
5.1
Cx.y is cache line y in core x.
a. C0: R AC20 → C0.0: (S, AC20, 0020), returns 0020
b. C0: W AC20 80 → C0.0: (M, AC20, 0080)

C3.0: (I, AC20, 0020)
c. C3: W AC20 80 → C3.0: (M, AC20, 0080)
d. C1: R AC10 → C0.2: (S, AC10, 0030)

M: AC10, 0030 (write-back to memory)
C1.2: (S, AC10, 0030)

e. C0: W AC08 48 → C0.1 (M, AC08, 0048)
C3.1: (I, AC08, 0008)

f. C0: W AC30 78 → C0.2: (M, AC30, 0078)
M: AC10 0030 (write-back to memory)

g. C3: W AC30 78 → C3.2 :(M, AC30, 0078)
5.2
a. C0: R AC20 Read miss, satisfied by memory

C0: R AC28 Read miss, satisfied by C1’s cache
C0: R AC20 Read miss, satisfied by memory, write-back 110
Implementation 1: 100 + 40+ 10 + 100 + 10 = 260 stall cycles
Implementation 2: 100 + 130 + 10 + 100 + 10 = 350 stall cycles

b. C0: R AC00 Read miss, satisfied by memory
C0: W AC08 ← 48 Write hit, sends invalidate
C0: W AC20 ← 78 Write miss, satisfied by memory, write back 110
Implementation 1: 100 + 15 + 10 + 100 = 225 stall cycles
Implementation 2: 100 + 15 + 10 + 100 = 225 stall cycles

c. C1: R AC20 Read miss, satisfied by memory
C1: R AC28 Read hit
C1: R AC20 Read miss, satisfied by memory
Implementation 1: 100 + 0 + 100 = 200 stall cycles
Implementation 2: 100 + 0 + 100 = 200 stall cycles

d. C1: R AC00 Read miss, satisfied by memory
C1: W AC08 ← 48 Write miss, satisfied by memory, write back AC28, sends
invalidate
C1: W AC20 ← 78 Write miss, satisfied by memory
Implementation 1: 100 + 100 + 10 + 100 + 15 = 325 stall cycles
Implementation 2: 100 + 100 + 10 + 100 + 15 = 325 stall cycles

5.3

5.4
a.

b.

c.

d.

e.

5.5

5.9

5.11

5.16

5.22

