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Review

• Caches contain all information on state of cached memory 

blocks 

• Snooping cache over shared medium for smaller MP by 

invalidating other cached copies on write

• Sharing cached data 

 Coherence (values returned by a read), 

 Consistency (when a written value will be returned by a 

read)
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A Cache Coherent System Must:

• Provide set of states, state transition diagram, and actions

• Manage coherence protocol

– (0)  Determine when to invoke coherence protocol

– (a)  Find info about state of block in other caches to determine action

• whether need to communicate with other cached copies

– (b)  Locate  the other copies

– (c)  Communicate with those copies  (invalidate/update)

• (0) is done the same way on all systems

– state of the line is maintained in the cache

– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)
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Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus

– faulting processor sends out a “search”

– others respond to the search probe and take necessary action

• Could do it in scalable network too

– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with p

– on bus, bus bandwidth doesn’t scale

– on scalable network, every fault leads to at least  p network transactions

• Scalable coherence:

– can have same cache states and state transition diagram

– different mechanisms to manage protocol
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Scalable Approach: Directories

• Every memory block has associated directory information (may be cached)
– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and communicate only with the nodes 
that have copies if necessary

– in scalable networks, communication with directory and copies is through network 
transactions

• Many alternatives for organizing directory information
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Basic Operation of Directory

•  k processors.  

•  With each cache-block in memory: 
k  presence-bits, 1 dirty-bit

•  With each cache-block in cache:    
1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:

• If dirty-bit OFF then { read from main memory; turn p[i] ON; }

• if dirty-bit ON   then { recall line from dirty proc (cache state to shared); 
update memory; turn dirty-bit OFF; turn p[i] ON; supply recalled data to 
i;}

• Write to main memory by processor i:

• If dirty-bit OFF then { supply data to i; send invalidations to all caches that 
have the block; turn dirty-bit ON; turn p[i] ON; ... }
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Directory Protocol

• Similar to Snoopy Protocol: Three states

– Shared: ≥ 1 processors have data, memory up-to-date

– Uncached (no processor has it; not valid in any cache)

– Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which processors have data when in 

the shared state (usually bit vector, 1 if processor has copy)

• Keep it simple(r):

– Writes to non-exclusive data => write miss

– Processor blocks until access completes

– Assume messages received and acted upon in order sent
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Directory Protocol

• No bus and don’t want to broadcast:

– interconnect no longer single arbitration point

– all messages have explicit responses

• Terms: typically 3 processors involved

– Local node where a request originates

– Home node where the memory location of an address resides

– Remote node has a copy of a cache block, whether exclusive or 

shared

• Example messages on next slide: P = processor number, A = address
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Possible Messages in Directory Protocol
Message type Source Destination Msg Content

Read miss Local cache Home directory P, A

– Processor P reads data at address A; 

make P a read sharer and request data

Write miss Local cache Home directory P, A

– Processor P has a write miss at address A; 

make P the exclusive owner and request data

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A

Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;

change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; 

invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)

Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)CA-Lec10 cwliu@twins.ee.nctu.edu.tw 9



State Transition Diagram for One Cache Block in 
Directory Based System

• States identical to snoopy case; transactions very similar.

• Transitions caused by read misses, write misses, invalidates, 
data fetch requests

• Generates read miss & write miss msg to home directory.

• Write misses that were broadcast on the bus for snooping => 
explicit invalidate & data fetch requests.

• Note: on a write, a cache block is bigger, so need to read the 
full cache block
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CPU -Cache State Machine

• State machine
for CPU requests
for each 
memory block

• Invalid state
if in memory

Fetch/Invalidate

send Data Write Back message 

to home directory

Invalidate

Invalid

Exclusive

(read/write)

CPU Read

CPU Read hit

Send Read Miss

message

CPU Write:

Send Write Miss 

msg to h.d.
CPU Write: Send 

Write Miss message

to home directory

CPU read hit

CPU write hit

Fetch: send Data Write Back 

message to home directory

CPU read miss:

Send Read Miss

CPU write miss:

send Data Write Back message 

and Write Miss to home directory

CPU read miss: send Data 

Write Back message and read 

miss to home directory

Shared

(read/only)
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State Transition Diagram for Directory

• Same states & structure as the transition diagram for an 

individual cache

• 2 actions: update of directory state & send messages to 

satisfy requests 

• Tracks all copies of memory block

• Also indicates an action that updates the sharing set, 

Sharers, as well as sending a message
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Directory State Machine

• State machine
for Directory requests for each 
memory block

• Uncached state
if in memory

Data Write Back:

Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive

(read/write)

Read miss:

Sharers = {P}

send Data Value 

Reply

Write Miss: 

send Invalidate 

to Sharers;

then Sharers = {P};

send Data Value 

Reply msg

Write Miss:

Sharers = {P}; 

send Data 

Value Reply

msg

Read miss:

Sharers += {P}; 

send Fetch;

send Data Value Reply

msg to remote cache

(Write back block)

Read miss: 

Sharers += {P};

send Data Value Reply

Write Miss:

Sharers = {P}; 

send Fetch/Invalidate;

send Data Value Reply

msg to remote cache
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Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory

– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value; only possible 
requests for that block are:

– Read miss: requesting processor sent data from memory &requestor made only sharing 
node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the Sharing node. The 
block is made Exclusive to indicate that the only valid copy is cached. Sharers indicates 
the identity of the owner. 

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory & requesting 

processor is added to the sharing set.

– Write miss: requesting processor is sent the value. All processors in the set Sharers are 
sent invalidate messages, & Sharers is set to identity of requesting processor. The state 
of the block is made Exclusive.
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Example Directory Protocol

• Block is Exclusive: current value of the block is held in the cache of the 
processor identified by the set Sharers (the owner) => three possible 
directory requests:

– Read miss: owner processor sent data fetch message, causing state of block in 
owner’s cache to transition to Shared and causes owner to send data to directory, 
where it is written to memory & sent back to requesting processor. 
Identity of requesting processor is added to set Sharers, which still contains the 
identity of the processor that was the owner (since it still has a readable copy).  
State is shared.

– Data write-back: owner processor is replacing the block and hence must write it 
back, making memory copy up-to-date 
(the home directory essentially becomes the owner), the block is now Uncached, 
and the Sharer set is empty. 

– Write miss: block has a new owner. A message is sent to old owner causing the 
cache to send the value of the block to the directory from which it is sent to the 
requesting processor, which becomes the new owner. Sharers is set to identity of 
new owner, and state of block is made Exclusive.
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Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

(but different memory block addresses A1 ≠ A2)

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA-Lec10 cwliu@twins.ee.nctu.edu.tw 17



Example

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10

10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write Back

A1
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10

P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10

Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10

P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20

Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

A1 and A2 map to the same cache block 

(but different memory block addresses A1 ≠ A2)
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Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S
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Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

R/_

R/_

R/_
S

S

S
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Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pA
Read_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX
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Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir

ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)
Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Fetch & Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req E
W/_

I

E

W/req E

RU/_
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A Popular Middle Ground

• Two-level “hierarchy”

• Individual nodes are multiprocessors, connected non-

hiearchically

– e.g. mesh of SMPs

• Coherence across nodes is directory-based

– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory

– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?
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And in Conclusion …

• Caches contain all information on state of cached memory blocks 

• Snooping cache over shared medium for smaller MP by invalidating 

other cached copies on write

• Sharing cached data  Coherence (values returned by a read), 

Consistency (when a written value will be returned by a read)

• Snooping and Directory Protocols similar; bus makes snooping 

easier because of broadcast (snooping => uniform memory access)

• Directory has extra data structure to keep track of state of all cache 

blocks

• Distributing directory => scalable shared address multiprocessor 

=> Cache coherent, Non uniform memory access
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Synchronization: The Basics

• Why Synchronize? Need to know when it is safe for different 

processes to use shared data

• Issues for Synchronization:

– Uninterruptable instruction to fetch and update memory 

(atomic operation); i.e. the basic hardware primitive

– User level synchronization operation using this primitive;

– For large scale MPs, synchronization can be a bottleneck; 

• Appendix I.
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Uninterruptable Instruction to Fetch and 
Update Memory

• Atomic exchange: interchange a value in a register for a value in memory

0  synchronization variable is free 

1  synchronization variable is locked and unavailable

– Set register to 1 & swap

– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)

1 if other processor had already claimed access

– Key is that exchange operation is indivisible

• Test-and-set: tests a value and sets it if the value passes the test

• Fetch-and-increment: it returns the value of a memory location and 

atomically increments it
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RISC V Uninterruptable Instructions
• Hard to have read & write in 1 instruction: use 2 instead

• Load reversed (or load linked, load locked) + store conditional

– lr loads the contents of memory given by rs1 into rd and creates a reservation on that memory 

address

– sc stores the value in rs2 into the memory address given by rs1 and returns 1 if it succeeds (no 

other store to same memory location since preceding load) and 0 otherwise

• Atomic exchange (EXCH) on the memory location specified by the contents of x1 with 

the value in x4

try: mov x3,x4 ;mov exchange value

lr x2,0(x1) ;load reserved from

sc x3,0(x1) ;store conditional

beqz x3,try  ;branch store fails (x3 = 0)

mov x4,x2  ;put load value in x4

• Atomic fetch & increment with lr & sc:

try: lr x2,0(x1) ;load reserved 0(x1)

addi x3,x2,#1 ;increment

sc x3,0(x1) ;store conditional 

beqz x2,try  ;branch store fails (x2 = 0)
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Implementing Locks Using Coherence

• Spin locks: locks that a processor continuously tries to acquire, spinning 

around a loop until it succeeds.

• Lock a spin lock (no cache coherence)
addi x2,R0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

• What about MP with cache coherency?

– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all other copies; this 

generates considerable bus traffic
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Spin Lock Example in Directory Protocol

32

P0 starts with the lock (step 1), and the value of the lock is 1 (i.e., locked); it is initially exclusive 

and owned by P0 before step 1 begins. P0 exits and unlocks the lock (step 2). P1 and P2 race to 

see which reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical 

section (steps 6 and 7), while P1’s attempt fails, so it starts spin waiting (steps 7 and 8).

multiple processes trying to lock a variable using an atomic swap



Remarks

• The example shows that once the processor with the lock stores a 0 into the lock, 
all other caches are invalidated and must fetch the new value to update their copy 
of the lock. 

– Advantage of the lr/sc primitives: the read and write operations are explicitly separated. 

• Optimized version using exchange (The lr need not cause any bus traffic):

Lock a spin lock (with cache coherence)

lockit: lr x2,0(x1) ;load reserved

bnez x2,lockit ;not available-spin

addi x2,R0,#1 ;locked value

sc x2,0(x1) ;store

bnez x2,lockit ;branch if store fails
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• The first branch forms the spinning loop; 

• The second branch resolves races when two processors see the lock available 

simultaneously.



Another MP Issue: 
Memory Consistency Models

• What is consistency? When must a processor see the new value? 

P1: A = 0; P2: B = 0;

..... .....

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Assume that the processes are running on different processors, and that locations A 
and B are originally cached by both processors with the initial value of 0.

• Should be Impossible for both if statements to be evaluated as true

– Reaching the if statement means that either A or B must have been assigned the 
value 1. 

– What if write invalidate is delayed & processor continues?

• Sequential consistency (SC): result of any execution is the same as if the accesses of 
each processor were kept in order and the accesses among different processors were 
interleaved 

 assignments must be completed before the if statements are initiated

– SC: delay all memory accesses until all invalidates done

– SC reduces system performance, especially in a large number of processors or 
long interconnect delays
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Example

Problem

• Suppose we have a processor where a write miss takes 50 cycles to establish ownership, 10 cycles 
to issue each invalidate after ownership is established, and 80 cycles for an invalidate to complete 
and be acknowledged once it is issued. 

• Assuming that four other processors share a cache block, how long does a write miss stall the 
writing processor if the processor is sequentially consistent? 

• Assume that the invalidates must be explicitly acknowledged before the coherence controller 
knows they are completed. Suppose we could continue executing after obtaining ownership for the 
write miss without waiting for the invalidates; how long would the write take?

Answer:

• When we wait for invalidates, each write takes the sum of the ownership time plus the time to 
complete the invalidates. 

• Because the invalidates can overlap, we need only worry about the last one, which starts 
10+10+10+10=40 cycles after ownership is established. Therefore the total time for the write is 
50+40+80=170 cycles. 

• In comparison, the ownership time is only 50 cycles. With appropriate write buffer 
implementations, it is even possible to continue before ownership is established.

35
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Memory Consistency Model

• A more efficient scheme (faster than sequential consistency) is to assume that 
programs are synchronized.

• A program is synchronized if all access to shared data are ordered by synchronization 
operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Cases where variables may be updated without ordering by synchronization are called 
data race and the execution outcome is unpredictable (depends on the relative speed 
of the processors).

• The relaxed consistency model is to allow reads and writes to complete out of order, but 
to use synchronization operations to enforce ordering so that a synchronized program 
behaves as though the processor were sequentially consistent.
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……   “Unlock” after write

……   “Lock” before read



Relaxed Consistency Models (1/2)

• SC requires maintaining all four possible orderings: R → W, R → R, W→R, W → W.

• Relaxed Consistency Model: 

– Key idea: To specify the orderings of the form X → Y, meanings that operation X must 
complete before operation Y is done.

• The relaxed models are defined by the subset of four orderings they relax

– 3 major sets of relaxed orderings:

1. Relaxing only W→R ordering (all writes completed before next read) 

• Because retains ordering among writes, many programs that operate under 
sequential consistency operate under this model, without additional 
synchronization. Called processor consistency

2. Relaxing both the W→R and the W → W ordering (all writes completed before next 
write) . Called partial store order.

3. Relaxing all four ordering. Called weak ordering or release consistency. A variety of 
models depending on ordering restrictions and how synchronization operations enforce 
ordering

– Many complexities in relaxed consistency models; defining precisely what it means for a 
write to complete; deciding when processors can see values that it has written
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Relaxed Consistency Models (2/2)
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• SA and SR stand for acquire and release operations, respectively

• If we use SA and SR for each S consistently, each ordering with one S would become two orderings (e.g., SW 

becomes SA W, SR W), and each SS would become the four orderings shown in the last line of the bottom-right 

table entry 

Only the minimum orders 

are shown with arrows.



Using Speculation to Hide Latency in Strict 
Consistency Models

• Speculation gives much of the performance advantage of relaxed 
models with sequential consistency

– Executing the memory references out of order may generate violations 
of sequential consistency

– Solution:  (by using the delayed commit feature of a speculative 
processor)

1. if an invalidation arrives for a result that has not been committed, 
use speculation recovery

2. If the exact outcome differs from what would have been seen under 
sequential consistency, the processor will redo the execution.

• One open question is how successful compiler technology will be 
in optimizing memory references to shared variables.
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Remarks: The Future of Multicore Scaling
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• ILP scaling failed because of both limitations in the ILP available and the 
efficiency of exploiting that ILP

• Energy and power scale up indeed from generation to generation. E.g., 
22nm vs. 11nm

• If we assume the heat dissipation limit remains, then only partial number 
of cores can be active.



Multicore Scaling Example

• Suppose we have a 96-core processor, but on average only 54 cores can be 
busy. Suppose that 90% of the time, we can use all available cores; 9% of 
the time, we can use 50 cores; and 1% of the time is strictly serial. How 
much speedup might we expect? 

• Answer

41 Multicore does not magically solve the power problem, indeed


