
Computer Architecture
Lecture 9: Thread-Level
Parallelism (Chapter 5)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD  Data Level Parallelism

• MIMD  Thread Level Parallelism

• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm

– Cost-effective: same MPU in desktop & MIMD

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 2

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single
Data (MISD)

(ASIP)

Multiple Instruction
Multiple Data MIMD

(Clusters, SMP servers)

M.J. Flynn, "Very High-Speed Computers",

Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

Exploiting TLP on Multiprocessors

• Our focus in the chapter is on tightly-coupled shared-memory
multiprocessors

– A set of processors whose coordination and usage are typically controlled by a
single operating system and that share memory through a shared address
space.

• Two different software models

– Parallel processing
• The execution of a tightly coupled set of threads collaborating on a single task

– Request-level parallelism
• The execution of multiple, relatively independent processes that may originate from one

or more users (called multiprogramming).

• How to exploit thread-level parallelism efficiently?

– Identified the independent threads by compiler? (X)

– identified the independent threads at a high level by the software system or
programmer ()

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 3

2 Models for Communication and Memory
Architecture for Multiprocessors

1. Message-passing multiprocessors: Communication occurs

by explicitly passing messages among the processors:

2. Shared memory multiprocessors: Communication occurs

through a shared address space (via loads and stores):

either

• UMA (Uniform Memory Access time) (or symmetric

multiprocessors (SMPs), or centralized shared-memory)

multiprocessors

• NUMA (Non Uniform Memory Access time) (or distributed shared

memory (DSM) multiprocessors

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 4

Shared-Memory Multiprocessors Architecture

• Symmetric multiprocessors (SMP)

– A centralized memory

– Small number of cores ( 32)

– Share single memory with uniform
memory latency

• Distributed shared memory (DSM)

– Memory is distributed among
processors

– Non-uniform memory
access/latency (NUMA)

– Processors connected via direct
(switched) and non-direct (multi-
hop) interconnection networks

5

UMA for each

processor

NUMA for individual processor. The access

time depends on the location of a data word in

memory

Distributed Memory Multiprocessor

• Processors connected via direct (switched) and non-
direct (multi-hop) interconnection networks

• Pro: Cost-effective way to scale memory bandwidth

• If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more
complex

• Con: Must change software to take advantage of increased
memory BW

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 6

Challenges of Parallel Processing (1/2)

• The first challenge is the limited parallelism available in programs

• Suppose 80X speedup from 100 processors. What fraction of
original program can be sequential?

• Amdahl’s Law Answers

7

 

 

 

%75.992.79/79Fraction

Fraction8.0Fraction8079

1
100

Fraction
 Fraction 180

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1

1
 Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

enhanced

enhanced
enhanced

overall























Challenges of Parallel Processing (2/2)

• The second challenge is the relatively high cost of communications

• Suppose 32-core MP, 4GHz, 100 ns remote memory, all local

accesses hit memory hierarchy and base CPI is 0.5. What is

performance impact if 0.2% instructions involve remote access?

• Answer:

– Remote access = 100/0.25 = 400 clock cycles.

– CPI = Base CPI + Remote request rate x Remote request cost

– CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

– No communication (the MP with all local reference) is 1.3/0.5 or 2.6 faster

than 0.2% instructions involve remote access

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 8

Overcome Performance Challenges

1. Insufficient parallelism  primarily in software with new
algorithms that offer better parallel performance

2. Long remote latency impact  both by architecture and by the
programmer

– For example, either by caching shared data (HW) or restructuring the
data layout to make more accesses local (SW)

• Much of this chapter focuses on techniques for reducing the
impact of long remote communication latency

– How caching can be used to reduce remote access frequency, while
maintaining a coherent view of memory?

– Efficient synchronization?

– And, latency-hiding techniques

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 9

Cache Coherence Problem ?

• Multiprocessors usually cache both private data (used by a single
processor) and shared data (used by multiple processors)

– Caching shared data can reduce latency and required memory bandwidth (due
to local access)

– But, caching shared data introduces cache coherence problem

– Processors see different values for u after event 3. (Unacceptable for
programming, and it’s frequent !!)

10

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues

1. Coherence defines values returned by a read
– Write to the same location by any two processors are seen in the same order by all processors

2. Consistency determines when a written value will be returned by a read
– If a processor writes location A followed by location B, any processor that see the new value

of B must also see the new value of A

• Coherence defines behavior of reads and writes to same location,

• Consistency defines behavior of reads and writes to other locations

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 11

• Reading an address should

return the most recently

written value to that address

– Easy in uniprocessors,

except for I/O

Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to location X that follows a

write by P to X, with no writes of X by another processor occurring

between the write and the read by P, always returns the value written by P

2. Coherent view of memory: A read by a processor to location X that follows

a write by another processor to X returns the written value if the read and

write are sufficiently separated in time and no other writes to X occur

between the two accesses.

3. Write serialization: 2 writes to same location by any 2 processors are seen

in the same order by all processors.

– If not, a processor could keep value 1 since saw as last write

– For example, if the values 1 and then 2 are written to a location, processors can

never read the value of the location as 2 and then later read it as 1

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 12

Write Consistency

• For now assume, we assume

1. A write does not complete (and allow the next write to occur)
until all processors have seen the effect of that write

2. The processor does not change the order of any write with
respect to any other memory access

 if a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A

• These restrictions allow the processor to reorder reads, but
forces the processor to finish writes in program order

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 13

Basic Schemes for Enforcing
Coherence

• Program on multiple processors will normally have copies of the same
data in several caches

• Rather than trying to avoid sharing in SW, SMPs use a HW protocol to
maintain coherent caches

• Coherent caches provide migration and replication of shared data

• Migration - data can be moved to a local cache and used there in a
transparent fashion

– Reduces both latency to access shared data that is allocated remotely and
bandwidth demand on the shared memory

• Replication – for shared data being simultaneously read, since caches
make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 14

2 Classes of Cache Coherence
Protocols

• HW cache coherence protocol

– Use hardware to track the status of the shared data

1. Directory based — Sharing status of a block of physical
memory is kept in just one location, the directory

– Centralized control protocol

2. Snooping — Every cache with a copy of data also has a
copy of sharing status of block, but no centralized state is
kept

– Distributed control protocol

to track the sharing status

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 15

Snoopy Coherence Protocol for Bus

• Cache Controller “snoops” all transactions on the bus (shared
medium)

– It works because bus is a broadcast medium

– Take actions to ensure coherence for relevant transaction :

• invalidate, update, or supply value

– It depends on state of the block and the protocol.

– Either get exclusive access before write via write invalidate or
update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 16

Example: Write-Thru Snooping

• Must invalidate shared data before step 3

• Write-thru invalidate uses more broadcast medium BW

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Exclusive access ensures that no

other readable or writable copies of

an data exist when the write occurs

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 17

u = 7

Architectural Building Blocks

• Cache block state transition diagram
– FSM specifying how disposition of block changes

• invalid, valid, dirty

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction

– Logically single set of wires connect several devices

– Protocol: arbitration, command/addr, data

 Every device observes every transaction

• Broadcast medium enforces serialization of read or write accesses 
Write serialization
– 1st processor to get medium invalidates others copies

– Implies cannot complete write until it obtains bus

– All coherence schemes require serializing accesses to same cache block

• Also need to find up-to-date copy of cache block

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 18

Locate Up-to-date Copy of Data

• Write-through: get up-to-date copy from lower level cache or
memory (simpler, but enough memory BW is necessary)

• Write-back: it is harder to get up-to-date copy of data

• Can use same snooping mechanism

1. Snoop every address placed on the bus

2. If a processor has dirty copy of requested cache block, it
provides it in response to a read request and aborts the
memory access

– Complexity from retrieving cache block from a processor cache,
which can take longer than retrieving it from memory

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 19

Cache Resources for WB Snooping

• Normal cache tags can be used for snooping

• Valid bit per block makes invalidation easy

• Read misses easy since rely on snooping

• Writes  Need to know if know whether any other copies of

the block are cached

– No other copies  No need to place write on bus for WB

– Other copies  Need to place invalidate on bus

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 20

Cache Resources for WB Snooping

• To track whether a cache block is shared, add extra state bit

associated with each cache block, like valid bit and dirty bit

– Write to Shared block  Need to place invalidate on bus

and mark cache block as private (if an option)

– No further invalidations will be sent for that block

– This processor called owner of cache block

– Owner then changes state from shared to unshared (or

exclusive)

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 21

Cache Behavior in Response to Bus

• Every bus transaction must check the cache-address tags

– could potentially interfere with processor cache accesses

• A way to reduce interference is to duplicate tags

– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 tags

– Since L2 less heavily used than L1

 Every entry in L1 cache must be present in the L2 cache, called
the inclusion property

– If Snoop gets a hit in L2 cache, then it must arbitrate for the L1
cache to update the state and possibly retrieve the data, which
usually requires a stall of the processor

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 22

Finite-State Controller

• Snooping coherence protocol is usually implemented by

incorporating a finite-state controller in each node

• Logically, think of a separate controller associated with each cache

block

– That is, snooping operations or cache requests for different

blocks can proceed independently

• In implementations, a single controller allows multiple operations

to distinct blocks to proceed in interleaved fashion

– That is, one operation may be initiated before another is

completed, even through only one cache access or one bus

access is allowed at time

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 23

An WB Snoopy Protocol
• Invalidation protocol, write-back cache

– Snoops every address on bus

– If it has a dirty copy of requested block, provides that block in response
to the read request and aborts the memory access

• Each memory block is in one of three state:

– Clean in all caches and up-to-date in memory (Shared)

– OR Dirty in exactly one cache (Exclusive)

– OR Not in any caches (Invalid)

• Each cache block is in one of three state (track these):

– Shared : block can be read

– OR Exclusive : cache has only copy, its writeable, and dirty

– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus

• Writes to clean blocks are treated as misses

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 24

CPU Read hit

Write-Back State Machine - CPU

• State machine
for CPU requests
for each
cache block

• Non-resident blocks invalid

Invalid
Shared

(read/only)

Exclusive

(read/write)

CPU Read

CPU Write

Place read miss

on bus

Place Write

Miss on bus

CPU Write

Place Write Miss on Bus

CPU Write Miss (?)

Write back cache block

Place write miss on bus

CPU read hit

CPU write hit

Cache Block

State

25

Write-Back State Machine- Bus Request

• State machine
for bus requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive

(read/write)

Write Back

Block; (abort

memory access)

Write miss

for this block

Read miss

for this block

Write miss

for this block

Write Back

Block; (abort

memory access)

26

Block-replacement

• State machine
for CPU requests
for each
cache block Invalid

Shared

(read/only)

Exclusive

(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss

on bus

Place Write

Miss on bus

CPU read miss

Write back block,

Place read miss

on bus

CPU Write

Place Write Miss on Bus

CPU Read miss

Place read miss

on bus

CPU Write Miss

Write back cache block

Place write miss on bus

CPU read hit

CPU write hit

Cache Block

State

27

Place read miss

on bus

Write-back State Machine-III

• State machine
for CPU requests
for each
cache block and
for bus requests
for each

cache block Invalid
Shared

(read/only)

Exclusive

(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write

Miss on bus

CPU read miss

Write back block,

Place read miss

on bus CPU Write

Place Write Miss on Bus

CPU Read miss

Place read miss

on bus

CPU Write Miss

Write back cache block

Place write miss on bus

CPU read hit

CPU write hit

Cache Block

State

Write miss

for this block

Write Back

Block; (abort

memory

access)

Write miss

for this block

Read miss

for this block

Write Back

Block; (abort

memory access)

28

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,

initial cache state is invalid

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 29

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 30

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 31

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 32

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 33

Example

P1 P2 Bus Memory

step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10

P2: Read A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10

Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10

P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1

P2: Read A1

P1 Write 10 to A1

P2: Write 20 to

P2: Write 40 to

Assumes A1 and A2 map to same cache block,

but A1 != A2

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 34

Some Implementation Issues

• Although the example protocol is correct, it omits a number of
complications. It assumes bus transactions and memory operations
are atomic

– An operation can be done in such a way that no intervening operation
can occur.

– Write miss (be detected, then acquire the bus, and receive a response)
is atomic

– Read miss is atomic

• In fact, bus transactions are not atomic. It can have multiple
outstanding transactions for a block

– Deadlock problem is possible (it reaches a state where it cannot
continue).

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 35

Extensions to the Basic Coherence Protocol

• The basic protocol is a simple three-state MSI (Modified, Shared,
Invalid) protocol.

• Optimize the protocol by adding additional states to improve
performance

– MESI (Modified, Exclusive, Shared, and Invalid) protocol, e.g. Intel i7

• Add exclusive state to indicate that a cache block is resident in only a single
cache but is clean. (It can be written without generating any invalidates.)

– MOESI (Modified, Owned, Exclusive, Shared, and Invalid protocol, e.g.
AMD Opteron

• Add owned state to indicate that the main memory copy is out of date and
that the designated cache is the owner.

• When there is an attempt to share a block in the Modified state
– The block must be written back to memory in the original

– The block can be changed (from Modified) to Owned state without writing it to memory.

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 36

Limitations in SMPs and Snooping Protocols

• As the number of processors grows, a single shared bus soon becomes a
bottleneck (because every cache must examine every miss, and having
additional interconnection bandwidth only pushes the problem to the
cache).

• Example:

– Consider an 8-processor multicore where each processor has its own L1 and
L2 caches, and snooping is performed on a shared bus among the L2 caches.

– Assume the average L2 request, whether for a coherence miss or other miss, is
15 cycles.

– Assume a clock rate of 3.0 GHz, a CPI of 0.7, and a load/store frequency of
40%.

– If our goal is that no more than 50% of the CPI is consumed by coherence
traffic, what is the maximum coherence miss rate (CMR) per processor?

• Answer:

37

I x 0.4 x CMR x 8 x 15  0.7/2 CMR < 0.0073 = 0.73%

If we assume that CMR can be 1%, then we could support
just under 6 processors.

Techniques for Increasing the Snoop
Bandwidth

• The tags can be duplicated. This
doubles the effective cache-level
snoop bandwidth

• If the outermost cache on a
multicore (typically L3) is shared,
we can distribute that cache so
that each processor has a portion
of the memory and handles
snoops for that portion of the
address space

• We can place a directory at the
level of the outermost shared
cache (say, L3). L3 acts as a filter
on snoop requests and must be
inclusive

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 38

distributed shared cache

Write Serialization

• Processor only observes state of memory system by issuing memory

operations

• All writes go to bus + atomicity: Writes serialized by order in which they

appear on bus

=> invalidations applied to caches in bus order

• How to insert reads in this order?

– Important since processors see writes through reads, so determines

whether write serialization is satisfied

– But read hits may happen independently and do not appear on bus or

enter directly in bus order

• Let’s understand other ordering issues

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 39

Read Ordering

• Writes establish a partial order

• Doesn’t constrain ordering of reads, though shared-medium (bus) will
order read misses too

– any order among reads between writes is fine, as long as in program
order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 40

write propagation + write serialization

Race Problem

• Cannot update cache until bus is obtained. Otherwise, another processor
may get bus first, and then write the same cache block!

• Two step process:

– Arbitrate for bus

– Place miss on bus and complete operation

• If miss occurs to block while waiting for bus, handle miss (invalidate may
be needed) and then restart.

• Split transaction bus:

– Bus transaction is not atomic: can have multiple outstanding transactions
for a block

– Multiple misses can interleave, allowing two caches to grab block in the
Exclusive state

– Must track and prevent multiple misses for one block

• Must support interventions and invalidations

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 41

Performance of Symmetric Shared-
Memory Multiprocessors

• Cache performance is combination of

1. Uniprocessor cache miss traffic

2. Traffic caused by communication

– Results in invalidations and subsequent cache misses

• 4th C: coherence miss

– Joins Compulsory, Capacity, Conflict

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 42

Coherency Misses

1. True sharing misses arise from the communication of
data through the cache coherence mechanism

• Invalidates due to 1st write to shared block

• Reads by another CPU of modified block in different cache

• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into

• Invalidation does not cause a new value to be communicated,
but only causes an extra cache miss

• Block is shared, but no word in block is actually shared

• Miss would not occur if block size were 1 word

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 43

Example: True vs. False Sharing vs. Hit?

Time P1 P2 True, False, Hit? Why?

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

• Assume x1 and x2 in same cache block.

P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 08-44

MP Performance 4 Processor
Commercial Workload: OLTP, Decision Support
(Database), Search Engine

• True sharing and

false sharing

unchanged going

from 1 MB to 8 MB

(L3 cache)

• Uniprocessor

cache misses

improve with

cache size

increase

(Instruction,

Capacity/Conflict,

Compulsory)

(M
e

m
o

ry
)

C
y
c
le

s
 p

e
r

In
s
tr

u
c
ti
o
n

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 45

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision Support (Database),
Search Engine

• True sharing,

false sharing

increase going

from 1 to 8 CPUs
(M

e
m

o
ry

)
C

y
c
le

s
 p

e
r

In
s
tr

u
c
ti
o
n

CA-Lec9 cwliu@twins.ee.nctu.edu.tw 46

