Chapter 7
Multicores, Multiprocessors, and Clusters
Introduction

- Goal: connecting multiple computers to get higher performance
 - Multiprocessors
 - Scalability, availability, power efficiency
- Job-level (process-level) parallelism
 - High throughput for independent jobs
- Parallel processing program
 - Single program run on multiple processors
- Multicore microprocessors
 - Chips with multiple processors (cores)
Hardware and Software

- Hardware
 - Serial: e.g., Pentium 4
 - Parallel: e.g., quad-core Xeon e5345

- Software
 - Sequential: e.g., matrix multiplication
 - Concurrent: e.g., operating system

- Sequential/concurrent software can run on serial/parallel hardware
 - Challenge: making effective use of parallel hardware
What We’ve Already Covered

- §2.11: Parallelism and Instructions
 - Synchronization
- §3.6: Parallelism and Computer Arithmetic
 - Associativity
- §4.10: Parallelism and Advanced Instruction-Level Parallelism
- §5.8: Parallelism and Memory Hierarchies
 - Cache Coherence
- §6.9: Parallelism and I/O:
 - Redundant Arrays of Inexpensive Disks
Parallel Programming

- Parallel software is the problem
- Need to get significant performance improvement
 - Otherwise, just use a faster uniprocessor, since it’s easier!
- Difficulties
 - Partitioning
 - Coordination
 - Communications overhead
Amdahl’s Law

- Sequential part can limit speedup
- Example: 100 processors, 90× speedup?
 \[T_{\text{new}} = \frac{T_{\text{parallelizable}}}{100} + T_{\text{sequential}} \]

 \[
 \text{Speedup} = \frac{1}{\left(1 - F_{\text{parallelizable}}\right) + \frac{F_{\text{parallelizable}}}{100}} = 90
 \]

 - Solving: \(F_{\text{parallelizable}} = 0.999 \)

 - Need sequential part to be 0.1% of original time
Scaling Example

- Workload: sum of 10 scalars, and 10×10 matrix sum
 - Speed up from 10 to 100 processors
- Single processor: $\text{Time} = (10 + 100) \times t_{\text{add}}$
- 10 processors
 - $\text{Time} = 10 \times t_{\text{add}} + \frac{100}{10} \times t_{\text{add}} = 20 \times t_{\text{add}}$
 - Speedup $= \frac{110}{20} = 5.5$ (55% of potential)
- 100 processors
 - $\text{Time} = 10 \times t_{\text{add}} + \frac{100}{100} \times t_{\text{add}} = 11 \times t_{\text{add}}$
 - Speedup $= \frac{110}{11} = 10$ (10% of potential)
- Assumes load can be balanced across processors
Scaling Example (cont)

- What if matrix size is 100×100?
- Single processor: $\text{Time} = (10 + 10000) \times t_{\text{add}}$
- 10 processors
 - $\text{Time} = 10 \times t_{\text{add}} + \frac{10000}{10} \times t_{\text{add}} = 1010 \times t_{\text{add}}$
 - Speedup $= \frac{10010}{1010} = 9.9$ (99% of potential)
- 100 processors
 - $\text{Time} = 10 \times t_{\text{add}} + \frac{10000}{100} \times t_{\text{add}} = 110 \times t_{\text{add}}$
 - Speedup $= \frac{10010}{110} = 91$ (91% of potential)
- Assuming load balanced
Strong vs Weak Scaling

- Strong scaling: problem size fixed
 - As in example

- Weak scaling: problem size proportional to number of processors
 - 10 processors, 10 × 10 matrix
 - Time = 20 × t_{add}
 - 100 processors, 32 × 32 matrix
 - Time = 10 × t_{add} + 1000/100 × t_{add} = 20 × t_{add}
 - Constant performance in this example
Shared Memory

- SMP: shared memory multiprocessor
 - Hardware provides single physical address space for all processors
 - Synchronize shared variables using locks
 - Memory access time
 - UMA (uniform) vs. NUMA (nonuniform)
Example: Sum Reduction

- Sum 100,000 numbers on 100 processor UMA
 - Each processor has ID: $0 \leq P_n \leq 99$
 - Partition 1000 numbers per processor
 - Initial summation on each processor
 \[
 \text{sum}[P_n] = 0;
 \]
 \[
 \text{for } (i = 1000 \times P_n; i < 1000 \times (P_n+1); i = i + 1)
 \]
 \[
 \text{sum}[P_n] = \text{sum}[P_n] + A[i];
 \]

- Now need to add these partial sums
 - Reduction: divide and conquer
 - Half the processors add pairs, then quarter, ...
 - Need to synchronize between reduction steps
Example: Sum Reduction

```plaintext
half = 100;
repeat
    synch();
    if (half%2 != 0 && Pn == 0)
        sum[0] = sum[0] + sum[half-1];
        /* Conditional sum needed when half is odd;
           Processor0 gets missing element */
    half = half/2; /* dividing line on who sums */
    if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);
```
Message Passing

- Each processor has private physical address space
- Hardware sends/receives messages between processors
Loosely Coupled Clusters

- Network of independent computers
 - Each has private memory and OS
 - Connected using I/O system
 - E.g., Ethernet/switch, Internet
- Suitable for applications with independent tasks
 - Web servers, databases, simulations, …
- High availability, scalable, affordable
- Problems
 - Administration cost (prefer virtual machines)
 - Low interconnect bandwidth
 - c.f. processor/memory bandwidth on an SMP
Sum Reduction (Again)

- Sum 100,000 on 100 processors
- First distribute 100 numbers to each
 - The do partial sums
 \[
 \text{sum} = 0; \\
 \text{for} \ (i = 0; i < 1000; i = i + 1) \\
 \quad \text{sum} = \text{sum} + \text{AN}[i];
 \]
- Reduction
 - Half the processors send, other half receive and add
 - The quarter send, quarter receive and add, …
Sum Reduction (Again)

- Given send() and receive() operations

```c
limit = 100; half = 100; /* 100 processors */
repeat
    half = (half+1)/2; /* send vs. receive dividing line */
    if (Pn >= half && Pn < limit)
        send(Pn - half, sum);
    if (Pn < (limit/2))
        sum = sum + receive();
    limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */
```

- Send/receive also provide synchronization
- Assumes send/receive take similar time to addition
Grid Computing

- Separate computers interconnected by long-haul networks
 - E.g., Internet connections
 - Work units farmed out, results sent back
- Can make use of idle time on PCs
 - E.g., SETI@home, World Community Grid
Multithreading

- Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - If one thread stalls, others are executed
- Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn’t hide short stalls (e.g., data hazards)
Simultaneous Multithreading (SMT)

- In multiple-issue dynamically scheduled processor
 - Schedule instructions from multiple threads
 - Instructions from independent threads execute when function units are available
 - Within threads, dependencies handled by scheduling and register renaming
- Example: Intel Pentium-4 HT
 - Two threads: duplicated registers, shared function units and caches
Multithreading Example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 20
Future of Multithreading

- Will it survive? In what form?
- Power considerations ⇒ simplified microarchitectures
 - Simpler forms of multithreading
- Tolerating cache-miss latency
 - Thread switch may be most effective
- Multiple simple cores might share resources more effectively
An alternate classification

<table>
<thead>
<tr>
<th>Instruction Streams</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single SISD</td>
<td>Intel Pentium 4</td>
<td>SIMD: SSE instructions of x86</td>
</tr>
<tr>
<td>Multiple MISD</td>
<td>No examples today</td>
<td>MIMD: Intel Xeon e5345</td>
</tr>
</tbody>
</table>

SPMD: Single Program Multiple Data

- A parallel program on a MIMD computer
- Conditional code for different processors
SIMD

- Operate elementwise on vectors of data
 - E.g., MMX and SSE instructions in x86
 - Multiple data elements in 128-bit wide registers
- All processors execute the same instruction at the same time
 - Each with different data address, etc.
- Simplifies synchronization
- Reduced instruction control hardware
- Works best for highly data-parallel applications
Vector Processors

- Highly pipelined function units
- Stream data from/to vector registers to units
 - Data collected from memory into registers
 - Results stored from registers to memory
- Example: Vector extension to MIPS
 - 32 \times 64\text{-element registers (64-bit elements)}
 - Vector instructions
 - \text{lv, sv}: load/store vector
 - \text{addv.d}: add vectors of double
 - \text{addvs.d}: add scalar to each element of vector of double
- Significantly reduces instruction-fetch bandwidth
Example: DAXPY (Y = a × X + Y)

- Conventional MIPS code

```
    l.d   $f0, a($sp)        ; load scalar a
    addiu $r4, $s0, #512     ; upper bound of what to load
    loop: l.d   $f2, 0($s0)  ; load x(i)
           mul.d $f2, $f2, $f0  ; a × x(i)
    l.d   $f4, 0($s1)         ; load y(i)
    add.d $f4, $f4, $f2       ; a × x(i) + y(i)
    s.d   $f4, 0($s1)         ; store into y(i)
    addiu $s0, $s0, #8        ; increment index to x
    addiu $s1, $s1, #8        ; increment index to y
    subu $t0, r4, $s0          ; compute bound
    bne   $t0, $zero, loop    ; check if done
```

- Vector MIPS code

```
    l.d   $f0, a($sp)        ; load scalar a
    lv    $v1, 0($s0)        ; load vector x
    mulvs.d $v2, $v1, $f0    ; vector-scalar multiply
    lv    $v3, 0($s1)        ; load vector y
    addv.d $v4, $v2, $v3     ; add y to product
    sv    $v4, 0($s1)        ; store the result
```
Vector vs. Scalar

Vector architectures and compilers
- Simplify data-parallel programming
- Explicit statement of absence of loop-carried dependences
 - Reduced checking in hardware
- Regular access patterns benefit from interleaved and burst memory
- Avoid control hazards by avoiding loops

More general than ad-hoc media extensions (such as MMX, SSE)
- Better match with compiler technology
History of GPUs

- Early video cards
 - Frame buffer memory with address generation for video output

- 3D graphics processing
 - Originally high-end computers (e.g., SGI)
 - Moore’s Law ⇒ lower cost, higher density
 - 3D graphics cards for PCs and game consoles

- Graphics Processing Units
 - Processors oriented to 3D graphics tasks
 - Vertex/pixel processing, shading, texture mapping, rasterization
Graphics in the System
GPU Architectures

- Processing is highly data-parallel
 - GPUs are highly multithreaded
 - Use thread switching to hide memory latency
 - Less reliance on multi-level caches
 - Graphics memory is wide and high-bandwidth
- Trend toward general purpose GPUs
 - Heterogeneous CPU/GPU systems
 - CPU for sequential code, GPU for parallel code
- Programming languages/APIs
 - DirectX, OpenGL
 - C for Graphics (Cg), High Level Shader Language (HLSL)
 - Compute Unified Device Architecture (CUDA)
Example: NVIDIA Tesla

Chapter 7 — Multicores, Multiprocessors, and Clusters — 30
Example: NVIDIA Tesla

- Streaming Processors
 - Single-precision FP and integer units
 - Each SP is fine-grained multithreaded

- Warp: group of 32 threads
 - Executed in parallel, SIMD style
 - 8 SPs × 4 clock cycles
 - Hardware contexts for 24 warps
 - Registers, PCs, …
Classifying GPUs

- Don’t fit nicely into SIMD/MIMD model
 - Conditional execution in a thread allows an illusion of MIMD
 - But with performance degradation
 - Need to write general purpose code with care

<table>
<thead>
<tr>
<th></th>
<th>Static: Discovered at Compile Time</th>
<th>Dynamic: Discovered at Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction-Level</td>
<td>VLIW</td>
<td>Superscalar</td>
</tr>
<tr>
<td>Parallelism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-Level Parallelism</td>
<td>SIMD or Vector</td>
<td>Tesla Multiprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interconnection Networks

- Network topologies
 - Arrangements of processors, switches, and links

Bus

Ring

2D Mesh

N-cube (N = 3)

Fully connected
Multistage Networks

a. Crossbar

b. Omega network

c. Omega network switch box
Network Characteristics

- Performance
 - Latency per message (unloaded network)
 - Throughput
 - Link bandwidth
 - Total network bandwidth
 - Bisection bandwidth
 - Congestion delays (depending on traffic)

- Cost
- Power
- Routability in silicon
Parallel Benchmarks

- Linpack: matrix linear algebra
- SPECrate: parallel run of SPEC CPU programs
 - Job-level parallelism
- SPLASH: Stanford Parallel Applications for Shared Memory
 - Mix of kernels and applications, strong scaling
- NAS (NASA Advanced Supercomputing) suite
 - Computational fluid dynamics kernels
- PARSEC (Princeton Application Repository for Shared Memory Computers) suite
 - Multithreaded applications using Pthreads and OpenMP
Code or Applications?

- Traditional benchmarks
 - Fixed code and data sets

- Parallel programming is evolving
 - Should algorithms, programming languages, and tools be part of the system?
 - Compare systems, provided they implement a given application
 - E.g., Linpack, Berkeley Design Patterns

- Would foster innovation in approaches to parallelism
Modeling Performance

- Assume performance metric of interest is achievable GFLOPs/sec
 - Measured using computational kernels from Berkeley Design Patterns
- Arithmetic intensity of a kernel
 - FLOPs per byte of memory accessed
- For a given computer, determine
 - Peak GFLOPS (from data sheet)
 - Peak memory bytes/sec (using Stream benchmark)
Roofline Diagram

Attainable GFLOPS/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)
Comparing Systems

Example: Opteron X2 vs. Opteron X4
- 2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs. 2.3GHz
- Same memory system

To get higher performance on X4 than X2
- Need high arithmetic intensity
- Or working set must fit in X4’s 2MB L-3 cache
Optimizing Performance

- Optimize FP performance
 - Balance adds & multiplies
 - Improve superscalar ILP and use of SIMD instructions
- Optimize memory usage
 - Software prefetch
 - Avoid load stalls
 - Memory affinity
 - Avoid non-local data accesses
Optimizing Performance

- Choice of optimization depends on arithmetic intensity of code

- Arithmetic intensity is not always fixed
 - May scale with problem size
 - Caching reduces memory accesses
 - Increases arithmetic intensity
Four Example Systems

2 × quad-core
Intel Xeon e5345
(Clovertown)

2 × quad-core
AMD Opteron X4 2356
(Barcelona)
Four Example Systems

2 × oct-core
Sun UltraSPARC
T2 5140 (Niagara 2)

2 × oct-core
IBM Cell QS20

Chapter 7 — Multicores, Multiprocessors, and Clusters — 44
And Their Rooflines

- Kernels
 - SpMV (left)
 - LBHMD (right)
- Some optimizations change arithmetic intensity
- x86 systems have higher peak GFLOPs
 - But harder to achieve, given memory bandwidth
Performance on SpMV

- Sparse matrix/vector multiply
 - Irregular memory accesses, memory bound
- Arithmetic intensity
 - 0.166 before memory optimization, 0.25 after

- Xeon vs. Opteron
 - Similar peak FLOPS
 - Xeon limited by shared FSBs and chipset
- UltraSPARC/Cell vs. x86
 - 20 – 30 vs. 75 peak GFLOPs
 - More cores and memory bandwidth
Performance on LBMHD

- Fluid dynamics: structured grid over time steps
 - Each point: 75 FP read/write, 1300 FP ops
- Arithmetic intensity
 - 0.70 before optimization, 1.07 after

- Opteron vs. UltraSPARC
 - More powerful cores, not limited by memory bandwidth
- Xeon vs. others
 - Still suffers from memory bottlenecks
Achieving Performance

- Compare naïve vs. optimized code
 - If naïve code performs well, it’s easier to write high performance code for the system

<table>
<thead>
<tr>
<th>System</th>
<th>Kernel</th>
<th>Naïve GFLOPs/sec</th>
<th>Optimized GFLOPs/sec</th>
<th>Naïve as % of optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon</td>
<td>SpMV</td>
<td>1.0</td>
<td>1.5</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>LBMHD</td>
<td>4.6</td>
<td>5.6</td>
<td>82%</td>
</tr>
<tr>
<td>AMD Opteron X4</td>
<td>SpMV</td>
<td>1.4</td>
<td>3.6</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>LBMHD</td>
<td>7.1</td>
<td>14.1</td>
<td>50%</td>
</tr>
<tr>
<td>Sun UltraSPARC T2</td>
<td>SpMV</td>
<td>3.5</td>
<td>4.1</td>
<td>86%</td>
</tr>
<tr>
<td></td>
<td>LBMHD</td>
<td>9.7</td>
<td>10.5</td>
<td>93%</td>
</tr>
<tr>
<td>IBM Cell QS20</td>
<td>SpMV</td>
<td>Naïve code not feasible</td>
<td>6.4</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>LBMHD</td>
<td>Naïve code not feasible</td>
<td>16.7</td>
<td>0%</td>
</tr>
</tbody>
</table>
Fallacies

- Amdahl’s Law doesn’t apply to parallel computers
 - Since we can achieve linear speedup
 - But only on applications with weak scaling
- Peak performance tracks observed performance
 - Marketers like this approach!
 - But compare Xeon with others in example
 - Need to be aware of bottlenecks
Pitfalls

- Not developing the software to take account of a multiprocessor architecture
 - Example: using a single lock for a shared composite resource
 - Serializes accesses, even if they could be done in parallel
 - Use finer-granularity locking
Concluding Remarks

- Goal: higher performance by using multiple processors
- Difficulties
 - Developing parallel software
 - Devising appropriate architectures
- Many reasons for optimism
 - Changing software and application environment
 - Chip-level multiprocessors with lower latency, higher bandwidth interconnect
- An ongoing challenge for computer architects!