5.1

5.3

Cx.y is cache line y in core x.
a. C0: RAC20 — C0.0: (S, AC20, 0020), returns 0020
b. CO: WAC2080 — C0.0: (M, AC20, 0080)
C3.0: (I, AC20, 0020)
c. C3: WAC20 80 — C3.0: (M, AC20, 0080)
d. C1: RAC10 — C0.2: (S, AC10, 0030)
M: AC10, 0030 (write-back to memory)
C1.2: (S, AC10, 0030)
e. CO: WAC0848 — CO0.1 (M, AC08, 0048)
C3.1: (I, AC08, 0008)
f. CO: WAC30 78 — C0.2: (M, AC30, 0078)
M: AC10 0030 (write-back to memory)
g.C3: WAC3078 — C3.2:(M, AC30, 0078)

CO0: RAC20 Read miss, satisfied by memory

C0: RAC28 Read miss, satisfied by C1’s cache

C0: RAC20 Read miss, satisfied by memory, write-back 110
Implementation 1: 100 + 40+ 10 + 100 + 10 = 260 stall cycles
Implementation 2: 100 + 130 + 10 + 100 + 10 = 350 stall cycles
C0: RACO00 Read miss, satisfied by memory

CO0: W ACO08 «— 48 Write hit, sends invalidate

CO0: W AC20 « 78 Write miss, satisfied by memory, write back 110
Implementation 1: 100 + 15 + 10 + 100 = 225 stall cycles
Implementation 2: 100 + 15 + 10 + 100 = 225 stall cycles

C1: RAC20 Read miss, satisfied by memory

C1: RAC28 Read hit

C1: RAC20 Read miss, satisfied by memory

Implementation 1: 100 + 0 + 100 = 200 stall cycles
Implementation 2: 100 + 0 + 100 = 200 stall cycles

C1: RACO00 Read miss, satisfied by memory

C1: WACO08 « 48 Write miss, satisfied by memory, write back AC28, sends
invalidate

C1: W AC20 « 78 Write miss, satisfied by memory
Implementation 1: 100 + 100 + 10 + 100 + 15 = 325 stall cycles
Implementation 2: 100 + 100 + 10 + 100 + 15 = 325 stall cycles

CPU read miss
Writs-hack binck |

Placa read miss an bus CPU write hithmiss
{== one copy in ancther cache) Place invabdate an bus

Read migs for bock: CPU read hit

Wrie hilirnigs far thig bock Shared
(reag cnly)

CPU read miss
Place read miss on bus

='= one copy in analher cache)

CFU write miss:
‘Wile-back block
Flace writs miss on bus 1

CFU write mise
Place read miss on bus
(>=ane copy in ancther cache)]

Flaca read miss on s
o copy in another cache)

‘Wiike miss for black
CPU read miss

CPL readiverite hit

CPLI vrita miss:
Flaca writa miss on s

CGPU read miss CPU read miss
Writa-back biock Piace read migs on bus
~ Placa read miss on bus E.Pureﬂd (o copy in analher cache)
{na copy in anciher cache) i
a

C0: R AC00, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
CO: W ACOD « 40 MSI: send invalidate, MESI: silent transition from E o M
MSL: 100 + 15 = 115 stall eycles

MESI: 100 + 0 = 100 stall cycles

b.

C0: R AC20, Read miss, satisfied in memory, sharers both to §
CO: W AC20 « 60 both send invalidates

Both: 100 + 15 = 115 stall cycles

C.
C0: R ACO00, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
C0: R AC20, Read miss, memory, silently replace 120 from S or E

Both: 100 + 100 = 200 stall cycles, silent replacement from E

d

C0: R AC00, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
Cl: W ACO0 — 60, Write miss, satisfied in memory regardless of protocol
Both: 100 + 100 = 200 stall cycles, don’t supply data in E state (some
protocols do)

e.

C0: R ACO00, Read miss, satisfied in memory, no sharers MSI: §, MESI: E
CO: W ACDD « 60, MSI: send invalidate, MESI: silent transidon from E to M
C1: W ACO0 «— 40, Write miss, C0's cache, write-back data to memory
MSI: 100 + 15 + 40 + 10 = 165 stall cycles

MESI: 100 + 0 + 40 + 10 = 150 stall cycles

5.5
Loop 1
Repeati: 1 .. n
Ali] < Ali-1] +BIi];
Loop2

Repeati: 1 .. n
Ali] < A[i] +Bl[i];

If A, B, are larger than the cache and n is large enough, the hit/miss pattern (running
on one CPU) for both loops for large values of i is shown in the table (hit times
ignored).

Cache/ Loopl Loop2
memory
accesses Ali] Ali-1] B[i] Total Ali] Ali] B[i] Total
No Write 110 Read - Read 100 210 ‘Write hit — Read 110 Read 110 220
coherence miss + cycles hit miss cycles cycles miss + cycles miss cycles cycles
protocol writeback writeback
MESI Writemiss+ 110 Read — Read 100 210 Write hit - Read 110 Read 110 220
writeback cycles hit miss cycles cycles miss + cycles miss cycles cycles
writeback
MSI Writemiss+ 110 Read — Read 100 210 Write hit+ 15 Read 110 Read 110 235
writeback cycles hit miss cycles cycles invalidate miss + cycles miss cycles cycles
writeback

When the cache line is large enough to contain multiple elements—M, the average
cost of the memory accesses (ignoring cache hits) will be divided by M. When hits
and non-memory accessing instructions are considered, the relative performance
of Loopl and Loop2 will get closer to 1.

5.9

a. i. C3:R, M4
Messages:

Read miss request message from C3 to Dir4 (011 — 010 —000— 100)
Read response (data) message from M4 to C3 (100—101—111—011)

C3 cache line 0: <1, x, X, > —<S5,4,4, ... >
Dir4: <I, 00000000> —<S, 00001000 >, M4 = 4444

ii. C3:R, M2
Messages:

Read miss request message from C3 to Dir2 (011 — 010)
Read response (data) message from M2 to C3 (010—011)

C3 cache line 0: <S, 4, 4,> — <§,2,2,>

C2 Dir: <1, 00000000 > —<S, 00001000>, M4 = 4444.. ...

Note that Dir4 still assumes C3 is holding M4 because C3 did not notify it
that it replaced line 0. C3 informing Dird of the replacement can be a
useful upgrade to the protocol.

iii. C7: W, M4 «— Oxaaaa
Messages:

Write miss request message from C7 to M4 (111 — 110— 100)
Invalidate message from Dir4 to (100— 101 —111—011)
Acknowledge message from C3 to Dird (011 — 010 —000— 100)
Acknowledge message from Dird to C7 (100 — 101 —111)

C3 cache line 0: <S, 4,4,> — <L, X, X,>
C7 cache line 0: <1, x, X,> — <M, aaaa,>
Dird: <8, 00001000> — <M, 10000000>, M4 = 4444

iv. Cl: W, M4 «— Oxbbbb
Messages:
* Write miss request message from C1 to M4 (001 — 000 — 100)
* Invalidate message from Dir4 to C7 (100 — 101 — 111)

* Acknowledge message (with data write-back) from C7 to Dir4 (111 —

110 — 100)

* Write Response (data) message from Dir4 to C1 (100 — 101 —001)

C7 cache line 0: <M, aaaa, > —= <L X, X, >
C1 cache line 0: <1, X, X,> — <M, bbbb, >
Dir4: <M, 10000000 > — <M, 00000001 > M4 = aaaa.....

Example message formats:

No data message: <no data message flag, message type, destination

(dir/cache, & number), block/line number >

Data message: <data message flag, message type, destination

(dir/cache, & number), block/line number, data >

(b), (c) Same analysis like (a)

5.11

a. Cl: W, M4 «— 0Oxbbbb C3: R, M4 C7: R, M2

C3: W, M4 —(xaaaa

It should be noted that since both C1 and C3 are accessing M4, either of them can get
access first and the behavior is non-deterministic (only decided by implementation
delays). In this question we will assume simple delays—based on the Hamming dis-
tance between source and destination addresses. Hence, C1 will win over C3!

So the ordering of the transactions on M4 is

C1: W, M4 —0xbbbb (wins) — C3: R, M4 — C3: W, M4 (serialization on C3)

The transaction on M2 is independent of the 3 above transactions.

M4 transactions
(a) C1: W, M4 — Oxbbbb

Write miss request message from C1 to M4 (001 — 000 — 100)
Write Response (data) message from Dir4 to C1 (100 — 101 —001)

C1 cache line 0: <L, x, X,> — <M, bbbb, >
Dird: <I, 00000000 > —<M, 00000001 > M4=4444.....

(b) C3: R, M4

Read miss request message from C3 to Dir4 (011 — 010 — 000 — 100)
Request data message (and move to shared state) from M4 to C1 (100 —
101 — 001)

Write response (data) message from C1 to Dir4 (001 — 101 — 100)
Read response (data) message from Dir4 to C3 (100 — 101 — 111 — 011)

C1 cache line 0: <M, bbbb, > — <§, bbbb,>
C3 cache line 0: <1, x, X,> — <S8, bbbb, >
Dird: <M, 00000001 > —<S, 00001010 >, M4 = bbbb.....

(c) C3: W, M4 — Oxaaaa

Write hit request message from C3 to M4 (011 — 010 — 000 — 100)
Invalidate message from Dir4 to C1 (100 — 101 — 001)

Acknowledge message from C1 to Dird (001 — 000 — 100)

Write hit response (message from Dir4 to C3 (100 — 101 — 111 — 011)

C1 cache line 0: <S, bbbb,> — <L X, X,>
C3 cache line 0: <8, bbbb,> — <M, bbbb, >
Dir4: <8, 00001010 >, — <M, 00001000 >, M4 = bbbb.....

M2 transaction
C7: R, M2

Read miss request message from C7 to Dir2 (111 — 110 — 010)
Read response (data) message from M2 to C7 (010 — 011 — 111)

C7 cache line 0: <1, x, x, > — <8, 2222, >
Dir2: <I, 00000000> — <8, 1000000 >, M4 = 222.....

(b), (c) Same analysis like (a)

5.16

Pl: P2:

A=l B=1:
A=2; While (A <> 17
While (B == 0); B =2

Without an optimizing compiler the threads, SC will allow different orderings.
Depending on the relative speeds of P1 and P2, “While (A <> 1);” may be legit-
imately executed
a. Zero times:

B=1; — A=1;— While (A <> 1);— B=2; — A=2; While (B == 0);

B will be set 1o 2

b. Infinite number of times:
B=1; = A=1;— A=2; —=While (A <> 1);
B will be set to 1
c. A few times (A is initially 0)
B=1; — While (A <= Ii—A=1;—B=2;— A=2; ...
B will be set to 2

An optimizing compiler might decide that the assignment “A =1, 15 extraneous
(because A is not read between the two assignments writing to it) and remove it.
In that case, “while A ..” will loop forever.

5.22

i. 64 processors arranged as a ring—largest number of communicarion hops = 32
100+10x32=420 ns

ii. 64 processors arranged as a 8x8 grid—largest number of communication hops = 14
100+10x14=240 ns=

iii. 64 processors arranged as a hypercube—largest number of communication hops = 6

(log)
100+10x6=160 ns

.

1. Worst case CPI=0.75+0.2/100x{420)x2.0 =243

1. Worst case CPI=0.73+0.2/100x(24072.0 = 1.7T1

i1 Waorst case CPI =0.75+0.2/100x(160)x2.0 = 1.39

