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Dynamic Scheduling

* Atechnique that uses hardware to overcomes data
hazards

— the hardware rearranges the instruction execution to reduce the
stalls while maintaining data flow and exception behavior

— Handling some cases when dependences are unknown at
compiler time (e.g. memory reference)

— Simplify the compiler

— (Perhaps most importantly) Allow code compiled with one
pipeline run on a different pipeline

— Will explore hardware speculation
— But, a cost of significant increase in hardware complexity
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Basic for Dynamic Scheduling

* l|dea:
— To maintain IPC=1 by executing an instruction as early as possible

— When stalled, other instructions can be issued and executed if they do not
depend on any active or stalled instructions

* Dynamic Scheduling implies out-of-order execution and out-of-order
completion

* Advantages:
— Compiler doesn’t need to have knowledge of microarchitecture
— Handles cases where dependencies are unknown at compile time
* Disadvantage:
— Substantial increase in hardware complexity
— Creates the possibility for WAR and WAW hazards
— Complicates exceptions (precise vs. imprecise exceptions)

Bulinpayos alweuiq
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OO0O (Out-of-Order) Example

* In-order issue, but allow out-of-order execution (and thus

out-of-order completion)

Example 1

DIVD FO,F2,F4
ADD.D F10,FO, F8 , stalled
SUB.D F12,F8,F14

SUB.D has dependence with
neither DIV.D nor ADD.D

However, it cannot execute if
out-of-order execution is not allowed.

Performance limitation due to hazard...

Example 2

W B EE

ABE R BBl S ; stalled
S e R

MULD F6, F10, F8

However, if out-of-order execution is allowed,
WAR or WAW hazards could arise

Eliminating WAR and WAW hazards is essential
to out-of-order execution =



Dynamic Scheduling Introduction

* Inclassic 5-stage pipeline, both structural and data hazards could be checked
during ID stage

— When an instruction could execute without hazards, it was issued from ID
knowing that all data hazards had been resolved.

* Let separate the ID stage into two parts
— Issue: Decode, check for structural hazard in the manner of in-order issue
— Read Operands: Wait until no data hazards, then read operands

* Out-of-order (O00) execution
— It may introduce WAR, WAW hazards, solved by register renaming.

IM ~I— Issue 1£ Reg ’E DM Reg

IF ID EX MEM WB
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Register Remaining Example

e Before: e After:
fdiv.d fO,f2,f4 fdiv.d fO,f2,f4
fadd.d f6,f0,f8 fadd.d S,f0,f8

fsd f6,0(x1) fsd S,0(x1)
fsub.d  8,10,f14 fsub.d  T,f10,f14
fmul.d  f6F10,f8 fmul.d  f6,f10,T

Anti-dependence Only RAW hazards remain
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Solving WAR & WAW when Dynamic Scheduling

e Scoreboard (used in CDC6600 first, 1963)
— Bookkeeping approach

— Centralized control

— Stall the instruction and keep track of dependencies
between pending instructions

* Tomasulo’s approach (used in IBM 360/91 Floating-
point Unit, 1966)
— Register remaining approach by using reservation registers

— Distributed control
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 The scoreboard takes full responsibility for instruction
issue and execution, including hazard detection

* Three parts to the scoreboard
— |Instruction status
* Indicate the pipeline stage of the instruction

— Functional unit status
* 9 fields to indicate the state of the functional unit (FU)

— Register result status

* Indicate which FU will write the result to register
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Scoreboard Example

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q) Qk Rj Rk

Integer No

Multl No

Mult2 No

Add No

Divide No

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30

FU
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‘Scoreboard Example: Cycle 1

Instruction status: Read Exec Write

Instruction ik per Comp Result
1

LD F6 34+ R2
LD F2 45+ R3
MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name ' ' ' - ay R

Integer

Multl 8
Mult2 No
Add No
Divide No

esult status:

FO F2 F4) F6 JF8 F10 F12 .. F30
FU Integer

10
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Functional unit status:

] k
34+ R2
45+ R3
F2 F4
F6 F2

F8 F2

Time Name

Register result status:

Clock
2

Integer
Multl
Mult2
Add
Divide

FU

» Tssue 2nd LD?

Read J[Exec Write

Scoreboard Example: Cycle 2

Issug Oper JComp Result
1 2

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk Rj Rk
Yes Load F6 R2 Yes
No
No
No
No
FO F2 F4 F6 F8 F10 F12 F30

Integer

11
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Scoreboard Example: Cycle 3

Instruction status: Read Exec |Write
Instruction j k Issue Opel CompjResult
LD F6 34+ R2 1 2 3
LD F2 45+ R3

MULTD FO F2 F4
SuBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj?] Fk?
Time Name Busy Op Fi Fj Fk Q)] Qk Rj Rk
Integer Yes Load F6 R2 No

Multl No

Mult2 No

Add No

Divide No

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30

3 FU Integer

« Tssue MULT?
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Instruction status: Read Exec
Instruction j k Issue Oper Comp
LD F6 34+ R2 1 2 3
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name ' ' ' - ay R

Integer

Multl 8
Mult2 No
Add No
Divide No

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 .. F30
4 FU Integer

13
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Functional unit status:
Time Name

J k
34+ R2
45+ R3
F2 F4
F6 F2

F8 F2

Integer
Multl
Mult2
Add
Divide

Register result status:

Clock
5

FU

Scoreboard Example: Cycle 5

Read Exec Write

Issue Oper Comp Result

1
5

2

3 4

FO

F2

FA F6 F8 F10 F12 .. F30

Integer

14
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Scoreboard Example: Cycle 6

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6

MULTD FO F2 F4 6
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk  Qj Qk Rj Rk
Integer m— - e
Multl Yes Mult FO F2 F4  Integer No Yes
Mult2 Ble
Add No
Divide No

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30

6 FU | Multl Integer
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Scoreboard Example: Cycle 7

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7
MULTD FO F2 F4 6
SUBD F8 F6 F2 7
ADDD F6 F8 F2
Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q)] Qk Rj Rk
Integer Yes Load F2 R3 No
Multl Yes  Mult FO F2 F4  Integer No Yes
Mult2
Add Yes  Sub F8 F6 F2 Integer Yes No
Divide Wra
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30
7 FU | Multl Integer Add

* Read multiply operands?
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Instruction status:

Instruction

LD

LD
MULTD
SuUBD

ADDD

Functional unit status:

Register result status:

Clock
8

ik
F6 34+ R2
F2 45+ R3
FO F2 F4
F8 F6 F2
F6 F8 F2

Time Name
Integer
Multl
Mult2
Add
Divide

FU

(First half of clock cycle)

Read Exec Write
Issue Oper Comp Result

AECIROICS -y
Scoreboard Example: Cycle 8a

1 2 3 4
5 6 7
6
7
8

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk R] Rk
Yes Load F2 R3 No
Yes Mult FO F2 F4  Integer No Yes
No
Yes  Sub F8 F6 F2 Integer Yes No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Integer Add

17
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Functional unit status:

J k
34+ R2
45+ R3
F2 F4
F6 F2

F8 F2

Time Name

Integer
Multl
Mult2
Add
Divide

Register result status:

Clock
8

FU

(Second half of clock cycle)

Read Exec Write
Issue Oper Comp Result

Scoreboard Example: Cycle 8b

1 2 3 4
5 6 7 8
6
7
8

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 Yes Yes
No
Yes Sub F8 F6 F2 Yes Yes
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

18
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Functional unit status:

]
34+
45+
F2
F6

F8

k
R2
R3
F4
F2

F2

Time Name
Integer

Clock wmmp 10 Mult

Mult2

Remainng

2 Add

Divide

Register result status:

Clock
9

FU

Scoreboard Example: Cycle 9

Read Exec Write

Issue Oper Comp Result
1 2 3 4
5 6 7 8
6 9
7 9
8

dest S1 S2 FU FU Fj?  Fk?
Busy Op Fi F Fk Qj OQk Rj Rk
No
Yes Mult FO F2 F4 Yes Yes
No
Yes Sub F8 F6 F2 Yes Yes
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

* Read operands for MULT & SUB? Issue ADDD?

19
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Scoreboard Example: Cycle 10

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTD FO F2 F4 6 9
SUBD F8 F6 F2 7 9

8
ADDD F6 F8 F2

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Qj Qk R] Rk
Integer No
9 Multl Yes  Mult FO F2 F4 No No
Mult2 No
1 Add Yes  Sub F8 F6 F2 No No
Divide Yes Multl

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 .. F30
10 FU [ Multl Add

20
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
8 Multl
Mult2
0 Add
Divide

Register result status:

Clock
11 FU

‘Scoreboard Example: Cycle 11

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11
8

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi F Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 No No
No
Yes Sub F8 F6 F2 No No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

21
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Scoreboard Example: Cycle 12

Instruction status:

Read Exec Write

Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTD FO F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
8
ADDD F6 F8 F2
Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q)] Qk Rj Rk
Integer No
7 Multl Yes Mult FO F2 F4 No No
Mult2 No
Add No
Divide Yes Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30

12 FU | Multl

+ Read operands for DIVD?

22
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
6 Multl
Mult2
Add
Divide

Register result status:

Clock
13 FU

Scoreboard Example: Cycle 13

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11 12
8
13

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk R] Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 Yes Yes
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

23
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
5 Multl
Mult2
2 Add
Divide

Register result status:

Clock
14 FU

Scoreboard Example: Cycle 14

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11 12
8
13 14

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk R] Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 Yes Yes
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

24
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
4 Multl
Mult2
1 Add
Divide

Register result status:

Clock
15 FU

Scoreboard Example: Cycle 15

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11 12
8
13 14

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi F Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 No No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

25
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
3 Multl
Mult2
0 Add
Divide

Register result status:

Clock
16 FU

Scoreboard Example: Cycle 16

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11 12
8
13 14 16

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi F Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 No No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

26
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Scoreboard Example: Cycle 17

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTD FO F2 F4 6 9
SUBD F8 F6 F2 7 9 11 12
8 WAR Hazard!
ADDD F6 F8 F2 | 13 14 16

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q)] Qk Rj Rk
Integer No

2 Multl Yes Mult FO No No

Mult2 No
Add Yes Add
Divide Yes

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 .. F30
17 FU | Multl Add

* Why not write result of ADD??? -
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
1 Multl
Mult2
Add
Divide

Register result status:

Clock
18 FU

Scoreboard Example: Cycle 18

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9
7 9 11 12
8
13 14 16

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi F Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 No No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

28
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Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
0 Multl
Mult2
Add
Divide

Register result status:

Clock
19 FU

Scoreboard Example: Cycle 19

Read Exec Write
Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9 19
7 9 11 12
8
13 14 16

dest S1 S2 FU FU Fj? Fk?
Busy Op Fi F Fk Qj Qk Rj Rk
No
Yes Mult FO F2 F4 No No
No
Yes Add F6 F8 F2 No No
Yes Multl
FO F2 F4 F6 F8 F10 F12 F30
Multl Add

29
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Scoreboard Example: Cycle 20

Read Exec Write

Instruction status:

Instruction J Kk
LD F6 34+ R2
LD F2 45+ R3

MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Functional unit status:
Time Name
Integer
Multl
Mult2
Add
Divide

Register result status:

Clock
20 FU

Issue Oper Comp Result

1 2 3 4
5 6 7 8
6 9 19 20
7 9 11 12
8
13 14 16
dest S1 S2 FU FU Fj? Fk?
Busy Op Fi Fj Fk Qj Qk R] Rk
No
No
No
Yes Add F6 F8 F2 No No
Yes
FO F2 F4 F6 F8 F10 F12 F30
Add

30
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Scoreboard Example: Cycle 21

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6 7 8
MULTD FO F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12

8 21
ADDD F6 F8 F2 13 14 16

Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q)] Qk Rj Rk

Integer No

Multl No

Mult2 No
Add Yes Add F6 F8 F2 No No

Divide Yes

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30

21 FU Add

* WAR Hazard is now gone...
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Scoreboard Example: Cycle 22

Instruction status: Read Exec Write
Instruction j k Issue Oper Comp Result
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 | 5 6 7 8
MULTD FO F2 F4 6 9 19 20
SUBD F8 F6 F2 7 9 11 12
8 21
ADDD F6 F8 F2 | 13 14 16 22
Functional unit status: dest S1 S2 FU FU Fj? Fk?
Time Name Busy Op Fi Fj Fk Q) Qk Rj Rk
Integer No
Multl No
Mult2 No
Add No
39 Divide Yes

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 .. F30
22 FU

32



skip a couple of cycles
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Scoreboard Example: Cycle 61

Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Functional unit status:

J k
34+ R2
45+ R3
F2 F4
F6 F2

F8 F2

Time Name

Integer
Multl
Mult2
Add

0 Divide

Register result status:

Clock
61

FU

Read Exec Write
Issue Oper Comp Result

1 2 3 4

5 6 7 8

6 9 19 20

7 9 11 12

8 21 61

13 14 16 22

dest S1 S2 FU FU Fj? Fk?

Busy Op Fi Ffj Fk Qj Ok Rj Rk
No

No

No

No

Yes

FO F2 F4 F6 F8 F10 F12 ... F30

34



Scoreboard Summary

* |In-order issue and out-of-order execution/completion
Do notissue on structural hazards
e Solution for WAR: wait for WAR hazards

— Stall write-back until registers have been read (flag check)
— Read registers only during Read-Operand stage

e Solution for WAW: prevent WAW hazards

— Detect hazard and stall issue of new instruction until other instruction
completes

* No register renaming

e Scoreboard replaces 3-stages, i.e. ID:EX:WB, with Issue(ID1):Read-
Operand(ID2):EX:WB
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Tomasulo’s Algorithm

From instruction unit

Instruction FP registers l‘
queus
Load-store
operations
Y ; : Operand
Address unit Flnatlrtm_g-pmnt buses
Store buffers operations
} uffers
Y
Operation bus ]
Virtual re
— i '
| L 4 I 1
3 ! ! o
2 Reservation ' 1
1 stations
Data Address Y ¥
Memory unit adders
Common data bus (CDB)

gisters

36
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Tomasulo’s Algorithm

* Virtual registers & buffers distributed with Function Units
(FUs)
— FU virtual registers, called “reservation stations (RSs),” have
pending operands

— Registers in instruction are renamed by pointers to RSs & buffers
* Avoids WAR and WAW hazards

* RSs & buffers are more than registers, so can do optimizations that
compiler can’t

— Results to FU from RS, not through registers, over common data
bus (CDB) that broadcasts to all FUs

— Load and Store are treated as FUs with RSs as well

37



Reservation Station Duties

* Each RS holds an instruction that has been issued and is
awaiting execution at a FU, and either the operand values or
the RS names that will provide the operand values

* RS fetches operands from CDB when they appear

* When all operands are present, enable the associated
functional unit to execute

* Only the last output updates the register file
e Since values are not really written to registers
— No WAW or WAR hazards are possible
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Three Stages of Tomasulo’s Algorithm

1. Issue
—  Get the next instruction from the head of OP queue
The FIFO instruction queue (in-order issue)

— Ifno RSis available
*  Structural hazards = stall the pipeline

— If thereis an available RS
. Issue the instruction
. If the operands are available in the RFs
—  Fetch the operands and buffer them in the RS
— To solve WAR hazards (register renaming)
. If the operand is not available in the RFs

— some FU is currently computing it
— Redirect the operand source to that reservation station
— To solve WAW hazards (register renaming)
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Three Stages of Tomasulo’s Algorithm

2. Execute
— If one of operands is not available
. Monitor (CDB) and wait for it
. When the operand becomes available, it is placed into the corresponding RS
— If all operands are available
. The operation is performed at FU
. RAW hazards are avoided !
. Several insts. could become ready at the same clock cycle for the same FU
. Loads and stores require 2-step execution process
. Effective address (EA) calculation, L/S buffer for memory access

. L/S are maintained in program order through the EA calculation, which will
help to prevent hazards through memory

. To preserve exception behavior

— No instruction is allowed to initiate execution until all branches that precede it
in program order have completed.

40
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3.

Three Stages of Tomasulo’s Algorithm

Write result
When result is available, write it on the CDB

When both the address and data values are available, they are sent
to the memory unit
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algorithm

1. Issue—get instruction from the head of Op Queue (FIFO)

If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)

When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units;
mark reservation station available

* Normal data bus: data + destination (“go to” bus)

« Common data bus: data + source (“come from” bus)
— 64 bits of data + 4 bits of Functional Unit source address
— Write if matches expected Functional Unit (produces result)
— Does the broadcast
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Instruction Stl’é&ﬁ'l TO m a S u I O,S Exa m p I e

Exec Write

nstruction status:
Instruction i k Issue Comp Result

LD F6 34+ R2
LD F2 45+ R3
MULTD FO F2 F4
SuUBD F8 F6 F2

ADDD F6 F8 F2

Busy Address

Loadl No
Load?2 No
Load3 No

N

3 Load/Buffers

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
FU count Add2 | No 3 FP Adder R.S
down pads | No T 2FPMultR.S
Multl | No ..
Mult2 | No
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
/o FU
Clock cycle

counter
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

Register result status:

Clock
1

]
34+
45+

F2

F6

F8

Kk
R2
R3
F4
F2

F2

Exec Write

i Comp Result
1

Time Name Busy Op

Addl
Add2
Add3
Multl
Mult2

s1
|

S2
VK

RS
Qj

Tomasulo’s Example Cycle 1

Load Yes 34+R2

Load .
Load3 No

RS
Qk

No
No
No
No
No

FU

FO

F2

F4

F8 F10

F12

F30
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

Register result status:

Clock
2

]
34+
45+

F2

F6

F8

Addl
Add2
Add3
Multl
Mult2

k
R2
R3
F4
F2

F2

Exec Write
Issue Comp Result

Tomasulo’s Example Cycle 2

Busy Address

Load -
Load‘| Yes 45+R3 I
Load e

F30

S1 S2 RS RS
Time Name Busy Op V] VK Qj Qk
No
No
No
No
No
FO F4 F6 F8 F10 F12
FU Loadl

Note: Unlike Scoreboard, can have multiple loads outstanding
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

]
34+
45+

F2

F6

F8

Time Name Busy Op V]

Register result status:

Clock
3

* Note: registers names are removed (“renamed") in Reservation

Addl
Add2

‘ Tomasulo’s Example Cycle 3

Exec Write

k Issue Camp Result Busy Address
R2 | 1 “ Loadl | Yes  34+R2
R3 2 Load2 | Yes 45+R3
F4 3 Load3 | No
F2
F2
S1 S2 RS RS
VK  Qj QK
No
No
Add3 gm=ipe
Mult hkg
< F2 F4 F6 F8 F10 F12 F30
FU Load?2 Loadl

Stations; MULT issued vs. scoreboard
* Load1 completing; what is waiting for Load1?
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

Time Name Bus Op V] VK Oj Ok
Ad
Add2 N[0

J
34+
45+

F2

F6

F8

Add3
Multl
Mult2

Exec Write
k Issue Comp Result

R2 1 3 Loadl
R3 2 4 Load?2
F4 3 Load3
F2 4

F2

S1 S2 RS RS

Tomasulo’s Example Cycle 4

Busy Address

No
Yes 45+R3
No

Register result status:

Clock
4

No
Yes MULTD R(F4) Load2
No
FO F2 F4 F6 F8 F10 F12 F30
FU | Multl Load2 M(Al) Addl

* Load2 completing; what is waiting for Load2?
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' Tomasulo’s Example Cycle 5

Instruction status: Exec Write

Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
5
ADDD F6 F8 F2
Reservation Stations: S1 S2 RS RS
ime [Name Busy Op V] : Qj Qk
2§Add1 | Yes SUBD M(AL] M(A2)
Add2 | No
Add3 | No
10Multl | Yes I\/IULTR(F4)
Mult2 | Yes M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
5 FU | Multl M(A2) M(A1) Addl

- Timer starts down for Add1l, Multl
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Tomasulo’s Example Cycle 6

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6  F2 4
5
ADDD F6 F8 FE2 m
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
1 Add1
Add2
Add3
9 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
6 FU | Multl M(A2) Add2 Addi

- TIssue ADDD here despite name dependence on Fé vs. scoreboard
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Tomasulo’s Example Cycle 7

Instruction status: Exec Write

Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4 7
5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

0 Addil
Add2
Add3

8 Multl
Mult2

Yes SUBD M(Al) M(A2)
Yes ADDD
No

Yes MULTD M(A2) R(F4)

Yes M(A1) Multl

M(A2) Addl

Register result status:

Clock
7

FO F2 F4

F6 F8 F10 F12

F30

FU | Multl M(A2)

Add2 Addl

+ Addl completing; what is waiting for i1?
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Tomasulo’s Example Cycle 8

Instruction status:

Instruction ]
LD F6 34+
LD F2 45+

MULTD FO F2
SuBD F8 F6

ADDD F6 F8

Reservation Stations:

Addl
2 Add2
Add3
7 Multl
Mult2

Register result status:

Clock

Exec Write
k Issue Comp Result Busy Address
R2 1 3 4 Loadl | No
R3 2 4 5 Load2 | No
F4 3 Load3 | No
F2 4 7 8
5
F2 6
S1 S2 RS RS
Time Name Busy Op V] VK Qj Qk
No
Yes ADDD (M-M) M(A2)
No
Yes MULTD M(A2) R(F4)
Yes M(A1l) Multl
FO F2 F4 F6 F8 F10 F12 F30
FU | Multl M(A2) Add2 (M-M)

8
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Tomasulo’s Example Cycle 9

Instruction status:

Instruction ]
LD F6 34+
LD F2 45+

MULTD FO F2
SuBD F8 F6

ADDD F6 F8

Reservation Stations:

Addl
1 Add2
Add3
6 Multl
Mult2

Register result status:

Clock

Exec Write
k Issue Comp Result Busy Address
R2 1 3 4 Loadl | No
R3 2 4 5 Load2 | No
F4 3 Load3 | No
F2 4 7 8
5
F2 6
S1 S2 RS RS
Time Name Busy Op V] VK Qj Qk
No
Yes ADDD (M-M) M(A2)
No
Yes MULTD M(A2) R(F4)
Yes M(A1l) Multl
FO F2 F4 F6 F8 F10 F12 F30
FU | Multl M(A2) Add2 (M-M)

9
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Tomasulo’s Example Cycle 10

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3 No
SUBD F8 F6 F2 4 7 8
5
ADDD F6 F8 F2 6 10
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
0 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
5 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
10 FU | Multl M(A2) Add2 (M-M)

+ Add2 (ADDD) completing; what is waiting for it?
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Tomasulo’s Example Cycle 11

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4 7 8
5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] VK Qj Qk
Addl | No
Add2 | No
Add3 | No
4 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1l) Multl

Register result status:

Clock
11

FO F2 F4 F6

F8 F10 F12

F30

FU [ Multl M(A2)

(M-M)

- Write result of ADDD here vs. scoreboard?
- All quick instructions complete in this cyclel
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Instruction status:

Instruction ]
LD F6 34+
LD F2 45+

MULTD FO F2
SuBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

)
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Tomasulo’s Example Cycle 12

Busy Address

Loadl No
Load2 No
Load3 No
RS
Qk

No
No
No

3 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1l) Multl

Add1
Add2
Add3
Register result status:
Clock
12

FO F2 F4 F6

F8 F10 F12

F30

FU [ Multl M(A2)

(M-M)
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Instruction status:

Instruction ]
LD F6 34+
LD F2 45+

MULTD FO F2
SuBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

)
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Tomasulo’s Example Cycle 13

Busy Address

Loadl No
Load2 No
Load3 No
RS
Qk

No
No
No

2 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1l) Multl

Add1
Add2
Add3
Register result status:
Clock
13

FO F2 F4 F6

F8 F10 F12

F30

FU [ Multl M(A2)

(M-M)
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Instruction status:

Instruction ]
LD F6 34+
LD F2 45+

MULTD FO F2
SuBD F8 F6

ADDD F6 F8

Reservation Stations:

Exec Write

k Issue Comp Result
R2 1 3 4
R3 2 4 5
F4 3
F2 4 7 8

)
F2 6 10 11

S1 S2 RS

Time Name Busy Op Vj Vk Qj

Tomasulo’s Example Cycle 14

Busy Address

Loadl No
Load2 No
Load3 No
RS
Qk

No
No
No

1 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1l) Multl

Add1
Add2
Add3
Register result status:
Clock
14

FO F2 F4 F6

F8 F10 F12

F30

FU [ Multl M(A2)

(M-M)
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Tomasulo’s Example Cycle 15

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2  F4 3 15 Load3| No
SUBD F8 F6  F2 4 7 8
5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
0 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
15 FU | Multl M(A2) (M-M)

* Multl (MULTD) completing; what is waiting for i1?
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Tomasulo’s Example Cycle 16

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2  F4 3 15 16 Load3| No
SUBD F8 F6  F2 4 7 8
5
ADDD F6 F8S F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
40 Mult2 | Yes M*F4 M(AL)
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
16 FU | M*F4 M(A2) (M-M)

* Now, wait for Mult2 (DIVD) to complete
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

]
34+
45+

F2

F6

F8

Kk
R2
R3
F4
F2

F2

Tomasulo’s Example Cycle 55

Exec Write
Issue Comp Result Busy Address
1 3 4 Loadl | No
2 4 5 Load2 | No
3 15 16 Load3 | No
4 7 8
)
6 10 11

S1 S2 RS RS

Time Name Busy Op V] VK Qj Qk

Addl
Add2
Add3
Multl

1 Mult2

Register result status:

Clock
55

F30

No
No
No
No
Yes M*F4 M(A1)
FO F2 F4 F6 F8 F10 F12
FU | M*F4 M(A2) (M-M)
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Tomasulo’s Example Cycle 56

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 15 16 Load3 | No
SUBD F8 F6 F2 4 7 8
5 56
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
0 Mult2 | Yes M*F4 M(AL)
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F30
56 FU | M*F4 M(A2) (M-M)

* Mult2 (DIVD) is completing; what is waiting for i1?
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Instruction status:

Instruction

LD F6
LD F2
MULTD FO
SUBD F8
ADDD F6

Reservation Stations:

J
34+
45+

F2

F6

F8

R2
R3
F4
F2

F2

Tomasulo’s Example Cycle 57

Exec Write
Busy Address
Loadl | No
Load2 | No
Load3 No
RS RS

Time Name Busy Op Vj Vk Qj Qk

Addl
Add2
Add3
Multl
Mult2

Register result status:

Clock
56

F30

No
No
No
No
Yes M*F4 M(AL)
FO F2 F4 F6 F8 F10 F12
FU | M*F4 M(A2) (M-M)

- Once again: In-order issue, out-of-order execution and completion.
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Compare to Scoreboard Cycle 62

Instruction status: Read Exec Write Exec Write
Instruction j k Issue Oper Comp Result Issue Comp Result
LD F6 34+ R2
LD F2 45+ R3
MULTD FO F2 F4
SUBD F8 F6 F2
ADDD F6 F8 F2

* Why take longer on scoreboard/6600?

- Structural Hazards
» Lack of forwarding (CDB)
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Summary for Tomasulo’s Algorithm

e Distribution of the hazard detection logic
— Distributed RS and CDB

— If multiple instructions are waiting on a single result, and
each already has its other operand, then the instruction
can be released simultaneously by the broadcast on CDB

* Elimination of stalls for WAW and WAR
— Rename register using RSs
— Store operands into RS as soon as they are available

— For WAW-hazard, the last write will win

64



pip1. OF ELECTRONCS 9™ e, N 4
ENameeRNg a _
Ingt. OF ELECTROMICS * ' \

Loop Unrolling in Tomasulo’s
Algorithm

Loop: fld fO, O(x1)
fmul.d f4, f0, f2
fsd f4, 0(x1)
addi x1,x1, 8
bne x1,x2,Loop //branches if x16 !=x2

* Assume multiplies takes 4 clocks

* Let’s assume we have issued all the instructions in two
successive iterations of the loop, but none of the floating-
point load/stores or operations have completed.



Reservation stations

Name Busy Op Vj Vk Qj Qk A
Loadl Yes Load Regs[x1]+0
Load2 Yes Load Regs[x1l] — 8
Addl No
Add2 No
Add3 No
Multl Yes MUL Regs[fZ] Loadl
Mult2 Yes MUL Regs[f2] Load2
Storel Yes Store Regs[x1] Multl
Store2 Yes Store Regs[xl] — 8 Mult2
Register status
Field fo f2 f4 f6 f8 f10 f12 ... f30
Qi Load2 Mult2

Figure 3.14 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reser-
vation stations indicate that the outstanding loads are the sources. The store reservation stations indicate that
the multiply destination is the source of the value to store.
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Greater ILP by Speculation

e Essential data flow execution model
— Operations execute as soon as their operands are available

e GreaterILP

— Overcome control dependence by hardware speculating
on outcome of branches and executing program as if
guesses were correct

* Prediction vs Speculation
— Dynamic scheduling = only fetches and issues instructions

— Speculation = fetch, issue, and execute instructions as if
branch predictions were always correct
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Drawbacks of Tomasulo’s Algorithm

* Performance limited by Common Data Bus

— Each CDB must go to multiple functional units
—=>high capacitance, high wiring density

— Number of functional units that can complete per cycle
limited to one!

* Multiple CDBs = more complexity
* Non-precise interrupts!

— Need way to resynchronize execution with instruction
stream (i.e., with issue-order)

— Easiest way is with reorder buffer (i.e. in-order completion)



Reorder Buffer (ROB) Operation

* Holds instructions in FIFO order, exactly as issued
* When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station
* Instructions commit = values at head of ROB placed in registers

* Asaresult, easy to undo speculated instructions :
on mispredicted branches or on exceptions Reorder
Buffer

Commit path *1

[Res Stations]| [Res Stations]

IEP_éddﬂdlEP_Aldﬂﬂd
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Hardware-Based Speculation

3 components of HW-based speculation:
1. Dynamic branch prediction to choose which instructions to execute

2. Dynamic scheduling to deal with scheduling of different combinations of
basic blocks

3. Speculation to allow execution of instructions before control
dependences are resolved + ability to undo effects of incorrectly
speculated sequence

* Adding ROB to Tomasulo

— Instruction commit: when an instruction is no longer speculative,
allow it to update the register file or memory

— ROB is also used to pass results among instructions that are
speculated
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Reorder Buffer (ROB)

* Additional registers, just like reservation stations

ROB is a source of operands

It holds the results of instruction that have finished execution but not
committed

Use ROB number instead of RS to indicate the source of operands
when execution completes (but not committed)

It also uses to pass results among instructions that may be speculated

Each (pending) instruction occupies an ROB entry before being
committed

Instructions in ROB are committed in order
* Once instruction commits, the result is put into register

On misprediction, the corresponding ROB entry will be flushed
In case of exceptions: Not recognized until it is ready to commit
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The Hardware Speculative Processor

Replace store buffer

Reorder buffer
From instruction unit

Y
. Reg # ¢ v Data
Instruction
queue
FP registers
Load-store
operations
4 . ) Operand
Address unit Floating-point buses
operations ¥
{ Load buffers ¥
Y
Operation bus
Store 3 I I IY : I l
address 2 Reservation
Siore - 1 stations
data ¢ Address

Memory unit FP adders

Common data bus (CDB) 72
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* For an execution result, separate
— data forwarding (thru RS) path
— write-back (thru ROB) path

e Data forwarding path
— still use RS to buffer operands
— provide speculative register reads
— provide out-of-order completion
* Register write-back path

— use ROB to buffer results
— when it’s committed, update RF (in order)
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Reorder Buffer Entry

Each entry in the ROB contains four fields:

1. Instruction type

e a branch (has no destination result), a store (has a memory address
destination), or a register operation (ALU operation or load, which has
register destinations)

2. Destination

e Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
e Value of instruction result until the instruction commits
4. Ready

e Indicates that instruction has completed execution, and the value is ready
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Four Steps of Speculative Tomasulo

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB
for result; when both in reservation station, execute; checks RAW
(sometimes called “issue”

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

75



pip1 OF ELECIROMC 9 s N AT
ENGINEERING 4 _
inst. OF ELECTROMICS ™ -

* The same example as Tomasulo without speculation.

— L.D F6, 34(R2)
— L.D F2, 45(R3)
— MUL.D FO, F2, F4
- SUB.D F8, F6, F2 QESXSS: 2 cycles
— DIV.D F10, FO, F6 MUL: 10 cycles
— ADD.D F6, F8, F2 DIV: 40 cycles

* Modified status tables
— Qj and Qk fields, and register status fields use ROB (instead of RS)
— Add Dest field to RS (ROB to put the operation result)

* Show the status tables when MUL.D is ready to go to commit
— At this time, only two L.D instructions have been committed
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Reservation stations
-
Name Busy Op Vj Vk Qj Qk Dest A
Loadl no
Load2 no
Addl no
Add2 no
Add3 no
Multl no MUL.D Mem[45 + Regs|R3]] Regs|F4] #3
Mult2 yes DIV.D Mem|34 + Regs[R2]] #3 #5
9‘\()(1\& };b Y@\{U\}Q({ ~Ff0\(n ROB Reorder buffer
Entry Busy Instruction State Destination Value
| no L.D F6,34(R2) Commit F6 Mem|[34 + Regs[R2]]
2 no L.D F2,45(R3) Commit F2 Mem|[45 + Regs[R3]]
3 yes MUL.D FO,F2,F4 Write result FO #2 x Regs[F4]
4 yes SUB.D F8,F6,F2 Write result F8 #1 —#2
5 yes DIV.D F10,FO,F6 Execute F10
6 yes ADD.D F6,F8,F2 Write result F6 #4 + #2
Iv\-()\'oge)( commit FP register status
Field FO F1 F2 F3 F4 F5 Fé6 F7 F8 F10
Reorder # (ROBY 3 6 4 5

Busy yes no no no no no yes i yes!  yes
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Precise Exceptions

e Consider the case if MUL.D causes an interrupt...

* Tomasulo without speculation
— SUB.D and ADD.D have completed

 Tomasulo with speculation

— No instruction after the earliest uncompleted instruction (MUL.D) is
allowed to complete

— In-order commit

 ROB with in-order instruction commit provides precise
exceptions
— Exceptions are handled in the instruction order
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Memory Disambiguation Problem

* Given a load that follows a store in program order. E.g.,
— sd 0(x2), x5
- Id X6, 0(x3)

* Question: are the two related?

* Question: can we go ahead and start the load early?
— We do not know whether 0(x2) # 0(x3) in compiler time

— Hardware-based speculation would be helpful
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ROB Avoids Memory Hazards

*  WAW and WAR hazards through memory are eliminated with speculation
because actual updating of memory occurs in order (i.e. commits in order),
when a store is at head of the ROB, and hence, no earlier loads or stores
can still be pending

 RAW hazards through memory are maintained by two restrictions:

1. not allowing a load to initiate the second step of its execution if any active
ROB entry occupied by a store has a Destination field that matches the value
of the A field of the load, and

2. maintaining the program order for the computation of an effective address of
a load with respect to all earlier stores.

— These restrictions ensure that any load that accesses a memory location
written to by an earlier store cannot perform the memory access until the
store has written the data
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3.8 Exploiting ILP Using Dynamic
Scheduling, Multiple Issue, and
Speculation

Multi-issue Superscalar Processor
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Advantages of Superscalar over VLIW

e Old codes still run
— Like those tools you have that came as binaries
— HW detects whether the instruction pair is a legal dual issue pair
* If not they are run sequentially
e Little impact on code density

— Don’t need to fill all of the can’t issue here slots with NOP’s

 Compilerissues are very similar

— Still need to do instruction scheduling anyway

— Dynamic issue hardware is there so the compiler does not have to be
too conservative
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Multiple Issue with Speculation

* To maintain throughput of greater than one instructions per
cycle, we must handle multiple instructions commit per clock

Extend Tomasulo’s speculation algorithm to multiple-issue
scheme

— 2 challenges

* |nstruction issue will be the bottleneck
* Monitor CDB for instruction completion
— In addition,

* How to handle multiple instruction commits per clock
cycle?
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and Speculation

 Two approaches to issue multiple instructions:

— Assign reservation stations and update pipeline control table in
half clock cycles
* Only supports 2 instructions per clock
* Cannot extend easily to handle 4 or more instructions per clock

— Design logic to handle any possible dependencies between
instructions

* Examine all the dependencies among the instructions in the bundle
* |f dependencies exist in bundle, encode them in reservation stations

* |ssue logic is the bottleneck in dynamically scheduled
superscalars

CA-Lecb6 cwliu@twins.ee.nctu.edu.tw
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ulti-issue Superscalar Processor

Stream of Instructions
To Execute

Out-Of-Order
Execution
Unit

Instruction Fetch
with
Branch Prediction

Independent Fetch Unit

Correctness Feedback
On Branch Results

* Instruction fetch decoupled from execution
* Oftenissue logic (+ rename) included with Fetch and branch prediction
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Example
Loop: Id x2, 0(x1) //x2=array element
addi x2,x2,1 //increment x2
sd x2, 0(x1) //store result
addi x1,x1, 8 //increment pointer
bne x2,x3, Loop //branch if not last

* Assume separate integer FUs:
— for effective address calculation,
— ALU operations, and
— branch condition evaluation

 Assume up to 2 instructions of any type can commit per clock
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No Speculation

Issues at Executes at Memory access at Write CDB at
Iteration clock cycle  clock cycle clock cycle clock cycle
number Instructions number number number number Comment
| Id x2,0(x1) 1 2 3 4 First issue
| addi x2,x2,1 1 5 6 Wait for |d
| sd x2,0(x1) 2 3 7 Wait for addi
| addi x1,x1,8 2 3 4 Execute directly
| bne x2,x3, Loop 3 7 Wait for addi
2 Id  x2,0(x1) 4 . 8 9 10 Wait for bne
2 addi x2,x2,1 4 11 12 Wait for |d
2 sd x2,0(x1) 5 9 13 Wait for addi
2 addi x1,x1,8 5 9 Wait for bne
2 bne x2,x3, Loop 6 13 Wait for addi
3 Id x2,00x1) 7 14 15 16 Wait for bne
3 addi x2,x2,1 7 17 18 Wait for |d
3 sd x2,0(x1) 8 15 19 Wait for addi
3 addi x1,x1,8 8 14 15 Wait for bne
3 bne x2,x3, Loop 9 19 § Wait for addi

Out-of-order executing
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Speculation

Read Write

Issues Executes access CDB at  Commits
Iteration atclock atclock atclock clock at clock
number Instructions number number number number number Comment
| Id  x2,0(x1) | 2 3 4 5 First issue
| addi x2,x2,1 | 5 6 7 Wait for |d
| sd x2,0(x1) 2 3 7 Wait for addi
| addi x1,x1,8 2 3 4 8 Commit in order
| bne x2,x3, Loop 3 7 8 Wait for addi
2 ld x2,0(x1) 4 5 6 9 No execute delay
2 addi x2,x2,1 4 8 9 10 Wait for |d
2 sd x2,0(x1) 5 6 10 Wait for add i
2 addi x1,x1,8 5 6 7 11 Commit in order
2 bne x2,x3, Loop 6 10 11 Wait for addi
3 Id x2,0(x1) 7 8 9 10 12 Earliest possible
3 addi x2,x2,1 7 11 12 13 Wait for |d
3 sd x2,0(x1) 8 13 Wait for addi
3 addi x1,x1,8 8 10 14 Executes earlier
3 bne xZ,x3,Loop 9 13 14 Wait for addi

A

Out-of-order executing

In-order committing
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* Without speculation (Tomasulo only)
— 1d following bne cannot start execution earlier
— wait until branch outcome is determined

— Completion rate is falling behind the issue rate rapidly, stall
when a few more iterations are issued

* With speculation

— 1d following bne can start execution early because it is
speculative

— More complex HW is required
— Completion rate is almost equal to issue rate
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Advanced Techniques for Instruction
Delivery and Speculation

* High performance instruction delivery

— For a multiple-issue processor, predicting branches well is
not enough

* Predicated execution
e Branch target buffer (BTB)

— Deliver a high-bandwidth instruction stream is necessary
(e.g. 4~8 instructions/cycle)

* Increasing instruction fetch bandwidth
— Branch target buffer (BTB)

* Predicting procedure returns, indirect jumps, and loop branches

— Integrated instruction fetch units
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Next fetch
started

Modern processors may have > 10
pipeline stages between next PC
calculation and branch resolution !

How much work is lost if pipeline
doesn’t follow correct instruction flow?
~ Loop length x pipeline width

Branch
executed

PC

v

|-cache

v

Fetch
Buffer

Fetch

v

Issue
Buffer

Decode

v

Func.
Units

v

Result
Buffer

Execute

v

Arch.
State

Commit
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Branch and Jump Instruction

e Each instruction fetch depends on one or two pieces of
information from the preceding branch instruction:

1. Isataken branch?
2. If so, what is the target address?

 Example: MIPS branches and jumps

Instruction Taken known? Target known?
J After Inst. Decode After Inst. Decode
IR After Inst. Decode After Reg. Fetch

BEQZ/BNEZ After Reg. Fetch® After Inst. Decode

"Assuming zero detect on register read

92



pip1 OF ELECIROMC 9 s N AT
ENGINEERING 4
nst. Of ELECTROMICS 2 -

Bran\ch Penalties in Modern Pipelines

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction & ===p

Jump Register
Target Known

Mo |< T ||| o>

PC Generation/Mux

Instruction Fetch Stage 1

Instruction Fetch Stage 2

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Remainder of execute pipeline
(+ another 6 stages)
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Reducing Control Flow Penalty

e Software solutions

— Loop unrolling: eliminate branches
e To increase the run length

— Instruction scheduling: reduce resolution time
e e.g., delay branch
 Hardware solutions
— Branch prediction and Speculation
— Predicated instruction
— Branch target buffer (BTB)
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Predicated Execution

e Avoid branch prediction by turning branches into
conditionally executed instructions:
if (x) then A =B op C else NOP
— If false, then neither store result nor cause exception
— Expanded ISA with 1-bit condition field
— This transformation is called “if-conversion”
 Drawbacks to predicated instructions
— Still takes a clock even if “annulled”
— Stall if condition evaluated late

— Complex conditions reduce effectiveness;
condition becomes known late in pipeline
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Branch Target Buffer/Cache

 To reduce the branch penalty from 1 cycle to O
— Need to know what the address is at the end of IF
— But the instruction is not even decoded yet
— So use the instruction address rather than wait for decode
* |f prediction works then penalty goes to 0!
 BTB Idea -- Cache to store taken branches (no need to store untaken)
— Access the BTB during IF stage
— Match tag is instruction address = compare with current PC
— Data field is the predicted PC
 May want to add predictor field
— To avoid the mispredict twice on every loop phenomenon
— Adds complexity since we now have to track untaken branches as well

CA-Lec5 cwliu@twins.ee.nctu.edu.tw
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BTB -- Illustration

PC of instruction to fetch

Predicted PC
Store predicted-
taken branches
Number of on Iy
entries
in branch-
target
buffer
No: instruction is
» not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken
PC should be used as the next PC
Full size (32-bit) Target PCs for
No aliasing allowed predicted-taken branches
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Flowchart for BTB

For a simple 5-stage pipeline example

L
Send PC to memory and
branch-target buffer
IF
Entry found in
branch-target
buffer?
y
I '
Send out
predicted
Is PC
instruction Yes
a taken
branch?
ID
Taken
MNormal branch?
instruction
execution
r
t | 3 }
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other confinue execution
PC into branch- target; delete entry with no stalls
target buffer from target buffer 08

i
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Penalties Using this Approach for 5-Stage Pipeline

Assume we store only taken branches in the buffer

Instruction in Prediction | Actual Branch |Penalty Cycles
buffer

Yes Taken Taken o)

Yes Taken Not Taken 2

No Taken 2

No Not Taken 0)

* Predict_ wrong =1 CC to update BTB + 1 CC to restart fetching
* Not found and taken = 2CC to update BTB

* For complex pipeline design, the penalties may be higher

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 99
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e Given prediction accuracy (for inst. in buffer): 90%
e Given hit rate in buffer (for branches predicted token): 90%
 Determine the total branch penalty="

Solution

— Probability (branch in buffer, but actually not taken) = percent buffer
hit rate x percent incorrect prediction =90% x 10% = 0.09

— Probability (branch not in buffer, but actually taken) = 10%
— Hence, we have 2 cycles x (0.09+0.1) = 0.38 cycles

Comparing the delay branch with the penalty = 0.5 cycles/branch
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B h Foldi

* Optimization of BTB

— To store target instructions instead of, or in
addition to, the predicted target address

— Called Branch folding

* It allows the branch-target buffer access to take longer
than the time between successive instruction fetches,
possibly allowing a larger branch-target buffer.

* |t can be used to obtain 0-cycle unconditional branches
and sometimes 0-cycle conditional branches.

* E.g., Cortex A-53.
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Combining BTB and BHT

* BTB entries are considerably more expensive than BHT, but can redirect
fetches at earlier stage in pipeline and can accelerate indirect branches (JR)

* BHT can hold many more entries and is more accurate

A | PC Generation/Mux
BTB| P | Instruction Fetch Stage 1

F | Instruction Fetch Stage 2
BHT in later K BHT| | B | Branch Address Calc/Begin Decode
pipeline stage
corrects when | | Complete Decode
BTB misses a J | Steer Instructions to Functional units
predicted R | Register File Read
taken branch

/ E | Integer Execute

BTB/BHT only updated after branch resolves in E stage
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 BTB contains useful information for branch and jump instructions
only

— Do not update BTB for other instructions
— For all other instructions, the next PC is PC+4
 Keep both the branch PC and target PC in the BTB
— “Branch folding”
— 0-cycle unconditional branches
— Sometimes 0-cycle conditional branches
* Only predicted taken branches and jumps held in BTB
— More room to store
e Subroutine returns? (jump to return address)
— BTB can work well if usually return to the same place
— Return address predictors
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Return Address Predictor ?

* Indirect jump — jumps whose destination address varies at run time
— indirect procedure call, select or case, procedure return

— SPEC89 benchmarks: 85% of indirect jumps are procedure
returns

* Accuracy of BTB for procedure returns are low

— if procedure is called from many places, and the calls from one
place are not clustered in time

* Use a small buffer of return addresses operating as a stack
— Cache the most recent return addresses
— Push a return address at a call, and pop one off at a return
— If the cache is sufficient large (max call depth) = prefect

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 104



Subroutine Return Stack

 Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); nexta: }
fb() { fc(); nextb: }
fc() { fd(); nextc: }

Pop return address

Push return address when )
. when subroutine return
function call executed 7
decoded
&nextc k entries
&nextb (typically k=8-16)
&nexta
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BW with Return Addresses Stack

* Register Indirect branch hard to predict address

— Fetch Unit

PC —dp!

BTB

Select for
Indirect Jumps
[ On Fetch |

Destination From

Call Instruction =
| On Fetch?]

Return Address Stack

Predicted
MuXx Next PC
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"'Performance: Return Address
Predictor

e Cache most recent return addresses:

— Call = Push a return address on stack
— Return = Pop an address off stack & predict as new PC

e SPEC95 Benchmarks

go
§ 60% —— m88ksim
Q ccl
S 50%
@ compress
|
"E 40% —x— xlisp
o .
B 30% 'Jpelg
2 —— per
©
Y 20% vortex
)
s 10%
0% P s

0 1 2 4 8 16

Return address buffer entries
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Dynamic Branch Prediction Summary

e Branch prediction scheme are limited by
— Prediction accuracy
— Mis-prediction penalty
e Branch History Table: 2 bits for loop accuracy
* Correlation: Recently executed branches correlated with next branch
* Tournament predictors take insight to next level, by using multiple
predictors

— usually one based on global information and one based on local information,
and combining them with a selector

— In 2006, tournament predictors using =~ 30K bits are in processors like the
Power5 and Pentium 4

* Branch Target Buffer: include branch address & prediction

* Reduce penalty further by fetching instructions from both the predicted
and unpredicted direction
— Require dual-ported memory, interleaved cache - HW cost
— Caching addresses or instructions from multiple path in BTB

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 108
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I\/Idre Instruction Fetch Bandwidth

* Consider the fetch unit as a separate autonomous
unit, not a pipeline stage
* Functions for the integrated instruction fetch unit
— Branch prediction
* The branch predictor becomes part of the instruction fetch unit
— Prefetch
* To deliver multiple instructions per cycle

— Instruction memory access and buffering

* Fetching multiple instructions may require accessing multiple
cache lines
— Using prefetch may hide the latency for memory access

» Buffering can provide instructions to the issue stage as needed
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Explicit Register Renaming

* Instead of virtual registers from reservation stations and
reorder buffer, create a single (physical) register pool

— Contains visible registers and virtual registers
* Use hardware-based map to rename registers during issue
e Still need a ROB-like queue to update table in order
* Physical register becomes free when not being used
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Spe'"culation: Register Renaming vs. ROB

e Alternative to ROB is a larger physical set of registers combined with

register renaming

— An extended set of registers replace function of both ROB and reservation

stations

* Instruction issue maps names of architectural registers to physical

register numbers in extended register set

— Onissue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register holding an instruction
destination does not become the architectural register until the instruction
commits

* Most Out-of-Order processors today use extended registers with

renaming
111



Speculation Performance

* Speculation will raise the power consumption

* How much to speculate

— Mis-speculation degrades performance and power relative to no
speculation
* May cause additional misses (cache, TLB)

— Prevent speculative code from causing higher costing misses (e.g. L2)
* Speculating through multiple branches

— Complicates speculation recovery

— No processor can resolve multiple branches per cycle
* Speculation and energy efficiency

— Note: speculation is only energy efficient when it significantly
improves performance
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Miss-speculation Performance

SPEC2000
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Figure 3.30 The fraction of instructions that are executed as a result of misspeculation is typically much higher
for integer programs (the first five) versus FP programs (the last five).
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e Attempts to predict value produced by instruction
— E.g., Loads a value that changes infrequently
* Value prediction is useful only if it significantly increases ILP

— Focus of research has been on loads; so-so results, no
processor uses value prediction

e Related topic is address aliasing prediction

— RAW for load and store or WAW for 2 stores

* Address alias prediction is both more stable and simpler
since need not actually predict the address values, only
whether such values conflict

— Has been used by a few processors
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| X

Y

* Whydoit? )4
— Can “Break the DataFlow Boundary”
— Before: Critical path = 4 operations (probably worse)
— After: Critical path = 1 operation (plus verification)
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In Conclusion...

* Interest in multiple-issue because wanted to improve performance
without affecting uniprocessor programming model

e Taking advantage of ILP is conceptually simple, but design problems are
amazingly complex in practice

* Conservative in ideas, just faster clock and bigger

* Processors of Pentium 4, IBM Power 5, and AMD Opteron have the same
basic structure and similar sustained issue rates (3 to 4 instructions per

clock) as the 1st dynamically scheduled, multiple-issue processors
announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
—> performance 8 to 16X

* Peak vs. delivered performance gap increasing



