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HW vs. SW to Increase |ILP

* |ncreasing performance by using ILP has the great advantage
* Memory disambiguation: HW best

* Speculation: Both

— HW best when dynamic branch prediction better than compile time
prediction

— Exceptions easier for HW
— HW doesn’t need bookkeeping code or compensation code
— Very complicated to get right
* (Re-)Scheduling: SW best
— SW is easily to look ahead to schedule better than HW does

 Compiler independence: HW only

— HW does not require new compiler (or recompilation) to run well
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Limits to ILP

* How much ILP is available using existing mechanisms with
increasing HW budgets?

* ILP can be quite limited or difficult to exploit in some applications.

— In particular, with reasonable instruction issue rates, cache misses that

go to memory or off-chip caches are unlikely to be hidden by available
ILP.

* Do we need to invent new HW/SW mechanisms to keep on
processor performance curve?

— Advances in compiler technology + significantly new and different

hardware techniques may be able to overcome limitations assumed in
studies

— However, unlikely such advances when coupled with realistic hardware
will overcome these limits in near future



‘Ideal/Perfect Machine

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming — infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions

3. Jump prediction — all jumps perfectly predicted (returns, case
statements)

2 & 3 = no control dependencies; perfect speculation & an unbounded
buffer of instructions available

4. Memory-address alias analysis — addresses known & a load can be
moved before a store provided addresses not equal; 1&4 eliminates all but
RAW

Also: perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
instructions issued/clock cycle;
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pper Limit to ILP: Ideal Machine

- How many instructions would
gce 55 issue on the perfect machine

every cycle?
| &
| Ay

119 Loop-intensive

espresso 63

SPEC :

benchmarks

foppp
doduc

tomcatv 150

140 160

0 20 40 60 80 100 120

Instruction issues per cycle

* Limited only by the ILP inherent in the benchmarks
— Benchmarks are small codes
— More ILP tends to surface as the codes get bigger
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How to Exceed ILP Limits?

* Performance beyond single thread ILP
— ILP exploits implicit parallel instructions/operations within a loop or straight-
line code segment
— There can be much higher natural parallelism (or explicit parallelism) in some
applications
e Thread: instruction stream with its own PC and data
— Thread may be a process part of a parallel program of multiple processes, or
just an entire program
— Each thread has all the state (instructions, data, PC, register state, and so on)
necessary to allow it to execute
e Thread Level Parallelism (TLP) and/or Data Level Parallelism (DLP)
— TLP: Perform executions of multiple threads that are inherently parallel
— DLP: Perform identical operations on data, and lots of data
— TLP/DLP could be more cost-effective to exploit than ILP



Multithreading:
Exploiting TLP to Improve Uniprocessor Throughput

* Multiple threads share the functional units of in a
processor via overlapping

— Hardware duplicates only private state of each thread e.g., a
separate register file, a separate PC, and a separate page table

— HW supports the ability of (fast) thread/context switch
* When switch?

— Fine-grain multithreading: Alternate instruction per thread

— Coarse-grain multithreading: When costly stalls occurred, e.g. a
cache miss, another thread can be executed

— Simultaneous multithreading (SMT): Fine-grain multithreading +
multiple-issue, dynamically scheduled processor
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"Fine-Grained Multithreading
aka Interleaved Multithreading (IMT)

* Switches between threads on each instruction, causing the
execution of multiples threads to be interleaved

* Usually done in a round-robin fashion, skipping any stalled threads
* HW must be able to switch threads every clock

 Advantage is it can hide both short and long stalls, since instructions
from other threads executed when one thread stalls

 Disadvantage is it slows down execution of individual threads, since
a thread ready to execute without stalls will be delayed by
instructions from other threads

e Used on Sun’s Niagara, SPARC T1 through T5, and NVIDIA GPUs
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‘Coarse-Grained Multithreading
aka Block Multithreading (BMT)

 HW switches threads only on costly stalls (e.g. L2/L3 misses), where
pipeline refill << stall time

* Advantages

— Relieve HW cost (fast thread-switching is not necessary).

— Much less likely to slow down the execution of any one thread.
* Disadvantages

— Hard to overcome throughput losses esepecially from shorter stalls, due to
pipeline start-up costs

— New thread must fill pipeline before instructions can complete

* No major current processors use this technique



Do both ILP and TLP?

 TLP and ILP exploit two different kinds of parallel structure in
a program
* Could a processor oriented at ILP to exploit TLP?

— functional units are often idle in data path designed for ILP because of
either stalls or dependences in the code

* Could the TLP be used as a source of independent instructions
that might keep the processor busy during stalls?

 Could TLP be used to employ the functional units that would
otherwise lie idle when insufficient ILP exists?
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One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FPBRCC Cycle M M FX FX FP FP BRCC

1 1

2 2

3 3

4 | 4

5 5

6 6

7 7

8 8

° | 9

M = Load/Store, FX = Fixed Point, FP = Floating Pbint, BR = Branchi, CC = Condition Codes
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Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT): insight that dynamically
scheduled processor already has many HW mechanisms to support
multithreading

— Large set of virtual registers that can be used to hold the
register sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

— Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

e Just adding a per thread renaming table and keeping separate PCs

— Independent commitment can be supported by logically keeping
a separate reorder buffer for each thread

Source: Microprocessor Report, “Compaq Chooses SMT for Alpha” December 6, 1999

12



+— Time (processor cycle)

~—> Superscalar/VLIW  Fine-Grained Coarse-Grained

B Thread 1

N

Multithreaded Categories

N

N

Thread 2

Multlproclessmg
] ] NN
L] N
]
1]
NN
NNN N
YY N N
] NN
BN
1 0
N
NN
Thread 3
Thread 4

Simultaneous
Multithreading
1IN

7\ M7
%

Z 1 11 1m Z 7

Thread 5

|dle slot
13



Design Challenges in SMT

* Since SMT makes sense only with fine-grained implementation, impact of
fine-grained scheduling on single thread performance is still there

— A preferred thread approach sacrifices neither throughput nor single-thread
performance?

— Unfortunately, with a preferred thread, the processor is likely to sacrifice some
throughput, when preferred thread stalls

e Larger register file needed to hold multiple contexts
* Not affecting clock cycle time, especially in

— Instruction issue - more candidate instructions need to be considered

— Instruction completion - choosing which instructions to commit may be
challenging

* Ensuring that cache and TLB conflicts generated by SMT do not degrade
performance

14
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e Limits to ILP (power efficiency, compilers, dependencies ...
seem to limit to 3 to 6 issue for practical options

* Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

e Coarse grain vs. Fine grained multithreading
— Only on big stall vs. every clock cycle

* Simultaneous Multithreading if fine grained multithreading
based on OOO superscalar microarchitecture

— Instead of replicating registers, reuse rename registers



