
Computer Architecture
Lecture 7: Limits on ILP &

Multithreading (Chapter 3)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

HW vs. SW to Increase ILP

• Increasing performance by using ILP has the great advantage

• Memory disambiguation: HW best

• Speculation: Both

– HW best when dynamic branch prediction better than compile time
prediction

– Exceptions easier for HW

– HW doesn’t need bookkeeping code or compensation code

– Very complicated to get right

• (Re-)Scheduling: SW best

– SW is easily to look ahead to schedule better than HW does

• Compiler independence: HW only

– HW does not require new compiler (or recompilation) to run well

2

Limits to ILP
• How much ILP is available using existing mechanisms with

increasing HW budgets?

• ILP can be quite limited or difficult to exploit in some applications.

– In particular, with reasonable instruction issue rates, cache misses that
go to memory or off-chip caches are unlikely to be hidden by available
ILP.

• Do we need to invent new HW/SW mechanisms to keep on
processor performance curve?

– Advances in compiler technology + significantly new and different
hardware techniques may be able to overcome limitations assumed in
studies

– However, unlikely such advances when coupled with realistic hardware
will overcome these limits in near future

3

Ideal/Perfect Machine

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers

=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions

3. Jump prediction – all jumps perfectly predicted (returns, case
statements)
2 & 3 no control dependencies; perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis – addresses known & a load can be
moved before a store provided addresses not equal; 1&4 eliminates all but
RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited

instructions issued/clock cycle;

4

Upper Limit to ILP: Ideal Machine

• Limited only by the ILP inherent in the benchmarks
– Benchmarks are small codes
– More ILP tends to surface as the codes get bigger

How many instructions would

issue on the perfect machine

every cycle?

Loop-intensive

5

How to Exceed ILP Limits?

• Performance beyond single thread ILP

– ILP exploits implicit parallel instructions/operations within a loop or straight-
line code segment

– There can be much higher natural parallelism (or explicit parallelism) in some
applications

• Thread: instruction stream with its own PC and data

– Thread may be a process part of a parallel program of multiple processes, or
just an entire program

– Each thread has all the state (instructions, data, PC, register state, and so on)
necessary to allow it to execute

• Thread Level Parallelism (TLP) and/or Data Level Parallelism (DLP)

– TLP: Perform executions of multiple threads that are inherently parallel

– DLP: Perform identical operations on data, and lots of data

– TLP/DLP could be more cost-effective to exploit than ILP

6

Multithreading:
Exploiting TLP to Improve Uniprocessor Throughput

• Multiple threads share the functional units of in a
processor via overlapping

– Hardware duplicates only private state of each thread e.g., a
separate register file, a separate PC, and a separate page table

– HW supports the ability of (fast) thread/context switch

• When switch?

– Fine-grain multithreading: Alternate instruction per thread

– Coarse-grain multithreading: When costly stalls occurred, e.g. a
cache miss, another thread can be executed

– Simultaneous multithreading (SMT): Fine-grain multithreading +
multiple-issue, dynamically scheduled processor

7

Fine-Grained Multithreading
aka Interleaved Multithreading (IMT)

• Switches between threads on each instruction, causing the

execution of multiples threads to be interleaved

• Usually done in a round-robin fashion, skipping any stalled threads

• HW must be able to switch threads every clock

• Advantage is it can hide both short and long stalls, since instructions

from other threads executed when one thread stalls

• Disadvantage is it slows down execution of individual threads, since

a thread ready to execute without stalls will be delayed by

instructions from other threads

• Used on Sun’s Niagara, SPARC T1 through T5, and NVIDIA GPUs

8

Coarse-Grained Multithreading
aka Block Multithreading (BMT)

• HW switches threads only on costly stalls (e.g. L2/L3 misses), where

pipeline refill << stall time

• Advantages

– Relieve HW cost (fast thread-switching is not necessary).

– Much less likely to slow down the execution of any one thread.

• Disadvantages

– Hard to overcome throughput losses esepecially from shorter stalls, due to

pipeline start-up costs

– New thread must fill pipeline before instructions can complete

• No major current processors use this technique

9

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of parallel structure in
a program

• Could a processor oriented at ILP to exploit TLP?
– functional units are often idle in data path designed for ILP because of

either stalls or dependences in the code

• Could the TLP be used as a source of independent instructions
that might keep the processor busy during stalls?

• Could TLP be used to employ the functional units that would
otherwise lie idle when insufficient ILP exists?

10

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle

One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

11

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that dynamically
scheduled processor already has many HW mechanisms to support
multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and keeping separate PCs

– Independent commitment can be supported by logically keeping
a separate reorder buffer for each thread

12

Source: Microprocessor Report, “Compaq Chooses SMT for Alpha” December 6, 1999

Multithreaded Categories
T

im
e

(p
ro

ce
ss

or
 c

yc
le

) Superscalar/VLIW Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot
13

Design Challenges in SMT

• Since SMT makes sense only with fine-grained implementation, impact of
fine-grained scheduling on single thread performance is still there

– A preferred thread approach sacrifices neither throughput nor single-thread
performance?

– Unfortunately, with a preferred thread, the processor is likely to sacrifice some
throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts

• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be considered

– Instruction completion - choosing which instructions to commit may be
challenging

• Ensuring that cache and TLB conflicts generated by SMT do not degrade
performance

14

And in conclusion …

• Limits to ILP (power efficiency, compilers, dependencies …)
seem to limit to 3 to 6 issue for practical options

• Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

• Coarse grain vs. Fine grained multithreading

– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained multithreading
based on OOO superscalar microarchitecture

– Instead of replicating registers, reuse rename registers

15

