
Computer Architecture
Lecture 1: Fundamentals of

Quantitative Design and Analysis
(Chapter 1)

Chih-Wei Liu 劉志尉

National Yang Ming Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Single Processor Performance

In
tro

d
u
c
tio

n

RISC

Move to multicore

processor

Intel cancelled high performance
uniprocessor, joined IBM and Sun

for multiple processors

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 2

Computer Technology

• Performance improvements:

– Improvements in semiconductor technology

• Feature size, clock speed, power consumption, …

– Improvements in computer architectures

• The virtual elimination of assembly language programming

– Enabled by high-level language (HLL) compilers

• The standardized, vendor-independent operating systems

– UNIX

• Lead to RISC architectures

– Together have enabled:

• Lightweight, embedded computers

• Productivity-based managed/interpreted programming languages

In
tro

d
u
c
tio

n

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 3

Current Trends in Architecture

• Cannot continue to leverage Instruction-Level parallelism (ILP)

– Single processor performance improvement ended in 2003

– Multiple processors or multiple cores is the current trend

• New models (explicitly parallel models) for performance:

– Data-level parallelism (DLP)

– Thread-level parallelism (TLP)

– Request-level parallelism (RLP)

• These require explicit restructuring of the application

In
tro

d
u
c
tio

n

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 4

Classes of Computers

• Clusters / Warehouse Scale Computers
– Used for “Software as a Service (SaaS).” Emphasis on availability and price-performance.

– Supercomputers. Emphasis on floating-point performance and fast internal networks

• Servers
– Emphasis on availability, scalability, and efficient throughput

• Desktop Computing
– Emphasis on price-performance index

• Personal Mobile Device (PMD)
– Emphasis on energy efficiency and real-time constraints

• Internet of Things (IT)/Embedded Computers
– Have the widest spread of processing power and cost.

– Emphasis on cost-price index (meets the performance need at a minimum price, rather
than achieving more performance at a higher price.)

C
la

s
s
e
s
 o

f C
o
m

p
u
te

rs

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 5

Parallelism?

• Classes of parallelism in applications:

– Data-Level Parallelism (DLP)

– Task-Level Parallelism (TLP)

• Classes of parallelism using in computer hardware:

– OOO, speculative execution @ Instruction-Level Parallelism (ILP)

– SIMD, vector architectures/GPUs @ Data-Level Parallelism

– Tightly coupled multiple cores @ Thread-Level Parallelism

– Loosely coupled multiple cores @ Request-Level Parallelism

C
la

s
s
e
s
 o

f C
o
m

p
u
te

rs

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 6

Flynn’s Taxonomy for Parallelism

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data streams (SIMD)
– Vector architectures
– Multimedia extensions
– Graphics processor units

• Multiple instruction streams, single data stream (MISD)
– No commercial implementation

• Multiple instruction streams, multiple data streams (MIMD)
– Tightly-coupled MIMD
– Loosely-coupled MIMD

C
la

s
s
e
s
 o

f C
o
m

p
u
te

rs

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 7

@1966

Defining Computer Architecture

• “Old” view of computer architecture:
– Instruction Set Architecture (ISA) design, i.e. decisions

regarding: registers, memory addressing, addressing
modes, instruction operands, available operations, control
flow instructions, instruction encoding

• “Real” computer architecture:
– Specific requirements of the target machine, designed to

maximize performance within constraints (cost, power, and
availability)

– Not only ISA, but also incudes microarchitecture, hardware,
software, …

D
e
fin

in
g
 C

o
m

p
u
te

r A
rc

h
ite

c
tu

re

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 8

Computer System vs. ISA

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Software

Hardware

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 9

Instruction Set Architecture, ISA

SOFTWARE
•Organization of Programmable Storage

•Data Types & Data Structures:

Encodings & Representations

•Instruction Formats

•Instruction (or Operation Code) Set

•Modes of Addressing and Accessing Data Items and Instructions

•Exceptional Conditions

“... the attributes of a [computing] system as seen by the programmer, i.e. the

conceptual structure and functional behavior, as distinct from the organization of

the data flows and controls the logic design, and the physical implementation.”

– Amdahl, Blaauw, and Brooks, 1964

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 10

ISA Design Issue

• Where are operands stored?

• How many explicit operands are there?

• How is the operand location specified?

• What type & size of operands are supported?

• What operations are supported?

Before answering these questions, let’s consider more about

• Memory addressing

• Data operand

• Operations

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 11

Class of ISA

• RISC vs. CISC (code density issue)

• Almost all ISAs today are classified as general-purpose
register (GPR) architectures

– The operands are either registers or memory locations

– Register-memory ISAs

• Part of instructions can access memory, i.e. one of the operands can
be memory location

• E.g., 80x86

– Load-store ISA

• Only load and store instructions can access memory

• All ISAs announced since 1985 are load-store. E.g., MIPS, ARM, RISC-V

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 12

RISC-V Registers

• 32 general-purpose registers and 32 floating-point registers
– Name, usage, and calling conventions

D
e
fin

in
g
 C

o
m

p
u
te

r A
rc

h
ite

c
tu

re

Register Name Use Saver

x0 zero constant 0 n/a

x1 ra return addr caller

x2 sp stack ptr callee

x3 gp gbl ptr

x4 tp thread ptr

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved/
frame ptr

callee

Register Name Use Saver

x9 s1 saved callee

x10-x17 a0-a7 arguments caller

x18-x27 s2-s11 saved callee

x28-x31 t3-t6 temporaries caller

f0-f7 ft0-ft7 FP temps caller

f8-f9 fs0-fs1 FP saved callee

f10-f17 fa0-fa7 FP arguments callee

f18-f27 fs2-fs21 FP saved callee

f28-f31 ft8-ft11 FP temps caller

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 13

The registers that are preserved across a procedure call are labeled “Callee” saved.

Memory Addressing

• Most CPUs are byte-addressable and provide access for
– Byte (8-bit)
– Half word (16-bit)
– Word (32-bit)
– Double words (64-bit)

• How memory addresses are interpreted and how they are
specified?
– Little Endian or Big Endian

• for ordering the bytes within a larger object within memory

– Alignment or misaligned memory access
• for accessing to an abject larger than a byte from memory

– Addressing modes
• for specifying constants, registers, and locations in memory

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 14

Little or Big Endian ?
• No absolute advantage for one over the other, but

Byte order is a problem when exchanging data among computers

• Example

– In C, int num = 0x12345678; // a 32-bit word,

– how is num stored in memory?

.

.

56

.

.

34

124n+0

78

4n+1

4n+2

4n+3

Big Endian

.

.

34

.

.

56

784n+0

12

4n+1

4n+2

4n+3

Little Endian

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 15

Alignment Data Access

• The memory is typically aligned on a word or double-word

boundary.

• An access to object of size S bytes at byte address A is called

aligned if A mod S = 0.

• Access to an unaligned operand may require more memory

accesses !!

32

32

32

Mis-aligned word reference

To Processor

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 16

Remarks

• ARM requires alignment access, while 80x86 and RISC-V do not require
alignment.

• Unrestricted Alignment
– Software is simple

– Hardware must detect misalignment and make more memory accesses

– Expensive logic to perform detection

– Can slow down all references

– Sometimes required for backwards compatibility

• Restricted Alignment
– Software must guarantee alignment

– Hardware detects misalignment access and traps

– No extra time is spent when data is aligned

• Since we want to make the common case fast, having restricted alignment is often a
better choice, unless compatibility is an issue.

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 17

Addressing Mode ?

• It answers the question:

– Where can operands/results be located?

• Address modes are used to specify registers and the address

of a memory object

• Recall that we have two types of storage in computer :

registers and memory

– A single operand can come from either a register or a memory location

– Addressing modes offer various ways of specifying the specific location

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 18

Addressing Mode Example

Addressing Mode Example Action

1. Register direct Add R1, R2, R3 R1 <- R2 + R3

2. Immediate Add R1, R2, #3 R1 <- R2 + 3

3. Register indirect Add R1, R2,(R3) R1 <- R2 + M[R3]

4. Displacement LD R1, 100(R2) R1 <- M[100 + R2]

5. Indexed LD R1, (R2 + R3) R1 <- M[R2 + R3]

6. Direct LD R1, (1000) R1 <- M[1000]

7. Memory Indirect Add R1, R2, @(R3) R1 <- R2 + M[M[R3]]

8. Auto-increment LD R1, (R2)+ R1 <- M[R2]

R2 <- R2 + d

9. Auto-decrement LD R1, (R2)- R1 <- M[R2]

R2 <- R2 – d

10. Scaled LD R1, 100(R2)[R3] R1 <- M[100+R2+R3*d]

R: Register, M: Memory

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 19

Addressing Modes Visualization (1)

immImmediate

Register reg

Instr. Field(s)
Mode

Name
Reg. File Memory

Register

Indirect
reg

Direct addr

Displacement reg imm
+

“base”

address

all your base are belong to us

offset

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 20

Instr. Field(s)
Mode

Name
Reg. File Memory

Indexed reg1 reg2
+

“base”

address

offset

Memory

Indirect
reg

Scaled reg1 reg2 rowsz
+

×

Example row size = 8 locations
Base

address

index

(r1)[r2]

Addressing Modes Visualization (2)

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 21

How Many Addressing Mode ?

• A Tradeoff: complexity vs. instruction count

– Should we add more modes?

• Depends on the application class

• Special addressing modes for DSP/GPU processors

– Modulo or circular addressing

– Bit reverse addressing

– Stride, gather/scatter addressing

– DSPs sometimes rely on hand-coded libraries to exercise novel addressing modes

• Need to support at least three types of addressing mode

– Displacement, immediate, and register

• A typical 12-bit displacement field

• A typical of 12-bit immediate field

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 22

Type and Sizes of Operands

• 8-bit operand

– Byte data, ASCII character

• 16-bit operand

– Half-word data, Unicode character

• 32-bit operand

– Integer or Word, IEEE 754 floating-point (FP) single

precision

• 64-bit operand

– Long integer or Double word, IEEE 754 FP double precision

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 23

Operations/Instructions in RISC

• RISC is a simple and easy-to-pipeline ISA

• Data transfers

– Move data between registers and memory, or between integer and FP/special
registers

• Arithmetic/logical

– Operations on integer or logical data in GPRs

• Program flow control

– Conditional branches

– Unconditional jumps

– Procedure call and return
• MIPS, ARM, and RISC-V place the return address in a register (RA), while 80x86 place the

return address in a stack in memory

• Predicated instructions

– Whether the result of an arithmetic/logic operation is saved or ignored is
depending on the condition code bits (e.g., ARM)

24

25

Example: RV32I Instruction

Appendices A and K

Procedure Calling

• Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 26

Caller Callee

Note that you have only one set of registers !!

Predicated/Conditional Instructions

• ARM uses (N, Z, C, O) condition codes for result of an

arithmetic/logical instruction

– Top 4 bits of instruction word stores 4 condition value :

Negative, Zero, Carry, Overflow

– Compare instructions are used to set condition codes

without keeping the result

• Almost all instructions can be conditional

– Can avoid branches over single instructions

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 27

Encoding an ISA

• Fixed-length vs. Variable-length encoding

– Code size (code density) issue

– MIPS, ARMv8, and RISC-V are 32-bit fixed-length encoding

– 80x86 is a variable-length (1~18 bytes) encoding

• Compressed encoding

– For embedded system with a small on-chip memory

– ARMv8/RISC-V 16-bit Thumb encoding

• Thumb encoding ? (Appendix K)

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 28

Base RISC-V Instruction Format

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 29

Trends in Technology
• Integrated circuit technology: ~doubling every 18-24 months

– Transistor density: 35%/year

– Die size: 10-20%/year

– Integration overall: 40-55%/year

• DRAM capacity: 25-40%/year (slowing)

– 8 Gb (2014), 16 Gb (2019), possibly no 32 Gb

• Flash capacity: 50-60%/year

– 8-10X cheaper/bit than DRAM

• Magnetic disk technology: recently slowed to 5%/year

– Density increases may no longer be possible, maybe increase from 7 to 9 platters

– 8-10X cheaper/bit then Flash

– 200-300X cheaper/bit than DRAM

• Network technology: Appendix F

T
re

n
d
s
 in

 T
e
c
h
n
o
lo

g
y

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 30

Bandwidth and Latency

Log-log plot of bandwidth and latency milestones

T
re

n
d
s
 in

 T
e
c
h
n
o
lo

g
y

31

8-91x improvement

400-32000x improvement

Bandwidth and Latency

• Bandwidth or throughput
– Total work done in a given time

– 32,000-40,000X improvement for processors

– 300-1200X improvement for memory and disks

• Latency or response time
– Time between start and completion of an event

– 50-90X improvement for processors

– 6-8X improvement for memory and disks

T
re

n
d
s
 in

 T
e
c
h
n
o
lo

g
y

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 32

Transistors and Wires

• Feature size

– Minimum size of transistor or wire in x or y dimension

– 10 microns in 1971 to .011 microns in 2017

– Transistor performance scales linearly
• Wire delay does not improve with feature size! Because the

resistance and capacitance per unit length get worse.

– Integration density scales quadratically

• As feature sizes shrink, devices shrink quadratically
both in the horizontal dimension and in the vertical
dimension

T
re

n
d
s
 in

 T
e
c
h
n
o
lo

g
y

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 33

Why Bandwidth Over Latency?

• Moore’s law helps BW more than latency

– Faster transistors, more transistors, and more pin count help bandwidth

– Smaller transistors communicate over (relatively) longer wires

• Latency helps BW, but not vice versa

– Lower DRAM latency, i.e. more accesses per second, implies higher bandwidth

– Higher density of disk helps BW and capacity, but not disk latency

• BW hurts latency

– Queues or buffers help bandwidth, but hurt latency

– Memory bank help bandwidth with widen the memory module, but not
latency due to higher fan-out on address lines

• OS overhead hurts latency more than BW

– Packet header overhead: bigger part of short message

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 34

Summary of Technology Trends

• A simple rule of thumb: bandwidth improves by at least the square of the
improvement in latency.

– In the time that bandwidth doubles, latency improves by no more than 1.2X to
1.4X

• Lag probably even larger in real systems, as bandwidth gains multiplied by
replicated components

– Multiple processors in a cluster or even in a chip

– Multiple disks in a disk array

– Multiple memory modules in a large memory

– Simultaneous communication in switched LAN

• HW and SW developers should innovate assuming Latency Lags Bandwidth

– If everything improves at the same rate, then nothing really changes

– When rates vary, require real innovation

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 35

Define and Quantity Power and Energy

• Problem: Get power in, get power out
1. (Power supply) What is the maximum power a processor ever requires?

2. (Cooling system) What is the sustained power consumption?

3. Low power consumption design or High energy efficiency design?

• Thermal Design Power (TDP)
– Characterizes sustained power consumption

– Used as target for power supply and cooling system

– Lower than peak power, higher than average power consumption

• Power vs. Energy?
– Clock rate can be reduced dynamically to limit power consumption

– Energy per task is often a better metric

– Designers and users need to consider is energy and energy efficiency

T
re

n
d
s
 in

 P
o
w

e
r a

n
d
 E

n
e
rg

y

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 36

Power and Energy (1/2)
• For CMOS chips, traditional dominant power consumption has been in switching

transistors, called dynamic power

• For mobile devices, dynamic energy, instead of power, is the proper metric

– Transistor switch from 0 -> 1 or 1 -> 0

• For a fixed task, slowing clock rate (frequency switched) reduces power, but not energy

• Dropping voltage helps both, so went from 5V to 1V

• As moved from one process to the next, the increase in the number of transistors
switching, the frequency, dominates the decrease in load capacitance and voltage

 an overall growth in power consumption and energy

• To save energy & dynamic power,

– most CPUs now turn off clock of inactive modules (e.g. Fl. Pt. Unit)

– some CPUs are designed to have adjustable voltage

21

2
dynamic loadP C V F

2

dynamicE C V

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-37

DVFS Power/Energy Saving Example

• Some microprocessors today are designed to have adjustable voltage.
Assume a 15% reduction in voltage will result in a 15% reduction in
frequency, what would be the impact on dynamic energy and dynamic
power?

• Because the capacitance is unchanged, the answer for energy is

• For power, the answer is

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 38

2

new

2

old

Energy (0.85)
0.72

Energy

Voltage

Voltage

2

new

2

old

Power (0.85) (0.85)
0.61

Power

Voltage Frequency

Voltage Frequency

Lower than energy !!

Clock Rate and Power

• Intel 80386

consumed ~ 2 W

• 4.0 GHz Intel Core i7

consumes 95W

• Heat must be

dissipated from 1.5

x 1.5 cm2 chip

• This is the limit of

what can be cooled

by air

T
re

n
d
s
 in

 P
o
w

e
r a

n
d
 E

n
e
rg

y

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 39

Techniques for Reducing Power

1. Clock gating: Just turn off the clock of inactive modules (clock gating)

2. Dynamic Voltage-Frequency Scaling (DVFS)

3. System power control: sleep, Idle, Low power, and normal modes.

4. Overclocking one while turning off the other cores (Intel Turbo mode)

T
re

n
d
s
 in

 P
o
w

e
r a

n
d
 E

n
e
rg

y

40CA-Lec1 cwliu@twins.ee.nctu.edu.tw

AMD Opteron, 8GB DRAM, one ATA disk

Power and Energy (2/2)

• Because leakage current flows even when a transistor is off, now

static power is important too

• Increasing the number of transistors increases static power even if

they are turned off

• Leakage current increases in processors with smaller transistor sizes

• Static power is becoming an important issue

– 25%-50% (or more) of total power is static

• Very low power systems even gate voltage to inactive modules (i.e.

power gating) to control loss due to leakage

static staticP I V

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-41

Energy Cost and Die Area Cost Example

• @ TSMC 45nm CMOS technology

• FP units are used by DesignWare Library

• New design directions? By reducing wide FP operations and deploying
special-purpose memories to reduce access to DRAM.

T
re

n
d
s
 in

 P
o
w

e
r a

n
d
 E

n
e
rg

y

42CA-Lec1 cwliu@twins.ee.nctu.edu.tw

[ISSCC 2014]

Trends in Cost

• Price: what you sell a finished good for

• Cost: amount spent to produce it, including overhead

– Price and cost of DRAM track closely.

• The impact of time, volume, and commodification

– Learning curve: manufacturing costs decrease over time
(max. measured by yield)

– Volume decreases the cost
• Costs decrease about 10% for each doubling of volumn

– Commodities: sell on the grocery stores, multiple suppliers.

T
re

n
d
s
 in

 C
o
s
t

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 43

 yield test Final

 testfinal and packagingdie test ingdie

IC

CCC
C

• A wafer is tested and chopped into dies

• The die is still tested and packaged into IC

 yield Die per wafer Die

wafer
die

C
C

Cost of an IC

2(Wafer diameter/2) Wafer diameter
Die per wafer

Die area 2 Die area

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-44

IC Yield

• Bose-Einstein formula:

– Wafer yield is almost 100%

– Defects per unit area = 0.012—0.016 defects per cm2 (28nm, 2017)

– Defects per unit area = 0.016—0.047 defects per cm2 (16nm, 2017)

– N = process-complexity factor = 7.5—9.5.5 (28nm, 2017) and 10—14
(16nm, 2017)

• Example: Find the die yield for dies that are 1.5 cm on a side. Assuming a

300mm wafer and a defect density of 0.047/cm2 and N is 12.

T
re

n
d
s
 in

 C
o
s
t

 Narea Dieareaunit per Defects11dWafer yiel yieldDie

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 45

2(30 2) 30
Dies per wafer 270

2.25 2 2.25

12

Die yield 1 1 0.047 2.25 270 120

Dependability?

• Old CW: ICs are reliable components

• New CW: On the transistor feature size down to 65nm or smaller, both

transient faults and permanent faults will become more common place.

• Define and quantity service level agreement (SLA) or dependability

– Service accomplishment vs. Service interruption

– 2 states of finite state machine: Failure and Restoration

• How to quantify module/system reliability?

• How to quantify module/system availability?

D
e
p
e
n
d
a
b
ility

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 46

Module Reliability and Availability

• 2-state Markov chain for service accomplishment and service interruption

– Module reliability = measure of continuous service accomplishment.

– Module availability = measure of the service accomplishment with

respect to the alternation between the 2 states.

• Mean Time To Failure (MTTF) measures reliability

– Failures In Time (FIT), failures per billion hours of operations, i.e. the

rate of failures.

– FIT = 1/MTTF

• Mean Time To Repair (MTTR) measures service interruption

• Module availability = MTTF / (MTTF + MTTR)

– Mean Time Between Failures (MTBF) = MTTF+MTTR

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 47

Dependability Example

• Assume a disk subsystem with the following components and MTTF:

– 10 disks, each rated at 1000000-hour MTTF

– 1 ATA controller, 500000-hour MTTF

– 1 power supply, 200000-hour MTTF

– 1 fan, 200000-hour MTTF

– 1 ATA cable, 1000000-hour MTTF

• Suppose the lifetimes are exponentially distributed and failures are
independent

• Answer:

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 48

10 1 1 1 1
Failure rate

1000000 500000 200000 200000 1000000

1 1000000 hours
43500 hours

23
MTTF

FIT

Measuring Performance

• Typical performance metrics:

– Response time

– Throughput

• Execution time

– Wall clock time: includes all system overheads

– CPU time: only computation time

• Benchmarks

– Kernels (e.g. matrix multiply)

– Toy programs (e.g. sorting)

– Synthetic benchmarks (e.g. Dhrystone)

– Benchmark suites (e.g. SPEC CPU 2017, TPC-C)

• Speedup of X relative to Y = Execution timeY / Execution timeX

M
e
a
s
u
rin

g
 P

e
rfo

rm
a
n
c
e

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 49

CPU Time Equation

• Instruction set architecture and compiler technology

• Organization and instruction set architecture

• Hardware technology and organization

It is difficult to change one parameter in complete isolation from

others!!

Program

Seconds

cycleClock

Seconds

nInstructio

cyclesClock

Program

nsInstructio

 timeCycleninstructioper Cyclescount nInstructio timeCPU

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-50

Aspects of CPU Performance (CPU Law)

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

IC CPI Clock Rate

Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Inst

Count

CPI

Cycle

Time

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 51

Reporting Performance Results

• Two different machines X and Y.

X is n times faster than Y

Since execution time is the reciprocal of performance

• Says n -1 = m/100

This concludes that X is m% faster than Y

n
X

Y

timeExecution

timeExecution

Y

X

X

Y

ePerformanc

ePerformanc

timeExecution

timeExecution
 n

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-52

CPI and CPU Time

n

1i

ii ICCPIcyclesclock CPU

n

1i

ii timecycleclock)ICCPI(timeCPU

ICi = number of time the instruction-i is executed in a program

CPIi = average number of clock cycles for instruction-i

n

1i

i
i

n

1i

ii

countn Instructio

IC
CPI

countn Instructio

ICCPI

CPI

Throughput

Different instruction types having different CPIs

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-53

Example
We have the following measurements:

Freq. of FP operation (other than FPSQR) = 25%
Average CPI of FP operation = 4
Average CPI of other instructions = 1.33
Freq. of FPSQR = 2%
CPI of FPSQR = 20

Assume we have 2 design alternatives
1. CPI of FPSQR: 20 2 , 10 times improve
2. CPI of FP operations: 4 2.5, 1.6 times improve

2.00.751.330.254count)n Instructio/IC(CPICPI
n

1i

iioriginal

Answer: (Only CPI changes, clock rate, instruction count remains identical)

1.642)-(20 %20.2

)CPICPI(%2CPICPI only FPSQR newFPSQR oldoriginalFPSQR new

625.10.751.330.255.2count)n Instructio/IC(CPICPI
n

1i

iiFP new
 Better !! 1-54

Summarizing Performance Results

• Which benchmark(s)?

• Performance results should be reproducibility

– Describe exactly the software system being measured and whether
any special modifications have been made.

• Arithmetic average of execution time of all programs?

– Could add a weight per program?

– How pick weight? Different company wants different weights for their
product

• Normalized execution time with respect to a reference computer

– Time on reference computer / time on computer being rated

– SPEC uses SPECRatio to compare performance

• Geometric mean of the SPECRatio of all programs?

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 55

Arithmetic Mean vs. Geometric Mean

• Arithmetic mean of time

– Timei is the execution time for the ith program in the workload

• Weighted arithmetic mean

– Weighti factors add up to 1

• Geometric mean of ratio

– Execution time ratioi is the execution time normalized to the

reference machine, for the ith program

n

in 1

iTime
1

n

i 1

ii TimeWeight

n

n

i

i
1

ratio timeExecution

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-56

Ratio of SPECRatio

B

A

A

B

B

reference

A

reference

B

A

ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

SPECRatio

SPECRatio

25.1 e.g.

• SPECRatio is just a ratio rather than an absolute execution time

• Note that when comparing 2 computers as a ratio, execution times on

the reference computer drop out, so choice of reference computer is

irrelevant

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 57

Geometric mean of the ratios is the ratio of
geometric means

• Choice of reference computer is irrelevant.

• Geometric mean does not predict execution time

n

n

i i

i
n

n

i i

i

n

n

i i

i

n

n

i

i

n

n

i

i

B

A

eBPerformanc

eAPerformanc

imeAExecutionT

imeBExecutionT

SPECRatioB

SPECRatioA

SPECRatioB

SPECRatioA

MeanGeometric

MeanGeometric

11

1

1

1

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 58

Example

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 59

1. Take Advantage of Parallelism
– e.g. multiple processors, disks, memory banks, pipelining, multiple

functional units

2. Principle of Locality
– Reuse of data and instructions

3. Focus on the Common Case
– Amdahl’s Law

Principles of Computer Design

P
rin

c
ip

le
s

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 60

(1) Taking Advantage of Parallelism

• Using parallelism to improve throughput

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Set-associative caches searches in parallel by using multiple
memory banks searched

– Pipelining technique overlaps instruction execution to reduce
the total time to complete an instruction sequence.

– Server computer increase throughput of via multiple processors
or multiple tasks/disks

• Different levels of parallelism: ILP, DLP, TLP, …

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 61

(2) The Principle of Locality

• Program access a relatively small portion of the address space at
any instant of time.

• Two Different Types of Locality:

– Temporal Locality (Locality in Time): If an item is referenced, it will tend to be
referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items whose
addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Cache in memory hierarchy for performance.

P MEM$

Large, long latency
Small

and fast

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 62

(3) Focus on the Common Case

• Common sense guides computer design

– Since its engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over the infrequent case

– E.g., Instruction fetch and decode unit used more frequently than multiplier, so
optimize it 1st

– E.g., If database server has 50 disks / processor, storage dependability dominates
system dependability, so optimize it 1st

• Frequent case is often simpler and can be done faster than the infrequent case

– E.g., overflow is rare when adding 2 numbers, so improve performance by
optimizing more common case of no overflow

– May slow down overflow, but overall performance improved by optimizing for the
normal case

• What is frequent case and how much performance improved by making case
faster => Amdahl’s Law

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 63

Amdahl’s Law

enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup

1

Best you could ever hope to do:

 enhanced
maximum Fraction - 1

1
 Speedup

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

old new

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 64

Example
Two design alternative for FP square root

1. Add FPSQR hardware
20% of the execution time in benchmark

 Speedup factor 10

2. Make all FP instructions faster
50% of the execution time for all FP instructions

 1.6 times faster

Answer

 Improving the performance of the FP operations overall is slightly better because of the
higher frequency

23.1

6.1

5.0
)5.01(

1
Speedup

22.1

10

2.0
)2.01(

1
Speedup

FP

FPSQR

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 1-65

SPEC Power Benchmark

• SPECpower uses a software stack written in Java which
represents the server side of business applications.

• SPECpower measures the power consumption of server at
different workload levels

– Performance: ssj_ops/sec

– Power: Watts (Joules/sec)

1 1N N

 i i

i 0 i 0

Overall ssj_ops per Watt ssj_ops power

server side Java operations per second per watt

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 66

SPECpower_ssj2008 for Xeon X5650

CA-Lec1 cwliu@twins.ee.nctu.edu.tw 67

Fallacies and Pitfalls

• Pitfall: All exponential laws must come to an end

– Dennard scaling (power density was constant as transistors got smaller, 1974)

• If the transistor gets smaller then both the current and the voltage are also reduced.
Chip could be designed to operate faster and still use less power.

• Counterexample: (1) Threshold voltage. (2) Static power is significant fraction of total
power

– Hard disk capacity
• Increasing density per drive by adding more platters

• 30-100% per year to 5% per year

– Moore’s Law
• Most visible with DRAM capacity

• ITRS disbanded

• Only four foundries left producing state-of-the-art logic chips (2017) and 11 nm, 3 nm
might be the limit

• Fallacy: Microprocessors are a silver bullet

– Performance is now a programmer’s burden

68

Counterexamples Mistakes

