
Computer Architecture
Lecture 10: Thread-Level
Parallelism--II (Chapter 5)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Review

• Caches contain all information on state of cached memory

blocks

• Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write

• Sharing cached data

 Coherence (values returned by a read),

 Consistency (when a written value will be returned by a

read)

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 2

A Cache Coherent System Must:

• Provide set of states, state transition diagram, and actions

• Manage coherence protocol

– (0) Determine when to invoke coherence protocol

– (a) Find info about state of block in other caches to determine action

• whether need to communicate with other cached copies

– (b) Locate the other copies

– (c) Communicate with those copies (invalidate/update)

• (0) is done the same way on all systems

– state of the line is maintained in the cache

– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 3

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus

– faulting processor sends out a “search”

– others respond to the search probe and take necessary action

• Could do it in scalable network too

– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with p

– on bus, bus bandwidth doesn’t scale

– on scalable network, every fault leads to at least p network transactions

• Scalable coherence:

– can have same cache states and state transition diagram

– different mechanisms to manage protocol

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 4

Scalable Approach: Directories

• Every memory block has associated directory information (may be cached)
– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and communicate only with the nodes
that have copies if necessary

– in scalable networks, communication with directory and copies is through network
transactions

• Many alternatives for organizing directory information

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 5

Basic Operation of Directory

• k processors.

• With each cache-block in memory:
k presence-bits, 1 dirty-bit

• With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• if dirty-bit ON then { recall line from dirty proc (cache state to shared);
update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to
i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all caches that
have the block; turn dirty-bit ON; turn p[i] ON; ... }

• ... CA-Lec10 cwliu@twins.ee.nctu.edu.tw 6

Directory Protocol

• Similar to Snoopy Protocol: Three states

– Shared: ≥ 1 processors have data, memory up-to-date

– Uncached (no processor has it; not valid in any cache)

– Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which processors have data when in

the shared state (usually bit vector, 1 if processor has copy)

• Keep it simple(r):

– Writes to non-exclusive data => write miss

– Processor blocks until access completes

– Assume messages received and acted upon in order sent

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 7

Directory Protocol

• No bus and don’t want to broadcast:

– interconnect no longer single arbitration point

– all messages have explicit responses

• Terms: typically 3 processors involved

– Local node where a request originates

– Home node where the memory location of an address resides

– Remote node has a copy of a cache block, whether exclusive or

shared

• Example messages on next slide: P = processor number, A = address

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 8

Possible Messages in Directory Protocol
Message type Source Destination Msg Content

Read miss Local cache Home directory P, A

– Processor P reads data at address A;

make P a read sharer and request data

Write miss Local cache Home directory P, A

– Processor P has a write miss at address A;

make P the exclusive owner and request data

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A

Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;

change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;

invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)

Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)CA-Lec10 cwliu@twins.ee.nctu.edu.tw 9

State Transition Diagram for One Cache Block in
Directory Based System

• States identical to snoopy case; transactions very similar.

• Transitions caused by read misses, write misses, invalidates,
data fetch requests

• Generates read miss & write miss msg to home directory.

• Write misses that were broadcast on the bus for snooping =>
explicit invalidate & data fetch requests.

• Note: on a write, a cache block is bigger, so need to read the
full cache block

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 10

CPU -Cache State Machine

• State machine
for CPU requests
for each
memory block

• Invalid state
if in memory

Fetch/Invalidate

send Data Write Back message

to home directory

Invalidate

Invalid

Exclusive

(read/write)

CPU Read

CPU Read hit

Send Read Miss

message

CPU Write:

Send Write Miss

msg to h.d.
CPU Write: Send

Write Miss message

to home directory

CPU read hit

CPU write hit

Fetch: send Data Write Back

message to home directory

CPU read miss:

Send Read Miss

CPU write miss:

send Data Write Back message

and Write Miss to home directory

CPU read miss: send Data

Write Back message and read

miss to home directory

Shared

(read/only)

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 11

State Transition Diagram for Directory

• Same states & structure as the transition diagram for an

individual cache

• 2 actions: update of directory state & send messages to

satisfy requests

• Tracks all copies of memory block

• Also indicates an action that updates the sharing set,

Sharers, as well as sending a message

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 12

Directory State Machine

• State machine
for Directory requests for each
memory block

• Uncached state
if in memory

Data Write Back:

Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive

(read/write)

Read miss:

Sharers = {P}

send Data Value

Reply

Write Miss:

send Invalidate

to Sharers;

then Sharers = {P};

send Data Value

Reply msg

Write Miss:

Sharers = {P};

send Data

Value Reply

msg

Read miss:

Sharers += {P};

send Fetch;

send Data Value Reply

msg to remote cache

(Write back block)

Read miss:

Sharers += {P};

send Data Value Reply

Write Miss:

Sharers = {P};

send Fetch/Invalidate;

send Data Value Reply

msg to remote cache

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 13

Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory

– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value; only possible
requests for that block are:

– Read miss: requesting processor sent data from memory &requestor made only sharing
node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the Sharing node. The
block is made Exclusive to indicate that the only valid copy is cached. Sharers indicates
the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory & requesting

processor is added to the sharing set.

– Write miss: requesting processor is sent the value. All processors in the set Sharers are
sent invalidate messages, & Sharers is set to identity of requesting processor. The state
of the block is made Exclusive.

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 14

Example Directory Protocol

• Block is Exclusive: current value of the block is held in the cache of the
processor identified by the set Sharers (the owner) => three possible
directory requests:

– Read miss: owner processor sent data fetch message, causing state of block in
owner’s cache to transition to Shared and causes owner to send data to directory,
where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

– Data write-back: owner processor is replacing the block and hence must write it
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now Uncached,
and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner causing the
cache to send the value of the block to the directory from which it is sent to the
requesting processor, which becomes the new owner. Sharers is set to identity of
new owner, and state of block is made Exclusive.

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 15

Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

(but different memory block addresses A1 ≠ A2)

Processor 1 Processor 2 Interconnect MemoryDirectory

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 16

Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 17

Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 18

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10

10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write Back

A1

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 19

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 20

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

A1 and A2 map to the same cache block

(but different memory block addresses A1 ≠ A2)

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 21

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 22

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

R/_

R/_

R/_
S

S

S

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 23

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pA
Read_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 24

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)
Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Fetch & Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req E
W/_

I

E

W/req E

RU/_

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 25

A Popular Middle Ground

• Two-level “hierarchy”

• Individual nodes are multiprocessors, connected non-

hiearchically

– e.g. mesh of SMPs

• Coherence across nodes is directory-based

– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory

– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 26

And in Conclusion …

• Caches contain all information on state of cached memory blocks

• Snooping cache over shared medium for smaller MP by invalidating

other cached copies on write

• Sharing cached data  Coherence (values returned by a read),

Consistency (when a written value will be returned by a read)

• Snooping and Directory Protocols similar; bus makes snooping

easier because of broadcast (snooping => uniform memory access)

• Directory has extra data structure to keep track of state of all cache

blocks

• Distributing directory => scalable shared address multiprocessor

=> Cache coherent, Non uniform memory access

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 27

Synchronization: The Basics

• Why Synchronize? Need to know when it is safe for different

processes to use shared data

• Issues for Synchronization:

– Uninterruptable instruction to fetch and update memory

(atomic operation); i.e. the basic hardware primitive

– User level synchronization operation using this primitive;

– For large scale MPs, synchronization can be a bottleneck;

• Appendix I.

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 28

Uninterruptable Instruction to Fetch and
Update Memory

• Atomic exchange: interchange a value in a register for a value in memory

0  synchronization variable is free

1  synchronization variable is locked and unavailable

– Set register to 1 & swap

– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)

1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value passes the test

• Fetch-and-increment: it returns the value of a memory location and

atomically increments it

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 29

RISC V Uninterruptable Instructions
• Hard to have read & write in 1 instruction: use 2 instead

• Load reversed (or load linked, load locked) + store conditional

– lr loads the contents of memory given by rs1 into rd and creates a reservation on that memory

address

– sc stores the value in rs2 into the memory address given by rs1 and returns 1 if it succeeds (no

other store to same memory location since preceding load) and 0 otherwise

• Atomic exchange (EXCH) on the memory location specified by the contents of x1 with

the value in x4

try: mov x3,x4 ;mov exchange value

lr x2,0(x1) ;load reserved from

sc x3,0(x1) ;store conditional

beqz x3,try ;branch store fails (x3 = 0)

mov x4,x2 ;put load value in x4

• Atomic fetch & increment with lr & sc:

try: lr x2,0(x1) ;load reserved 0(x1)

addi x3,x2,#1 ;increment

sc x3,0(x1) ;store conditional

beqz x2,try ;branch store fails (x2 = 0)

30

Implementing Locks Using Coherence

• Spin locks: locks that a processor continuously tries to acquire, spinning

around a loop until it succeeds.

• Lock a spin lock (no cache coherence)
addi x2,R0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

• What about MP with cache coherency?

– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all other copies; this

generates considerable bus traffic

31

Spin Lock Example in Directory Protocol

32

P0 starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is initially exclusive

and owned by P0 before step 1 begins. P0 exits and unlocks the lock (step 2). P1 and P2 race to

see which reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical

section (steps 6 and 7), while P1’s attempt fails, so it starts spin waiting (steps 7 and 8).

multiple processes trying to lock a variable using an atomic swap

Remarks

• The example shows that once the processor with the lock stores a 0 into the lock,
all other caches are invalidated and must fetch the new value to update their copy
of the lock.

– Advantage of the lr/sc primitives: the read and write operations are explicitly separated.

• Optimized version using exchange (The lr need not cause any bus traffic):

Lock a spin lock (with cache coherence)

lockit: lr x2,0(x1) ;load reserved

bnez x2,lockit ;not available-spin

addi x2,R0,#1 ;locked value

sc x2,0(x1) ;store

bnez x2,lockit ;branch if store fails

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 33

• The first branch forms the spinning loop;

• The second branch resolves races when two processors see the lock available

simultaneously.

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the new value?

P1: A = 0; P2: B = 0;

.....

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Assume that the processes are running on different processors, and that locations A
and B are originally cached by both processors with the initial value of 0.

• Should be Impossible for both if statements to be evaluated as true

– Reaching the if statement means that either A or B must have been assigned the
value 1.

– What if write invalidate is delayed & processor continues?

• Sequential consistency (SC): result of any execution is the same as if the accesses of
each processor were kept in order and the accesses among different processors were
interleaved

 assignments must be completed before the if statements are initiated

– SC: delay all memory accesses until all invalidates done

– SC reduces system performance, especially in a large number of processors or
long interconnect delays

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 34

Example

Problem

• Suppose we have a processor where a write miss takes 50 cycles to establish ownership, 10 cycles
to issue each invalidate after ownership is established, and 80 cycles for an invalidate to complete
and be acknowledged once it is issued.

• Assuming that four other processors share a cache block, how long does a write miss stall the
writing processor if the processor is sequentially consistent?

• Assume that the invalidates must be explicitly acknowledged before the coherence controller
knows they are completed. Suppose we could continue executing after obtaining ownership for the
write miss without waiting for the invalidates; how long would the write take?

Answer:

• When we wait for invalidates, each write takes the sum of the ownership time plus the time to
complete the invalidates.

• Because the invalidates can overlap, we need only worry about the last one, which starts
10+10+10+10=40 cycles after ownership is established. Therefore the total time for the write is
50+40+80=170 cycles.

• In comparison, the ownership time is only 50 cycles. With appropriate write buffer
implementations, it is even possible to continue before ownership is established.

35

SC reduces system performance

Memory Consistency Model

• A more efficient scheme (faster than sequential consistency) is to assume that
programs are synchronized.

• A program is synchronized if all access to shared data are ordered by synchronization
operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Cases where variables may be updated without ordering by synchronization are called
data race and the execution outcome is unpredictable (depends on the relative speed
of the processors).

• The relaxed consistency model is to allow reads and writes to complete out of order, but
to use synchronization operations to enforce ordering so that a synchronized program
behaves as though the processor were sequentially consistent.

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 36

…… “Unlock” after write

…… “Lock” before read

Relaxed Consistency Models (1/2)

• SC requires maintaining all four possible orderings: R → W, R → R, W→R, W → W.

• Relaxed Consistency Model:

– Key idea: To specify the orderings of the form X → Y, meanings that operation X must
complete before operation Y is done.

• The relaxed models are defined by the subset of four orderings they relax

– 3 major sets of relaxed orderings:

1. Relaxing only W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that operate under
sequential consistency operate under this model, without additional
synchronization. Called processor consistency

2. Relaxing both the W→R and the W → W ordering (all writes completed before next
write) . Called partial store order.

3. Relaxing all four ordering. Called weak ordering or release consistency. A variety of
models depending on ordering restrictions and how synchronization operations enforce
ordering

– Many complexities in relaxed consistency models; defining precisely what it means for a
write to complete; deciding when processors can see values that it has written

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 37

Relaxed Consistency Models (2/2)

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 38

• SA and SR stand for acquire and release operations, respectively

• If we use SA and SR for each S consistently, each ordering with one S would become two orderings (e.g., SW

becomes SA W, SR W), and each SS would become the four orderings shown in the last line of the bottom-right

table entry

Only the minimum orders

are shown with arrows.

Using Speculation to Hide Latency in Strict
Consistency Models

• Speculation gives much of the performance advantage of relaxed
models with sequential consistency

– Executing the memory references out of order may generate violations
of sequential consistency

– Solution: (by using the delayed commit feature of a speculative
processor)

1. if an invalidation arrives for a result that has not been committed,
use speculation recovery

2. If the exact outcome differs from what would have been seen under
sequential consistency, the processor will redo the execution.

• One open question is how successful compiler technology will be
in optimizing memory references to shared variables.

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 39

Remarks: The Future of Multicore Scaling

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 40

• ILP scaling failed because of both limitations in the ILP available and the
efficiency of exploiting that ILP

• Energy and power scale up indeed from generation to generation. E.g.,
22nm vs. 11nm

• If we assume the heat dissipation limit remains, then only partial number
of cores can be active.

Multicore Scaling Example

• Suppose we have a 96-core processor, but on average only 54 cores can be
busy. Suppose that 90% of the time, we can use all available cores; 9% of
the time, we can use 50 cores; and 1% of the time is strictly serial. How
much speedup might we expect?

• Answer

41 Multicore does not magically solve the power problem, indeed

