4.2
4.2.1

4.2.2
4.2.3

43.1

4.3.2

4.3.3

Computer Organization
Reference Solution
HWA4

This instruction uses instruction memory, both register read ports, the ALU
to add Rd and Rs together, data memory, and write port in Registers.

None. This instruction can be implemented using existing blocks.

None. This instruction can be implemented without adding new control
signals. It only requires changes in the Control logic.

Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem
(read instruction), Regs (takes longer than Control), Mux (select ALU
input), ALU, Data Memory, and Mux (select value from memory to be
written into Registers). The latency of this path is 400 ps + 200 ps + 30 ps
+ 120 ps + 350 ps + 30 ps = 1130 ps. 1430 ps (1130 ps + 300 ps, ALU is
on the critical path).

The speedup comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program: We need 5% fewer cycles
for a program, but cycle time is 1430 instead of 1130, so we have a speedup
of (1/0.95)*(1130/1430) = 0.83, which means we actually have a slowdown.

The cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control,
ALU, D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 + 200
+ 500 + 100 + 2000 + 2*30 + 3*10 = 3890.

We will compute cost relative to this baseline. The performance relative
to this baseline is the speedup we previously computed, and our cost/
performance relative to the baseline is as follows:

New Cost: 3890 + 600 = 4490
Relative Cost: 4490/3890 = 1.15

Cost/Performance: 1.15/0.83 = 1.39. We are paying significantly more for
significantly worse performance; the cost/performance is a lot worse than
with the unmodified processor.

4.4
4.4.1

4.4.2

4.43

4.4.4
4.4.5

4.4.6

[-Mem takes longer than the Add unit, so the clock cycle time is equal to
the latency of the I-Mem:

200 ps

The critical path for this instruction is through the instruction memory,
Sign-extend and Shift-left-2 to get the offset, Add unit to compute the
new PC, and Mux to select that value instead of PC+4. Note that the path
through the other Add unit is shorter, because the latency of I-Mem is
longer that the latency of the Add unit. We have:

200 ps + 15 ps + 10 ps + 70 ps + 20 ps = 315 ps

Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-
latency path that goes through Registers, Mux, and ALU to compute the PCSrc
condition. The critical path is the longer of the two, and the path through PCSrc
is longer for these latencies:

200 ps + 90 ps + 20 ps + 90 ps + 20 ps = 420 ps
PC-relative branches.

PC-relative unconditional branch instructions. We saw in part c that this
is not on the critical path of conditional branches, and it is only needed for
PC-relative branches. Note that MIPS does not have actual unconditional
branches (bne zero,zero,Label plays that role so there is no need for
unconditional branch opcodes) so for MIPS the answer to this question is
actually “None”.

Of the two instructions (BNE and ADD), BNE has a longer critical path so
it determines the clock cycle time. Note that every path for ADD is shorter
than or equal to the corresponding path for BNE, so changes in unit latency

will not affect this. As a result, we focus on how the unit’s latency affects the
critical path of BNE.

This unit is not on the critical path, so the only way for this unit to become
critical is to increase its latency until the path for address computation
through sign extend, shift left, and branch add becomes longer than the
path for PCSrc through registers, Mux, and ALU. The latency of Regs, Mux,
and ALU is 200 ps and the latency of Sign-extend, Shift-left-2, and Add is
95 ps, so the latency of Shift-left-2 must be increased by 105 ps or more for
it to affect clock cycle time.

4.7
4.7.1

Sign-extend Jump’s shift-left-2

| 00000000000000000000000000010100 | 0001100010000000000001010000 |
4.7.2

| 010100 |

4.7.3

\ PC+4 | PC to Add (PC+4) to branch Mux to jump Mux to PC |
4.7.4

Witeg Mux | AL Mux | Mem/ALU Mux | _ranch Mux_| Jump Mux_

| 20r0 (RegDstis X) | 20 | | PC+4 [pcra]
4.7.5

T T T

| 3and20 | PC and 4 | PC+4and20%4 |

4.7.6
| Read Register 1 | Read Register 2 | Write Register | Write Data | RegWrite |

3 2 X X 0

4.9

4.9.1
I1: OR R1,R2,R3 RAW on R1 from 1 to 12 and 13
I2: OR RZ,R1,R4 RAW on R2 from 12 to I3
I3: OR R1,R1,R2 WAR on R2 from 11 to 12

WAR on R1 from 12 to 13
WAW on R1 from 11 to 13

4.9.2 In the basic five-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an
instruction and the next two instructions (if register read happens in the
second half of the clock cycle and the register write happens in the first
half). The code that eliminates these hazards by inserting NOP instructions
is:

e S

OR R1,R2,R3
NOP Delay 12 to avoid RAW hazard on R1 from 11
NOP

OR RZ2,R1,R4
NOP Delay I3 to avoid RAW hazard on R2 from [2
NOP

OR R1,R1,R2Z

4.9.3 With full forwarding, an ALU instruction can forward a value to EX stage
of the next instruction without a hazard. However, a load cannot forward
to the EX stage of the next instruction (by can to the instruction after that).
The code that eliminates these hazards by inserting NOP instructions is:

Instruction sequence

OR R1,RZ,R3
OR RZ,R1,R4 No RAW hazard on R1 from |1 (forwarded)
OR R1,R1,R2 No RAW hazard on R2 from 12 (forwarded)

4.9.4 The total execution time is the clock cycle time times the number of cycles.
Without any stalls, a three-instruction sequence executes in 7 cycles (5 to
complete the first instruction, then one per instruction). The execution
without forwarding must add a stall for every NOP we had in 4.9.2, and
execution forwarding must add a stall cycle for every NOP we had in 4.9.3.
Overall, we get:

No forwarding With forwarding Speedup due to forwarding

(7+4)*250=2750 (7+4)*300=2100 2750/2100=1.31

4.9.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would
be forwarding from MEM to EX). A load cannot forward at all, because it
determines the data value in MEM stage, when it is too late for ALU-ALU
forwarding. We have:

Instruction sequence

OR R1,RZ,R3

OR RZ,R1,R4 ALU-ALU forwarding of R1 from |1

OR R1,R1,RZ ALU-ALU forwarding of R2 from 12
4.9.6

Speedup with ALU-ALU
No forwarding With ALU-ALU forwarding only forwarding
(7+4)*250=2750 (7)*290=2030 2750/2030=1.35

4.10

4.10.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because a load or store instruction is using
the memory in that cycle. Cycles are represented from left to right, and for
each instruction we show the pipeline stage it is in during that cycle:

|___instruction __ Pipeline Stago | Cycles |

SW R16,12(R6) IF ID EX MEM WB 11
LW R16,8(Re) IF ED EX MEM WB

BEGQ R5,R4,Lbl IF ID EX MEM WB

ADD R5,R1,R4 #x& kx% TF ID EX MEM WEB

SLT R5,R15.R4 IF ID EX MEM WE

We can not add NOPs to the code to eliminate this hazard - NOPs need to
be fetched justlike any other instructions, so this hazard must be addressed
with a hardware hazard detection unit in the processor.

4.10.2 This change only saves one cycle in an entire execution without data
hazards (such as the one given). This cycle is saved because the last
instruction finishes one cycle earlier (one less stage to go through). If there
were data hazards from loads to other instructions, the change would help
eliminate some stall cycles.

Instructions Executed | Cycles with 5 stages Cycles with 4 stages Speedup

| | 4+45=9 | 3+5=8 | 9/8 =1.13]

4.10.3 Stall-on-branch delays the fetch of the next instruction until the branch
is executed. When branches execute in the EXE stage, each branch causes
two stall cycles. When branches execute in the ID stage, each branch only
causes one stall cycle. Without branch stalls (e.g., with perfect branch
prediction) there are no stalls, and the execution time is 4 plus the number
of executed instructions. We have:

Instructions Branches Cycles with branch | Cycles with branch
Executed Executed in EXE inlD Speedup

4+5+1%2=11 4+45+1%¥1=10 [11/10=110]|

4.10.4 The number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline is already computed in 4.10.2. The clock cycle
time is equal to the latency of the longest-latency stage. Combining EX
and MEM stages affects clock time only if the combined EX/MEM stage
becomes the longest-latency stage:

Cycle time with 5 stages Cycle time with 4 stages Speedup

‘ 200 ps (IF) ‘ 210 ps (MEM + 20 ps) ‘ (9*200)/(8*210) = 1.07 ‘
4.10.5
New ID New cycle Old cycle
latency New EX latency time time Speedup
180 ps 140 ps ‘ 200 ps (IF) ‘ 200 ps (IF) ‘ (11*200)/(10*200) = 1.10 ‘

4.10.6 The cycle time remains unchanged: a 20 ps reduction in EX latency has
no effect on clock cycle time because EX is not the longest-latency stage.
The change does affect execution time because it adds one additional stall
cycle to each branch. Because the clock cycle time does not improve but

the number of cycles increases, the speedup from this change will be below
1 (a slowdown). In 4.10.3 we already computed the number of cycles when
branch is in EX stage. We have:

Cycles with Execution time Cycles with Execution time
branch in EX {branch in EX) | branch in MEM {branch in MEM) | Speedup

4+5+ 11%200 ps = 4+5+ 12*200 ps = 2400 ps 0.92
1%2 =11 2200 ps 1*%3 =12

4.13

4.13.1
ADD R5,RZ2,R1
NOP
NOP
LW R3,4(R5)
LW R2,0(R2)
NOP
OR R3,R5,R3
NOP
NOP
SW R3,0(R5)

4.13.2 We can move up an instruction by swapping its place with another
instruction that has no dependences with it, so we can try to fill some
NOP slots with such instructions. We can also use R7 to eliminate WAW
or WAR dependences so we can have more instructions to move up.

11: ADD R5,R2,R1
I13: LW R2,0(R2) Moved up to fill NOP slot
NOP

12: LW R3,4(R5)
NOP Had to add another NOP here,
NOP so there is no performance gain
I14: OR R3,R5,R3
NOP

NOP

I5: SW R3,0(R5)

4.13.3 With forwarding, the hazard detection unit is still needed because it must
inserta one-cycle stall whenever the load supplies a value to the instruction
that immediately follows that load. Without the hazard detection unit, the
instruction that depends on the immediately preceding load gets the stale
value the register had before the load instruction.

Code executes correctly (for both loads, there is no RAW dependence between the load and the
next instruction).

4.13.4 The outputs of the hazard detection unit are PCWrite, [F/IDWrite, and

First five cycles
Instruction sequence 1 2 3 4 5 Signals

ID/EXZero (which controls the Mux after the output of the Control
unit). Note that IF/IDWrite is always equal to PCWrite, and ED/ExZero
is always the opposite of PCWrite. As a result, we will only show the value
of PCWrite for each cycle. The outputs of the forwarding unit is ALUin1
and ALUin2, which control Muxes that select the first and second input
of the ALU. The three possible values for ALUinl or ALUin2 are 0 (no
forwarding), 1 (forward ALU output from previous instruction), or 2
(forward data value for second-previous instruction). We have:

ADD R5,RZ,R1 IF 1D EX MEM WB 1: PCWrite=1, ALUin1=X, ALUin2=X
LW R3,4(R5) IF ID EX MEM 2: PCWrite=1, ALUin1=X, ALUin2=X
LW R2,0(R2) IF ID EX 3: PCWrite=1, ALUin1=0, ALUin2=0
OR R3,R5,R3 IF 1D 4: PCWrite=1, ALUin1=1, ALUin2=0
SW R3,0(R5) IF 5: PCWrite=1, ALUin1=0, ALUin2=0

4.13.5

4.13.6

The instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction
in the MEM stage. So we need to check the destination register of these two
instructions. For the instruction in the EX stage, we need to check Rd for
R-type instructions and Rd for loads. For the instruction in the MEM stage,
the destination register is already selected (by the Mux in the EX stage) so we
need to check that register number (this is the bottommost output of the EX/
MEM pipeline register). The additional inputs to the hazard detection unit

are register Rd from the ID/EX pipeline register and the output number of
the output register from the EX/MEM pipeline register. The Rt field from the
ID/EX register is already an input of the hazard detection unit in Figure 4.60.

No additional outputs are needed. We can stall the pipeline using the three
output signals that we already have.

As explained for part e, we only need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal
is its opposite.We have:

First five cycles
Instruction sequence 1 2 3 4 5 Signals

ADD R5,R2,R1 IF ID EX MEM WB 1: PCWrite=1
LW R3,4(R5) [F ID *** *x= 2: PCWrite=1
LW RZ,0(R2) IF ##* Hx 3: PCWrite=1
OR R3,R5.R3 hkk 4: PCWrite=0
SW R3,0(R5) 5: PCWrite=0

4.14

4.14.1
Pipeline Cycles
Executed Instructions 5 6 7 8 9
LW R2,0(R1) IF ID EX MEM WEB
BEQ RZ,RO,Label2 (NT) IF ID *** EX MEM WB
LW R3,0(RZ2) IF ID EX MEM WB
BEQ R3,RO,Labell (T) IF IO *** EX MEM WB
BEQ R2,R0,Label2 (T) IF *** ID EX MEM WB
SW R1,0(R2) IF ID EX MEM WB

4.14.2
Pipeline Cycles

Executed Instructions i 6 7 8 9 10
LW R2,0(R1) IF ID EX MEM WB
BEQ RZ2,RO,Label2 (NT) IF ID *** EX MEM WB
LW R3,0(R2) IF *** ID EX MEM WB
BEQ R3,RO,Labell (T) IF I0 EX MEM WB
ADD R1,R3,R1 IF ID EX MEM WB
BEQ R2,R0O,Label2 (T) IF 1D EX MEM WB
LW R3.0(RZ2) IF ID EX MEM WB
SW R1,0(R2) IF ID EX MEM WB

4.14.3

LW R2,0(R1)
Labell: BEZ RZ2,Label2 ; Not taken once, then taken
LW R3,0(R2)
BEZ R3,Labell ; Taken
ADD R1,R3,R1
Label2: SW R1,0(R2)

4.14.4 The hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result
of two previous loads. When the branch uses the values of its register
operands in its ID stage, the R-type instruction’s result is still being
generated in the EX stage. Thus we must stall the processor and repeat
the ID stage of the branch in the next cycle. Similarly, if the branch
depends on a load that immediately precedes it, the result of the load
is only generated two cycles after the branch enters the ID stage, so we
must stall the branch for two cycles. Finally, if the branch depends on
a load that is the second-previous instruction, the load is completing
its MEM stage when the branch is in its ID stage, so we must stall the
branch for one cycle. In all three cases, the hazard is a data hazard.

Note that in all three cases we assume that the values of preceding
instructions are forwarded to the ID stage of the branch if possible.

4.14.5 For part a we have already shows the pipeline execution diagram for the
case when branches are executed in the EX stage. The following is the
pipeline diagram when branches are executed in the ID stage, including
new stalls due to data dependences described for part d:

Pipeline Cycles
Executed Instructions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LW RZ,0(R1) IF ID EX MEM WB

BEQ RZ2,RO,Label2 (NT) [F #** **%*]D EX MEM WB

LW R3,0(R2) IF ID EX MEM WB

BEQ R3,RO,Labell (T) [F #** %% 0 EX MEM WB

BEQ RZ2,R0O,Label2 (T) IF ID EX MEM WB
SW R1,0(R2) IF ID EX MEMWB

Now the speedup can be computed as:

14/15 =0.93

4.14.6 Branch instructions are now executed in the ID stage. If the branch
instruction is using a register value produced by the immediately preceding
instruction, as we described for part d the branch must be stalled because
the preceding instruction is in the EX stage when the branch is already
using the stale register values in the ID stage. If the branch in the ID stage
depends on an R-type instruction that is in the MEM stage, we need
forwarding to ensure correct execution of the branch. Similarly, if the
branch in the ID stage depends on an R-type of load instruction in the
WB stage, we need forwarding to ensure correct execution of the branch.
Overall, we need another forwarding unit that takes the same inputs as the
one that forwards to the EX stage. The new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects
between the value read from Registers, the ALU output from the EX/
MEM pipeline register, and the data value from the MEM/WB pipeline
register. The complexity of the new forwarding unit is the same as the
complexity of the existing one.

4.15

4.15.1 Each branch that is not correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

| 3%(1 - 0.45)*0.25 = 0.41 |

4.15.2 Each branch that is not correctly predicted by the always-not-taken
predictor will cause 3 stall cycles, so we have:

| 3%(1 — 0.55)¥0.25 = 0.34 |

4.15.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause 3 stall cycles, so we have:

| 3%(1 - 0.85)%0.25 = 0.113 |

4.15.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is also 1. Incorrectly predicted instructions that
are converted also become ALU instructions with a CPI of 1, so we have:

Speedup from
CPI without conversion CPI with conversion conversion

|1+ 3%(1.0.85)*0.25 = 1.113| 1 + 3#(1.0.85)*0.25%0.5 = 1.056 | 1.113/1.056 = 1.054 |

4.15.5 Every converted branch instruction now takes an extra cycle to execute,

so we have:
CPI without Cycles per original instruction with
conversion conversion Speedup from conversion
‘ 1.113 ‘ 1+ (1 + 3*%1 - 0.85))*0.25*0.5 =1.181 ‘ 1.113/1.181 = 0.94 ‘

4.15.6 Let the total number of branch instructions executed in the program be
B. Then we have:

Correctly
predicted | Correctly predicted non-loop-back | Accuracy on non-loop-back branches

\ B*0.85 \ B*0.05 \ (B*0.05)/(B*0.20) = 0.25 (25%) \

