The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

ALU Design

Arithmetic logic unit (ALU) performs arithmetic operations, such as addition and subtraction, and logical operations, such as AND and OR.

For ALU implementation, you will learn more details about this in VLSI Design Course

Designing (MIPS) ALU

Requirements: must support the following arithmetic and logic operations

- add, sub: two's complement adder/subtractor with overflow detection
- and, or, nor : logical AND, logical OR, logical NOR
- slt (set on less than): two's complement adder with inverter, check sign bit of result

32-Bit ALU \leftarrow Bit-slice ALÜ

Design trick 1: divide and conquer

- Break the problem into simpler problems, solve them and glue together the solution

Design trick 2: solve part of the problem and extend

Integer Addition

Example: $7+6$

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two - ve operands
- Overflow if result sign is 0

A 4-bit ALU

Design trick 3: take pieces you know (or can imagine) and try to put them together

4-bit ALU

Integer Subtraction

Add negation of second operand

- Example: $7-6=7+(-6)$

| $+7:$ | | $00000000 \ldots 00000111$ |
| :--- | :--- | :--- | :--- |
| $-6:$ | $11111111 \ldots 11111010$ | |
| $+1:$ | | $00000000 \ldots 00000001$ |

Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

How about subtraction?

Using the same logic

- 2's complement: take inverse of every bit and add 1 (at $\mathrm{c}_{\text {in }}$ of first stage)
- $A+B^{\prime}+1=A+\left(B^{\prime}+1\right)=A+(-B)=A-B$
- Bit-wise inverse of B is B^{\prime}

Chapter 3 - Arithmetic for Computers - 9

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A - B
- Can overflow occur if B is 0 ?
- Can overflow occur if A is 0 ?
- Overflow detection

Operation	A	B	Result indicating overflow
$A+B$	$>=0$	$>=0$	<0
$A+B$	<0	<0	$>=0$
$A-B$	$>=0$	<0	<0
$A-B$	<0	$>=0$	$>=0$

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions
- Saturated arithmetic
- Other languages (e.g., Ada, Fortran) require raising an exception
- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler
- Save PC in exception program counter (EPC) register
- Jump to predefined handler address
- mf co (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Overflow Detection Logic

- Overflow: result too big/small to represent
- When adding operands with different signs, overflow cannot occur!
- Overflow occurs when adding:
- 2 positive numbers and the sum is negative
- 2 negative numbers and the sum is positive
=> sign bit is set with the value of the result
- Overflow if: Carry into MSB $=$ Carry out of MSB

Chapter 3 - Arithmetic for Computers - 12

Overflow Detection Logic

Overflow $=$ CarryIn[N-1] XOR CarryOut[N-1]

Problems with Ripple Carry Adder

Carry bit may have to propagate from LSB to MSB => worst case delay: N -stage delay

Design Tick: look for parallelism and throw hardware at it

Remarks: Binary Adder

synchronous word parallel adders

$$
T=O(n), A=O(n)
$$

carry chain select lookahead

$$
T=O(n), A=O(n)
$$

$$
\begin{gathered}
T=O(\log n) \\
A=O(n \log n)
\end{gathered}
$$

$$
\mathrm{T}=\mathrm{O}\left(\mathrm{n}^{* *} 1 / 2\right) \text {, }
$$

$$
A=O(n)
$$

Graphics and media processing operates on vectors of 8-bit and 16-bit data

- Use 64-bit adder, with partitioned carry chain
$=$ Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
- SIMD (single-instruction, multiple-data)
- Saturating operations
- On overflow, result is largest representable value
- e.g. 2's-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication

- Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication in MIPS

- No destination register: product could be $\sim 2^{64}$; need two special registers to hold it
- 3-step process:

| 00011111111111111111111111111111 | 11000000000000000000000000000000 |
| :--- | :--- | :--- |

mfhi \$t3 \$t3 0001111111111111111111111111111
mflo \$t4 \$t4 11000000000000000000000000000000
Chapter 3 - Arithmetic for Computers - 18

Multiplication Hardware

Chapter 3 - Arithmetic for Computers - 19

Multiply Algorithm (Ver. 1)

2. Shift Multiplicand register left 1 bit

3. Shift Multiplier register right 1 bit

Observations

1 clock per cycle => too slow

- Ratio of multiply to add 5:1 to 100:1
- Half of the bits in multiplicand always 0
=> 64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
=> least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?
- Product register wastes space => combine Multiplier and Product register

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Concluding Remarks

2 steps per bit because multiplier and product registers combined

MIPS registers Hi and Lo are left and right half of Product register
=> this gives the MIPS instruction MultU

- What about signed multiplication?
- The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
- Apply definition of 2's complement
- sign-extend partial products and subtract at end
- Booth's Algorithm is an elegant way to multiply signed numbers using same hardware as before and save cycles

Faster Multiplier

Uses multiple adders

- Cost/performance tradeoff

Can be pipelined

- Several multiplication performed in parallel

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits
- Instructions
- mult rs, rt / multu rs, rt
- 64-bit product in HI/LO
- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
- Least-significant 32 bits of product -> rd

Division

Check for 0 divisor

- Long division approach
- If divisor \leq dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit
Restoring division
- Do the subtract, and if remainder goes < 0 , add divisor back

Signed division

- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding the Divisor register to the Remainder register and placing the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0

$$
\text { 3. Shift the Divisor register right } 1 \text { bit }
$$

Chapter 3 - Arithmetic for Computers - 28

Divide Algorithm

Observations

- Half of the bits in divisor register always 0
=> $1 / 2$ of 64 -bit adder is wasted
=> $1 / 2$ of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?

1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
=> switch order to shift first and then subtract
=> save 1 iteration

- Eliminate Quotient register by combining with Remainder register as shifted left

3a. Shift
Remainder to left, setting new rightmost bit to 1
2. Subtract Divisor register from the left half of Remainder register, and place the result in the left half of Remainder register

3b. Restore original value by adding Divisor to left half of Remainder, and place sum in left half of Remainder. Also shift Remainder to left, setting the new least significant bit to 0 No: < 32 repetitions

Yes: 32 repetitions

Concluding Remarks

Observations: Divide vs. Multiply

- Same hardware as multiply:
- just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Optimized Divider

One cycle per partial-remainder subtraction

- Looks a lot like a multiplier!
- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision) generate multiple quotient bits per step

- Still require multiple steps

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient
- Instructions
- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mf hi , mf lo to access result

Floating-Point (FP): Motivation

What can be represented in n bits?

Unsigned	0	to	$2^{n}-1$
2's Complement	-2^{n-1}	to	$2^{n-1}-1$
1's Complement	$-2^{n-1}+1$	to	2^{n-1}
Excess M	$-M$	to	$2^{n}-M-1$

But, what about ...

- very large numbers?

9,349,398,989,787,762,244,859,087,678

- very small number?
- rationals
- irrationals $\sqrt{ } 2$
- transcendentals
0.0000000000000000000000045691

2/3
e, π

Scientific Notation: Bināry

Significand (Mantissa)

- Computer arithmetic that supports it is called floating point, because the binary point is not fixed, as it is for integers
- Normalized form: no leading 0s
(exactly one digit to left of decimal point)
Alternatives to represent $1 / 1,000,000,000$
- Normalized: $\quad 1.0 \times 10^{-9}$
- Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation
-2.34×10^{56}
normalized

- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

```
not normalized
```

- In binary
- $\pm 1 . x x x x x x x_{2} \times 2 y y y$

Types f I oat and double in C

FP Representation

Normal format: 1.xxxxxxxxxx ${ }_{\text {two }} \times 2^{\text {yyyytwo }}$
Want to put it into multiple words: 32 bits for singleprecision and 64 bits for double-precision
A simple single-precision representation:

S represents sign
Exponent represents y's
Significand represents x's

- Represent numbers as small as 2.0×10^{-38} to as large as 2.0 x 10^{38}

Double Precision Representation

- 64 bits Format

32 bits

- Double precision (vs. single precision)
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted

- Two representations
- Single precision (32-bit)
- Double precision (64-bit)

IEEE 754 Standard (1/2)

Regarding single precision (SP), DP similar

- Sign bit:

1 means negative
0 means positive
Significand:

- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- always true: $0 \leq$ Significand <1 (for normalized numbers)
Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Standard (2/2)

Exponent:

- Need to represent positive and negative exponents
- Also want to compare FP numbers as if they were integers, to help in value comparisons
- If use 2's complement to represent? e.g., 1.0×2^{-1} versus $1.0 \times 2^{+1}$ ($1 / 2$ versus 2)

Biased (Excess) Notation

let notation 0000 be most negative, and 1111 be most positive Example: Biased 7

0000	-7
0001	-6
0010	-5
0011	-4
0100	-3
0101	-2
0110	-1
0111	0
1000	1
1001	2
1010	3
1011	4
1100	5
1101	6
1110	7
1111	8

IEEE 754 Standard

Using biased notation

- the bias is the number subtracted to get the real number
- IEEE 754 uses bias of 127 for single precision:

Subtract 127 from Exponent field to get actual value for exponent

- 1023 is bias for double precision
- The example becomes

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S	Exponent	Fraction

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) })}
$$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \leq \mid$ significand| < 2.0
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

- Smallest value
- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . .11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved

- Smallest value
- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: 111... $11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2-52
= Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- $S=1$
- Fraction = 1000...002
- Exponent = -1 + Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$
- Single: 1011111101000... 00

Double: 1011111111101000... 00

Floating-Point Example

What number is represented by the singleprecision float 11000000101000... 00

- $S=1$
- Fraction = 01000...00
- Fxponent $=10000001_{2}=129$

$$
\begin{aligned}
x & =(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Concluding Remarks

What have we defined so far? (single precision)

Exponent		Significand		Object
0	0		$\underline{? ? ?}$	
0		nonzero		???
$1-254$		anything		+/- floating-point
255		0	$\underline{? ? ?}$	
255	nonzero		???	

Zero and Special Numbers

Represent 0 ?

- exponent all zeroes
- significand all zeroes too
- What about sign?
- +0: 00000000000000000000000000000000
- -0: 10000000000000000000000000000000

Why two zeroes?

- Helps in some limit comparisons
- Special numbers
- Range: $1.0 \times 2^{-126} \approx 1.8 \times 10^{-38}$
- What if result too small? ($>0,<1.8 \times 10^{-38}=>$ Underflow!)
- What if result too large? (> $3.4 \times 10^{38}=>$ Overflow!)

Gradual Underflow

Represent denormalized numbers (denorms)

- Exponent : all zeroes
- Significand : non-zeroes
- Allow a number to degrade in significance until it become 0 (gradual underflow)
- The smallest normalized number
$1.000000000000000000000000 \times 2^{-126}$

Representation for +/- Infinity

In FP, divide by zero should produce +/- infinity, not overflow

Why?

- OK to do further computations with infinity, e.g., X/0 > Y may be a valid comparison

IEEE 754 represents +/- infinity

- Most positive exponent reserved for infinity
- Significands all zeroes

S	11111111	00000000000000000000000

Representation for Not a Number

What do I get if I calculate sqrt(-4.0) or $0 / 0$?

- If infinity is not an error, these should not be either
- They are called Not a Number (NaN)
- Exponent = 255, Significand nonzero

Why is this useful?

- Hope NaNs help with debugging?
- They contaminate: op(NaN,X) = NaN
- OK if calculate but don't use it

IEEE 754 Encoding of FP Numbers

What have we defined so far? (single-precision)

Exponent	Significand	Object
0	0	0
0	nonzero	denom
1-254	anything	+/- fl. pt. \#
255	0	+/- infinity
255	nonzero	NaN

Chapter 3 - Arithmetic for Computers - 57

Floating-Point Addition

Basic addition algorithm:
compute Ye - Xe (to align binary point)
(1) right shift the smaller number, say Xm , that mar positions to form $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}$
(2) compute $\mathrm{Xm} \times 2^{\mathrm{Xe}-\mathrm{Ye}}+\mathrm{Ym}$
if demands normalization, then normalize:
(3) left shift result, decrement result exponent right shift result, increment result exponent (3.1) check overflow or underflow during the shil
(4) round the mantissa
continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)
(5) if result is 0 mantissa, set the exponent

Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$
- 1. Align decimal points
- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$
- 3 . Normalize result \& check for over/underflow
- 1.0015×10^{2}
- 4. Round and renormalize if necessary
- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
- 3. Normalize result \& check for over/underflow
- $1.000_{2} \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

Chapter 3 - Arithmetic for Computers - 62

Extra Bits for Rounding

Why rounding after addition?

- Because not every intermediate results is truncated
- To keep more precision
- Guard and round bits: extra bits to guard against loss of bits during intermediate additions
- to the right of significand
- can later be shifted left into significand during normalization
- Sticky bit
- Additional bit to the right of the round digit
- Better fine tune rounding

- Get the same results as if the intermediate results were calculated to infinite precision and then rounded.

Example

Try to add 2.98×10^{0} and 2.34×10^{2}

- only 3 decimal digits are allowed
2.34
$\frac{+0.02}{2.36}$ without guard bits
- with 2 more guard bits during computation
- perform rounding at last

```
            2.3400
+ 0.0298
    2.3698
    # rounding }\boldsymbol{->}2.3
```

- With guard bits and rounding \rightarrow more accurate results

Floating-Point Multiplication

- Consider a 4-digit decimal example
- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$
- 2. Multiply significands

$$
=1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}
$$

- 3. Normalize result $\&$ check for over/underflow
- 1.0212×10^{6}
- 4. Round and renormalize if necessary

$$
=1.021 \times 10^{6}
$$

- 5. Determine sign of result from signs of operands

$$
=+1.021 \times 10^{6}
$$

Floating-Point Multiplicatiōn

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$
- 1. Add exponents
- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$
- 2. Multiply significands
- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$
- 3. Normalize result \& check for over/underflow
- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
- $1.110_{2} \times 2^{-3}$ (no change)
- 5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$

$$
=-1.110_{2} \times 2^{-3}=-0.21875
$$

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA
- Separate FP registers
- 32 single-precision: \$f0, \$f1, .. \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- Release 2 of MIPs ISA supports 32×64-bit FP reg's

FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact
- FP load and store instructions
- I wel, I dc1, swe1, sdc1

$$
\text { e.g., I dcl \$f 8, } 32(\$ s p)
$$

FP Instructions in MIPS

Single-precision arithmetic

- add. s, sub. s, mul . s, div.s - e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add. d, sub. d, mul . d, di v. d
- e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
- c. $x x$. s, c. $x x$. d ($x x$ is eq, $1 \mathrm{t}, \mathrm{le}$ e, ...)
- Sets or clears FP condition-code bit
= e.g.c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
- bc1t, bc1f
= e.g., bc1t TargetLabel

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
    lwc2 $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1 $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```


FP Example: Array Multiplication

$$
X=X+Y \times Z
$$

- All 32×32 matrices, 64-bit double-precision elements

C code:
void mm (double x[][],
double y[][], double z[][]) \{
int i, j, k;
for (i = 0; i! = 32; i = i + 1)
for (j = 0; j! = 32; j = j + 1)
for (k = 0; k! = 32; k = k + 1)
x[i][j] = x[i][j]
+ y[i][k] * z[k][j];
\}

- Addresses of x, y, z in \$a0, \$a1, \$a2, and
i , j , k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

FP Example: Array Multiplīcation

sll $\$ t$ addu $\$$ sll $\$$ addu $\$$ l.d $\$$	$\begin{aligned} & \text { \$t0, \$s0, } 5 \\ & \$ t 0, \$ t 0, \$ \text { s2 } \\ & \$ t 0, \$ t 0,3 \\ & \$ t 0, \$ 21, \end{aligned}$	$\begin{aligned} & \left.\# \$ t 0=i^{*} 32 \text { (size of row of } y\right) \\ & \# \$ \text { \$t0 }=i^{*} \text { size (row) }+k \\ & \# \$ \text { \$t0 }=\text { byte offset of }[i][k] \\ & \# \$ t 0=\text { byte address of } y[i][k] \\ & \# \$ f 18=8 \text { bytes of } y[i][k] \end{aligned}$
mul.d \$ add.d	\$f16, \$f18, \$f16 \$f4, \$f4, \$f16	$\begin{aligned} & \text { \# \$f16 = y[i][k] * z[k][j] } \\ & \text { \# f4=x[i][j] + y[i][k]*z[k][j] } \end{aligned}$
addiu bne s.d	$\begin{array}{ll} \text { \$s2, } & \text { \$s2, } 1 \\ \text { \$s2, } & \text { \$t1, L3 } \\ \text { \$f4, } & 0(\$ t 2) \end{array}$	$\begin{aligned} & \text { \# \$k k + 1 } \\ & \# \text { if }(k \text { != 32) go to L3 } \\ & \# \text { x[i][j] }=\$ f 4 \end{aligned}$
addiu bne	$\begin{array}{lll} \text { \$s1, } & \text { \$s1, } \\ \text { \$s1, } \end{array}$	$\begin{aligned} & \# \$ \mathrm{j}=\mathrm{j}+1 \\ & \# \text { if }(\mathrm{j} \text { ! }=32) \text { go to } \mathrm{L2} \end{aligned}$
$\begin{array}{ll} \hline \text { addiu } \$: \\ \text { bne } \\ \$ \end{array}$	$\begin{array}{ll} \hline \text { \$s0, } & \text { \$s0, } \\ \text { \$s0, } \end{array}$	$\begin{aligned} & \text { \# \$i }=\mathrm{i}+1 \\ & \# \text { if }(\mathrm{i} \text { ! }=32) \text { go to L1 } \end{aligned}$

Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation

Not all FP units implement all options

- Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

Bits have no inherent meaning

- Interpretation depends on the instructions applied
Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Associativity

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 \mathrm{E}+38$		$-1.50 \mathrm{E}+38$
y	$1.50 \mathrm{E}+38$	$0.00 \mathrm{E}+00$	
z	1.0	1.0	$1.50 \mathrm{E}+38$
		$1.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$

Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FI LD memx ST(i)	FI ADDP memx ST(i)	FI COMP	FPATAN
FISTP memx ST(i)	FI SUBRP memx ST(i)	FI UCOMP	FZXM
FLDPI	FI MULP menx ST(i)	FSTSW AXI mem	FCOS
FLDI	FI DI VRP memx ST(i)		FPTAN
FLDZ	FSQRT		FPREM
	FABS		FPSI N
	FRNDI NT		

Optional variations

- ו: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit double precision
- Instructions operate on them simultaneously

Single-Instruction Multiple-Data

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2 ?

- Only for unsigned integers
- For signed integers
- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- $11111011_{2} \gg 2=11111110_{2}=-2$
- Rounds toward $-\infty$
- e.g. $11111011_{2} \ggg 2=0011110_{2}=+62$

Who Cares About FP Accưracy?

Important for scientific code

- But for everyday consumer use?
"My bank balance is out by $0.0002 \phi!$ " $:$
The Intel Pentium FDIV bug
- The market expects accuracy
- See Colwell, The Pentium Chronicles

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow
- MIPS ISA
- Core instructions: 54 most frequently used
- 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

