bits (valid, referenced, dirty, …)

 If page is not present
 PTE can refer to location in swap space on disk
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Mapping Pages to Storage



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Translation Using a Page Table
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Replacement and Writes
 To reduce page fault rate, prefer least-recently used 

(LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been used recently

 Disk writes take millions of cycles
 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written
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Fast Translation Using a TLB
 Address translation would appear to require extra (at 

least twice) memory references
 One to access the PTE

 Then the actual memory access

 But access to page tables has temporal and spatial 
locality
 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 
0.01%–1% miss rate

 Misses could be handled by hardware or software
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Fast Translation Using a TLB



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

TLB Misses
 If a miss in the TLB occurs, we must determine whether it is a 

page fault or merely a TLB miss. 
 If the page is in memory

 Load the PTE from memory and retry
 Could be handled in hardware

 Can get complex for more complicated page table structures
 Or in software

 Raise a special exception, with optimized handler

 If the page is not in memory (a true page fault)
 OS handles fetching the page and updating the page table
 Then restart the faulting instruction

 TLB misses will be much more frequent than true page faults.



TLB in Intrinsity FastMATH



Integrating TLB, VM, and Cache
 Data cannot be in the cache unless it is present in main 

memory
 A virtual address is translated by the TLB and sent to the cache 

where the appropriate data is found, retrieved, and sent back to the 
processor

 All possible combinations: 

 Worst case: miss in all three components of the memory hierarchy
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Memory Protection
 Different tasks can share parts of their virtual address 

spaces
 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only accessible in 
supervisor mode

 System call exception (e.g., syscall in MIPS)
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The Memory Hierarchy

 Caches, TLBs, and VMs may initially look very 
different, but common principles apply at all levels of 
the memory hierarchy

 Four questions at each level in the memory 
hierarchy: 
 Block placement
 Finding a block
 Replacement on a miss
 Write policy

The BIG Picture



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 But, increases complexity, cost, and access time
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Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0
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Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support
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Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write buffer

 Write-back
 Update upper level only
 Update lower level when block is replaced (or dirty)
 Need to keep more state (e.g. dirty bit)

 Virtual memory
 Only write-back is feasible
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Three Cs: Sources of Misses
 Compulsory misses (aka cold-start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 Occur in a non-fully associative cache, due to the 

competition for entries in a set
 Would not occur in a fully associative cache of the 

same total size



3Cs in Miss Rate Example
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The compulsory miss component is 0.006%
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Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.
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Cache Control

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines
 Use an FSM to sequence 

control steps

 Set of states, transition on each 
clock edge
 State values are binary 

encoded

 Current state stored in a 
register

 Next state = 

fn (current state, current inputs)
 Control output signals

= fo (current state)
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Cache Controller FSM

Could 
partition into 

separate 
states to 

reduce clock 
cycle time
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Cache Coherence Problem
 Suppose two CPU cores share a physical address space

 Write-through caches

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

§5.10 P
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Coherence Defined
 Informally: 

 Reads return most recently written value

 Formally:
 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X
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Cache Coherence Protocols
 Operations performed by caches in multiprocessors to 

ensure coherence
 Migration of data to local caches

 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols
 Each cache monitors bus reads/writes

 Directory-based protocols
 Caches and memory record sharing status of blocks in a 

directory
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Invalidating Snooping Protocols
 Cache gets exclusive access to a block when it is to be 

written
 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency
 When are writes seen by other processors

 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen it

 A processor does not reorder writes with other accesses

 Consequence
 P writes X then writes Y

 all processors that see new Y also see new X

 Processors can reorder reads, but not writes
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Concluding Remarks
 Fast memories are small, large memories are slow

 We really want fast, large memories 
 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for multiprocessors
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