
Computer Architecture
Lecture 4: Pipelining

(Appendix C)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Why Pipeline?

I1

T

I2

I1I2

Throughput = 4/T

I4 I3 I2 I1

I4 I3 I2 I1

I4 I3 I1I2

I4 I1I2I3

I1I2I3I4

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 2

Throughput = 1/T

Designing a Pipelined Processor

• Start with ISA

• Examine the datapath and control diagram
– Starting with single- or multi-cycle datapath?

– Single- or multi-cycle control?

• Partition datapath into steps

• Insert pipeline registers between successive steps

• Associate resources with steps

• Ensure that flows do not conflict, or figure out how
to resolve

• Assert control in appropriate stage

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 3

The Basics of the RISC V Instruction Set

• The load-store architecture

– All operations on data apply to data in registers and typically
change the entire register (32 or 64 bits per register).

– The only operations that affect memory are load and store
operations. Load and store operations that load or store less
than a full register (e.g., a byte, 16 bits, or 32 bits) are often
available.

– The instruction formats are few in number, with all instructions
typically being one size. In RISC V, the register specifiers: rs1,
rs2, and rd are always in the same place simplifying the control.

• Simple implementation of a RISC instruction set

– IF, ID, EX, MEM, WB

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 4

Example: 5 Steps of MIPS Datapath

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 5

Memory

Access
Write

Back

Instruction

Fetch

Instr. Decode

Reg. Fetch

Execute

Addr. Calc

L

M

D

A
L
U

M
U

X

M
e
m

o
ry

R
e
g
 F

ile

M
U

X
M

U
X

D
a
ta

M
e
m

o
ry

M
U

X

Sign

Extend

4

A
d
d
e

r

Zero?

Next SEQ PC

A
d
d
re

s
s

Next PC

WB Data

In
s
t

RD

RS1

RS2

ImmIR <= mem[PC];

PC <= PC + 4

Reg[IRrd] <= Reg[IRrs] opIRop Reg[IRrt]

5-Stage Pipelined Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F

/I
D

I
D

/E
X

M
E

M
/W

B

E
X

/M
E

M
4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
at

a

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 6

Visualizing Pipelining

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 7

The 5-Step of the Lw-Instruction

• Lw-instruction can be implemented in 5 clock cycles
• Ifetch: Instruction Fetch

– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Execution and calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 8

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Branch requires ? cycles, Store requires ? cycles, others require ? cycles

The 4-Step of R-type Instruction

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory
– Update PC

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec:

– ALU operates on the two register operands

• Wr: Write the ALU output back to the register file

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 9

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

does not access data memory…

Important Observation

• Each functional unit can only be used once per instruction:
– Load uses Register File’s Write Port during its 5th step

– R-type uses Register File’s Write Port during its 4th step

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 10

Ifetch Reg/Dec Exec Mem WrLoad

1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type

1 2 3 4

This’s what caused

the problem

A structural hazard will be happened !!

Pipelining the R-type and Load Instructions

• Structural hazard:
– Two instructions try to write to the register file at the same time!

– Only one write port

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 11

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops! We have a problem!

Sol 1: Insert “Bubble” into the Pipeline

• Insert a “bubble” into the pipeline to prevent 2 writes at the
same cycle
– The control logic can be complex.
– Lose instruction fetch and issue opportunity.

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 12

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec WrR-type

Sol 2: Delay R-type’s Write by One Cycle

• 5-step R-type instructions:
– Mem step for R-type inst. is a NOOP : nothing is being done.

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 13

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5

A unified pipeline architecture

for each type of instructions !!

Similarly, for Store and Branch
Instructions

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 14

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

Pipeline Summary

• A pipeline is like an hooked assembly line.

• Pipelining, in general, is not visible to the programmer (vs ILP)

• Pipelining doesn’t help latency of single task, it helps throughput of
entire workload

• Pipeline rate limited by slowest pipeline stage

• Multiple tasks operating simultaneously using different resources

• Potential speedup = Number pipe stages, if perfectly balanced stage.

• Unbalanced lengths of pipe stages reduces speedup

• Time to “fill” pipeline and time to “drain” it reduces speedup

• Pipeline hazard

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 15

Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle
– Structural hazards: HW cannot support this

combination of instructions (single person to fold and
put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Caused by delay between the
fetching of instructions and decisions about changes
in control flow (branches and jumps).

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 16

One Memory Port/Structural Hazards
Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 17

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

What will the “bubble” impact?

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 18

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 19

Speed Up Equations for Pipelining

pipelined

dunpipeline

Time Cycle

Time Cycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal
 Speedup 






pipelined

dunpipeline

Time Cycle

Time Cycle

CPI stall Pipeline 1

depth Pipeline
 Speedup 




Instper cycles Stall Average CPI Ideal CPIpipelined 

For simple RISC pipeline, CPI = 1:

de pipelineClock cycl

nede unpipeliClock cycl

CPI

CPI

inedtime pipelstruction Average in

elinedtime unpipstruction Average in
Speedup

pipelined

dunpipeline


for balanced pipelining

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)

• Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

• Ideal CPI = 1 for both

• Suppose that Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x 1.05

= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 20

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Data Hazard Problem on r1
Time (clock cycles)

IF ID/RF EX MEM WB

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 21

Dependencies backwards in time are hazards

Types of Data Hazards

• RAW (read after write): true data dependence

– Get wrong propagation result

• WAR (write after read): anti-dependence

– Get wrong operand

• WAW (write after write): output dependence

– Leave wrong result

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 22

Name Dependence Data Hazards

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
• This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages. Reads are always in stage 2 and Writes

are always in stage 5

• Can happen in OOO processor (discussed in chapter 3).

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 23

Name Dependence Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers

• This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:

– All instructions take 5 stages, and Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes and OOO processor

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 24

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 25

Define read/write properly

“Forward” result from one stage to another

HW Change for Forwarding

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 26

Additional hardware is required.

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 27

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 28

Must delay/stall instruction dependent on loads: Load stall cycles

Data Hazard Even with Forwarding

or r8,r1,r9

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 29

Reg

A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Bubble Reg

A
L
U

DMemIfetch Reg

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 30

Compiler optimizes for performance. Hardware checks for safety.

Control Hazard on Branches

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

What do you do with the 3 instructions in between?

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 31

The simplest solution is to stall the pipeline as soon as a branch instruction is detected

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two-part solution:

– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or  0

• MIPS Solution:

– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 32

A
d
d
e
r

I
F

/I
D

Pipelined MIPS Datapath
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
e
r

Next
SEQ PC

RD RD RD

W
B

 D
at

a

• Interplay of instruction set design and cycle time.

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

I
D

/E
X

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 33

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty
• Other machines: branch target known before outcome

– What happens when hit not-taken branch?

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 34

Four Branch Hazard Alternatives

#4: Delayed Branch – make the stall cycle useful

– Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– MIPS uses this

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 35

Branch delay of length n

These insts. are executed !!

Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 36

Delay-Branch Scheduling Schemes and
Their Requirements

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 37

Scheduling
Strategy

Requirements Improve Performance
When?

From before Branch must not depend on
the rescheduled instructions

Always

From target Must be OK to execute
rescheduled instructions if
branch is not taken. May need
to duplicate instructions

When branch is taken.
May enlarge program
if instructions are
duplicated

From fall
through

Must be OK to execute
instructions if branch is taken

When branch is not
taken.

Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to deeper
pipelines and multiple issue, the branch delay grows and
need more than one delay slots
– Delayed branch (a static way) has lost popularity compared to

more expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 38

Performance of Branch Schemes Example

• For a deeper pipeline, such as that in a MIPS R4000 and later
RISC processors, it takes at least three pipeline stages before
the branch-target address is known and an additional cycle
before the branch condition is evaluated, assuming no stalls
on the registers in the conditional comparison.

• A three-stage delay leads to the branch penalties for the three
simplest prediction schemes listed below:

Scheme PenaltyUncond Penaltyuntaken Penaltytaken

Stall 2 3 3

Predicted taken 2 3 2

Predicted not taken 2 0 3

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 39

Evaluating Branch Alternatives

Assume: 4% unconditional branch, 6% conditional branch- untaken,
10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 2x0.04+3x0.06+3x0.1 1.56 n/1.56 1.0

Predict taken 2x0.04+3x0.06+2x0.1 1.46 n/1.46 1.07

Predict ubtaken 2x0.04+0x0.06+3x0.1 1.38 n/1.38 1.13

Delayed branch 0.5x(0.04+0.16) 1.10 n/1.1 1.42

Pipeline speedup = Pipeline depth
1 +Branch frequencyBranch penalty

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 40

Problems with Pipelining

• Exception: An unusual event happens to an instruction during its
execution

– Examples: divide by zero, undefined opcode

• Interrupt: Hardware signal to switch the processor to a new instruction
stream

– Example: a sound card interrupts when it needs more audio output samples
(an audio “click” happens if it is left waiting)

• Problem: It must appear that the exception or interrupt must appear
between 2 instructions (Ii and Ii+1)

– The effect of all instructions up to and including Ii is totalling complete

– No effect of any instruction after Ii can take place

• The interrupt (exception) handler either aborts program or restarts at
instruction Ii+1

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 42

Reading Sections

• C.3 How Is Pipelining Implemented?

• C.4 What Makes Pipelining Hard to
Implement?

• C.5 Extending the RISC V Integer Pipeline to
Handle Multicycle Operations

CA-Lec4 cwliu@twins.ee.nctu.edu.tw 43

