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Introduction

• SIMD architectures can exploit significant data-level 
parallelism for:

– matrix-oriented scientific computing

– media-oriented image and sound processing

– Machine learning algorithm

• SIMD is more energy efficient than MIMD

– Only needs to fetch one instruction per data operation

– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think sequentially
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Three SIMD Variations

• Vector architectures
– Easier to understand but too expensive

• Multimedia SIMD instruction set extensions

– MMX: multimedia extensions (1996)

– SSE: streaming SIMD extensions

– AVX: advanced vector extensions

• Graphics Processor Units (GPUs)

– Share similar features with vector architectures, but 
have their own distinguishing characteristics
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SIMD vs. MIMD

• For x86 processors:

• Expect two additional 
cores per chip per 
year

• SIMD width to double 
every four years

• Potential speedup 
from SIMD to be 
twice that from 
MIMD!!
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Vector Supercomputers

• In 70-80s, Supercomputer  Vector machine

• Definition of supercomputer

– Fastest machine in the world at given task

– A device to turn a compute-bound problem into an I/O-bound 
problem

– CDC6600 (Cray, 1964) is regarded as the first supercomputer

• Vector supercomputers (epitomized by Cray-1, 1976)

– Scalar unit + vector extensions

• Vector registers, vector instructions

• Vector loads/stores

• Highly pipelined functional units
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Cray-1 (1976)
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Vector Memory-Memory vs.
Vector Register Machines

• Vector memory-memory instructions hold all vector operands in main 
memory

• The first vector machines, CDC Star-100 (‘73) and TI ASC (‘71), were 
memory-memory machines

• Cray-1 (’76) was first vector register machine

for (i=0; i<N; i++)

{

C[i] = A[i] + B[i];

D[i] = A[i] - B[i];

}

Example Source Code ADDV C, A, B

SUBV D, A, B

Vector Memory-Memory Code

LV V1, A

LV V2, B

ADDV V3, V1, V2

SV V3, C

SUBV V4, V1, V2

SV V4, D

Vector Register Code
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Vector Memory-Memory (VMM) vs. 
Vector Register Machines (VRM)

• Vector memory-memory architectures (VMMA) require greater main 
memory bandwidth, why?

– All operands must be read in and out of memory

• VMMAs make it difficult to overlap execution of multiple vector 
operations, why? 

– Must check dependencies on memory addresses

• VMMAs incur greater startup latency

– Scalar code was faster on CDC Star-100 for vectors < 100 elements

– For Cray-1, vector/scalar breakeven point was around 2 elements

 Apart from CDC follow-ons (Cyber-205, ETA-10) all major vector machines 
since Cray-1 have had vector register architectures

(we ignore vector memory-memory from now on)
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VRM Architectures

• Basic idea:

– Read sets of data elements into “vector registers”

– Operate on data in those register files

– Disperse the results back into memory

• Register files are controlled by compiler

– Register files act as compiler controlled buffers

– Used to hide memory latency

– Leverage memory bandwidth

• Vector loads/stores are deeply pipelined

– Program pays the long memory latency only once per vector 
load/store vs. latency for each element for regular load/store
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RISC-V Vector (RVV) ISA Example: RV64V 
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• Loosely based on Cray-1
• Vector registers

– 8 vector registers in this example
– Each register holds a 32-element, 64 

bits/element vector
– Register file has 16 read ports and 8 write 

ports

• Vector functional units
– 5 Fus in this example
– Fully pipelined
– Structural and data hazards are detected

• Vector load-store unit
– Fully pipelined
– Words move between registers and memory
– One word per clock cycle after initial latency

• Scalar registers 
– 31 general-purpose registers
– 32 floating-point registers (RV64V)



+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic 

vadd v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Strided Load

vlds v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Programming Model
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Vector Instruction Set Advantages

• Compact

– One short instruction encodes N operations

• Expressive

– tells hardware that these N operations are independent

– N operations use the same functional unit

– N operations access disjoint registers

– N operations access registers in the same pattern as previous instruction

– N operations access a contiguous block of memory (unit-stride load/store)

– N operations access memory in a known pattern (stridden load/store)

• Scalable

– Can run same object code on more parallel pipelines or lanes
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RV64V Vector Instructions
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Conti…RV64V Instructions

• Suffix .vv: both operands are vectors

• Suffix .sv (or .vs): the first (or the second) operand is a scalar
• Operate on many elements concurrently

• Allows use of slow but wide execution units

• High performance, lower power

• Independence of elements within a vector instruction

• Allows scaling of functional units without costly dependence 
checks

• Flexible

• 32 64-bit / 128 16-bit / 256 8-bit

• Matches the need of multimedia (8bit), scientific applications that 
require high precision
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RV64V Example: DAXPY Loop

• for (i=0; i<32; i++)

Y[i] = a  X[i] + Y[i]

• Assume the starting addresses of X and Y are in x5 and x6

• Assume the number of elements (i.e. Length) of the vectors matches the 
length of the vector operation.

15

Enable 4 DP FP vector registers

Disable vector registers
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vector to another double precision vector



Remarks

• 8 RV64V vector instructions vs. 258 RV64G scalar instructions 

• In RV64G Code

• Fadd.d must wait for fmul.d

• fsd must wait for fadd.d

• Lots of pipeline stalls are necessary for deeply pipelined architecture.

• In RV64V Code

• Stall once for the first vector element,  subsequent elements will flow 
smoothly down the pipeline (discussed later !!).

• Pipeline stalls are required only once per vector instruction, rather 
than once per vector element

• Pipeline stall frequency on RV64G will be about 32 higher than it is on 
RV64V.
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Challenges of Vector Instructions

• Start up time

– Application and architecture must support long vectors. Otherwise, 

they will run out of instructions requiring ILP

• Long latency of vector functional unit

– Assume the same as Cray-1

• Floating-point add => 6 clock cycles

• Floating-point multiply => 7 clock cycles

• Floating-point divide => 20 clock cycles

• Vector load => 12 clock cycles
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V1 V2 V3

V3 <- v1 * v2

Six stage multiply pipeline

Deeply Pipelined Vector Arithmetic 
Execution

• Use deep pipeline (=> fast clock) to 

execute element operations

– Hide long instruction latency

• Simplifies control of deep pipeline 

because elements in vector are 

independent (=> no hazards!) 
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Multiple Lanes for High Throughput

19

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 

one pipelined 

functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Four-lane execution 

using four pipelined 

functional units



Multiple Lanes: 
Beyond One Element per Clock Cycle
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Datapath for Multiple Lanes Structure

Lane

Functional Unit

Vector

Registers

Vector load-store Unit (from Memory Subsystem)

Elements 

0, 4, 8, …

Elements 

1, 5, 9, …

Elements 

2, 6, 10, …

Elements 

3, 7, 11, …
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Remarks

• High throughput multiple lanes structure

– Adding more lanes allows designers to tradeoff clock rate and 
energy without sacrificing performance!

– Register files are physically partitioned.

• Element n of vector register A is “hardwired” to element n of 
vector register B

– No communication between lanes

• The first lane holds the first element (element 0) for all 
vector registers, and so the first element in any vector 
instruction will have its source and destination operands 
located in the first lane.

– Little increase in control overhead and does not require changes 
to existing machine code
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Code Vectorization

23

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a massive compile-time 
reordering of operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 1 Iter. 2

Vectorized Code
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Vector Execution Time

• Execution time depends on three factors:

– Length of operand vectors

– Structural hazards

– Data dependencies

• RV64V functional units consume one element per clock cycle

– Execution time is approximately the vector length

• Efficient way to estimate the execution time: 

– Convoy and chime
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load

Vector Instruction Parallelism
Can overlap execution of multiple vector instructions

– example machine has 32 elements per vector register and 8 lanes

– Complete 24 operations/cycle while issuing 1 short instruction/cycle

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time
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Convoy

• Convoy: set of vector instructions that could potentially 
execute together

– Must not contain structural hazards

– Sequences with RAW hazards should be in different 
convoys

• However, sequences with RAW hazards can be in the same 
convey via chaining
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Vector Chaining

• Vector version of register bypassing
– Allows a vector operation to start as soon as the individual elements of its 

vector source operand become available

Memory

V1

Load 

Unit
Mult.

V2 V3

Chain

Add

V4 V5

Chain

LV   v1

MULV v3, v1,v2

ADDV v5, v3, v4
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Advantages of Vector Chaining

28

• With chaining, can start dependent instruction as soon as first 
result appears

Load

Mul

Add

Load

Mul

AddTime

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction



Chime

• Time of metric to estimate the length of a convey

• Chime: unit of time to execute one convoy

• Assume m convoy executes in m chimes. For vector length of 
n, it requires totally m  n clock cycles

• The chime approximation ignores some processor-specific 
overhead (which are dependent on vector length)

– Measuring time in chimes is a better approximation for 
long vectors than a short vector
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Execution Time Example

vld v0,x5 # Load vector X

vmul v1,v0,f0 # Vector-scalar multiply

vld v2,x6 # Load vector Y

vadd v3,v1,v2 # Vector-vector add

vst v3,x6 # Store the sum

3 Convoys:
1 vld vmul (via chaining)
2 vld vadd (via chaining)
3 vst

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 32-element vectors, it requires 32 x 3 = 96 clock cycles
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Vector Length Register (vl)

• A vector register processor has a natural vector length determined 

by the maximum vector length (mvl).

– For example, mvl = 32 in RV64V

– The mvl is the physical limit of a vector processor

• The length of a particular vector operation is often unknown at 

compile time.

• The solution to these problems is to add a vector-length register (vl) 

+ strip mining. 

• Vector Strip-Mining

– Handling loops not equal to mvl
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A vector of arbitrary length processed with 
strip mining

low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

• All blocks but the first are of length MVL, utilizing the full power of the vector processor.
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The variable m is just the (n%MVL) in the code

Break loops into pieces that fit into vector registers



Vector Strip-Mining Example
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for (i=0; i<n; i++)

Y[i] = a * X[i] + Y[i];

vsetdcfg 2 DP FP # Enable 2 64b Fl.Pt. registers

fld f0,a # Load scalar a

loop: setvl t0,a0 # vl = t0 = min(mvl,n)

vld v0,x5 # Load vector X

slli t1,t0,3 # t1 = vl * 8 (in bytes)

add x5,x5,t1 # Increment pointer to X by vl*8

vmul v0,v0,f0 # Vector-scalar mult

vld v1,x6 # Load vector Y

vadd v1,v0,v1 # Vector-vector add

sub a0,a0,t0 # n -= vl (t0)

vst v1,x6 # Store the sum into Y

add x6,x6,t1 # Increment pointer to Y by vl*8

bnez a0,loop # Repeat if n != 0

vdisable # Disable vector regs}

+

+

+

aX Y Y

mvl elements

Remainder



Problems of Low-to-Moderate Levels of 
Vectorization

• The presence of conditionals (IF statements) inside loops and the 
use of sparse matrices are two main reasons for lower levels of 
vectorization.

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

– This loop cannot normally be vectorized because of the conditional 
execution of the body; 

• However, if the inner loop could be run for the iterations for which 
X[i]  0, then the subtraction could be vectorized.

• The common extension for this capability is vector-mask control.
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Vector-Mask Control: 
Handling IF Statements in Vector Loops

• for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• Use predicate register to “disable” elements:

vsetdcfg 2*FP64 # Enable 2 64b FP vector regs

vsetpcfgi 1 # Enable 1 predicate register

vld v0,x5 # Load vector X into v0

vld v1,x6 # Load vector Y into v1

fmv.d.x f0,x0 # Put (FP) zero into f0

vpne p0,v0,f0 # Set p0(i) to 1 if v0(i)!=f0

vsub v0,v0,v1 # Subtract under vector mask

vst v0,x5 # Store the result in X

vdisable # Disable vector registers

vpdisable # Disable predicate registers

35

These registers use a Boolean vector 
to control the execution of a vector 
instruction.

When the predicate register p0 is 

set, all following vector instructions 

operate only on the vector elements 

whose corresponding entries in the 

predicate register are 1. The entries 

in the destination vector register 

that correspond to a 0 in the mask 

register are unaffected by the vector 

operation.



Vector-Mask Control (2)

36

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Disable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off result 

writeback according to mask



Compress/Expand Operations
• Compress packs non-masked elements from one vector register 

contiguously at start of destination vector register

– population count of mask vector gives packed vector length

• Expand performs inverse operation

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

Expand

A[7]

A[1]

A[4]

A[5]

Compress

A[7]

A[1]

A[4]

A[5]

Used for density-time conditionals and also for general selection 
operations 37



Vector Mask Register (VMR)

• A Boolean vector to control the execution of a vector 

instruction

• VMR is part of the architectural state

– For vector processor, it relies on compilers to manipulate 

VMR explicitly

– For GPU, it gets the same effect using hardware (Invisible 

to SW)

• Both GPU and vector processor spend time on masking

• GFLOPS rate drops when masks are used
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Memory Banks

• The start-up time for a load/store vector unit is the time to get the first word 

from memory into a register. How about the rest of the vector?

– Penalties for start-ups on load/store units are higher than those for arithmetic 

unit

– vector load/store units play a similar role to prefetch units in scalar processors

• Memory system must be designed to support high bandwidth for vector loads 

and stores

– Spread accesses across multiple banks

1. Support multiple loads or stores per clock. Be able to control the 

addresses to the banks independently

2. Support (multiple) non-sequential loads or stores

3. Support multiple processors sharing the same memory system, so each 

processor will be generating its own independent stream of addresses
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Example (Cray T90)

• 32 processors, each generating 4 loads and 2 stores per cycle

• Processor cycle time is 2.167ns

• SRAM cycle time is 15ns

• How many memory banks needed to allow all processors to run at the full 

memory bandwidth?

• Solution:

1. The maximum number of memory references each cycle is 326=192

2. SRAM takes 15/2.167=6.927 processor cycles

3. It requires 1927=1344 memory banks at full memory bandwidth!!

40

Cray T932 actually has 1024 memory banks (not sustain full bandwidth)



Handling Multidimensional Arrays 
in Vector Architectures

• Load/store units move groups of data between vector registers and memory

• The distance separating elements to be gathered into a single vector register is called 

the stride.

• Three types of stride addressing

– Unit stride

• Contiguous (sequential) block of information in memory

• Fastest: always possible to optimize this

– Non-unit (constant) stride

• Harder to optimize memory system for all possible strides

• Prime number of data banks makes it easier to support different strides at full 

bandwidth

– Indexed (gather-scatter)

• Vector equivalent of register indirect

• Good for sparse arrays of data

• Increases number of programs that vectorize
41



Interleaved Memory Layout for Banked Memory

• Great for unit stride: 

– Contiguous elements in different DRAMs

– Startup time for vector operation is latency of single read

• What about non-unit stride?

– Above good for strides that are relatively prime to 8 (in this example)

– Bad for: 2, 4
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How to get full bandwidth for vector load/store 
units?

• Memory system must sustain (# lanes x word) /clock

• # memory banks > memory latency to avoid stalls

• If desired throughput greater than one word per cycle

– Either more banks (start multiple requests simultaneously)

– Or wider DRAMS.  Only good for unit stride or large data types

• Supporting strides greater than one complicates the memory system. 

– Once we introduce nonunit strides, it becomes possible to request 

accesses from the same bank frequently

– Memory bank conflict problem !!

• More numbers of banks good to support more strides at full bandwidth

– can read paper on how to do prime number of banks efficiently
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Memory Bank Conflicts

• Even with 128 banks, since 512 is multiple of 128, conflict on word accesses

• SW: loop interchange or declaring array not power of 2 (“array padding”)

• HW: Prime number of banks

– bank number =  address mod number of banks

– address within bank = address / number of words in bank

( or address within bank = address mod number words in bank)

– modulo & divide per memory access with prime no. banks?

(prime number of banks ???) (easy if 2N words per bank)
44

int x[256][512];

for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];



Example: Multidimensional Arrays in 
Vector Architectures

for (i = 0; i < 100; i=i+1)

for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;

for (k = 0; k < 100; k=k+1)

A[i][j] = A[i][j] + B[i][k] * D[k][j];

}

• Must vectorize multiplications of rows of B with columns of D

– Elements of B accessed in row-major order but elements of D in 
column-major order!

– Either the elements in the row or the elements in the column are not 
adjacent in memory

• Once vector is loaded into the register, it acts as if it has logically adjacent 
elements
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Conti..

• Cache inherently deals with unit stride data

– Blocking techniques might help non-unit stride data

• In the example (for vector processors without caches)

– Matrix D has a stride of 100 double words

– Matrix B has a stride of 1 double word

• Use non-unit stride addressing for Matrix D

– To access non-sequential memory location and to reshape them into a 
dense structure

– The size of the matrix may not be known at compile time

• Use VLDS/VSTS: vector load/store with stride

– The vector stride, like the vector starting address, can be put 
in a general-purpose register
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Problem of Memory Bank Conflict

47

• Bank busy time: minimum period of time between successive accesses to the same bank

• Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:



Example

• 8 memory banks; Bank busy time: 6 cycles; Total memory latency: 12 
cycles for initialized

• What is the difference between a 64-element vector load with a stride of 1 
and 32?

Solution:

1. Since 8 > 6, for a stride of 1, the load will take 12+64=76 cycles, i.e. 1.2 
cycles per element

2. Since 32 is a multiple of 8, the worst possible stride

– every access to memory (after the first one) will collide with the 
previous access and will have to wait for 6 cycles

– The total time will take 12+1+636=391 cycles, i.e. 6.1 cycles per 
element
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Gather-Scatter: 
Handling Sparse Matrices in Vector Architecture

• Consider a sparse vector sum on arrays A and C

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

– where K and M are index vectors to designate the nonzero elements of A 

and C

• Gather-scatter operations are used for handling sparse matrices

– A gather operation (vldi (vector load indexed)) takes an index vector 

(and fetches the vector) whose elements are at the addresses given by 

adding a base address to the offsets given in the index vector.

– The result of the gather operation is a dense vector in a vector register.

– The sparse vector can be stored in an expanded form by a scatter store 

(vsti (vector store indexed), using the same index vector
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Gather-Scatter Example

• C code

for (i = 0; i < n; i=i+1)

A[K[i]] = A[K[i]] + C[M[i]];

• if x5, x6, x7, and x28 contain the starting addresses of the vectors of A, C, K, 
and M

• RV64V code sequence:

Vsetdcfg 4*FP64 # 4 64b FP vector registers

vld v0, x7 # Load K[]

vldi v1, x5, v0 # Load A[K[]]

vld v2, x28 # Load M[]

vldi v3, x6, v2 # Load C[M[]]

vadd v1, v1, v3 # Add them

vsti v1, x5, v0 # Store A[K[]]

vdisable # Disable vector registers
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Vector Architecture Summary

• Vector is alternative model for exploiting ILP

– If code is vectorizable, then simpler hardware, energy efficient, and better 

real-time model than out-of-order

• More lanes, slower clock rate!

– Scalable, if elements are independent

– If there is dependency

• One stall per vector instruction rather than one stall per vector 

element

• Programmer in charge of giving hints to the compiler!

• Fundamental design issue is memory bandwidth

• Other design issues: number of lanes, functional units and registers, length of 

vector registers, exception handling, conditional operations, and so on.
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Programming Vector Architectures
• Compilers can tell at compile time whether a section of code will vectorize 

or not
• Programmers can provide hints to compiler
• Cray Y-MP Benchmarks (Level of vectorization)
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SIMD Instruction Set Extensions 
for Multimedia

• Media applications usually operate on narrower data types (e.g., 8-bit)

• SIMD ISA are added to existing ISAs for multimedia application

• In RV64V, 64-bit registers can split into 2x32b or 4x16b or 8x8b

• Newer designs have 512-bit registers (AVX-512 in 2017)

• In contrast to vector architectures, SIMD extensions have three major 

limitations:

– No vector length register

– No strided or scatter/gather data transfer instructions

– No mask registers

• Such omissions make it harder for the compiler to generate SIMD code 

and increase the difficulty of programming in SIMD assembly language.
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“Vector” for Multimedia?

• Intel MMX: 57 additional 80x86 instructions (1st since 386)

– similar to Intel 860, Mot. 88110, HP PA-71000LC, UltraSPARC

• 3 data types: 8 8-bit, 4 16-bit, 2 32-bit in 64bits

– reuse 8 FP registers (FP and MMX cannot mix)

• short vector: load, add, store 8 8-bit operands

• Claim: overall speedup 1.5 to 2X for 2D/3D graphics, audio, video, speech, 
comm., ...

– use in drivers or added to library routines; no compiler

+
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MMX Instructions

• Move 32b, 64b

• Add, Subtract in parallel: 8 8b, 4 16b, 2 32b

– opt. signed/unsigned saturate (set to max) if overflow

• Shifts (sll,srl, sra), And, And Not, Or, Xor in parallel: 8 8b, 4 16b, 2 
32b

• Multiply, Multiply-Add in parallel: 4 16b

• Compare = , > in parallel: 8 8b, 4 16b, 2 32b

– sets field to 0s (false) or 1s (true); removes branches

• Pack/Unpack

– Convert 32b<–> 16b, 16b <–> 8b

– Pack saturates (set to max) if number is too large
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SIMD Implementations: IA32/AMD64

• Intel MMX (1996)

– Repurpose 64-bit floating point registers

– Eight 8-bit integer ops or four 16-bit integer ops

• Streaming SIMD Extensions (SSE) (1999)

– Separate 128-bit registers

– Eight 16-bit integer ops, Four 32-bit integer/fp ops, or two 64-bit integer/fp ops

– Single-precision floating-point arithmetic

• SSE2 (2001), SSE3 (2004), SSE4(2007)

– Double-precision floating-point arithmetic 

• Advanced Vector Extensions (2010)

– 256-bits registers

– Four 64-bit integer/fp ops

– Extensible to 512 and 1024 bits for future generations
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SIMD Implementations: IBM

• VMX (1996-1998)

– 32 4b, 16 8b, 8 16b, 4 32b integer ops and 4 32b FP ops

– Data rearrangement

• Cell SPE (PS3)

– 16 8b, 8 16b, 4 32b integer ops, and 4 32b and 8 64b FP ops

– Unified vector/scalar execution with 128 registers

• VMX 128 (Xbox360)

– Extension to 128 registers

• VSX (2009)

– 1 or 2 64b FPU, 4 32b FPU

– Integrate FPU and VMX into unit with 64 registers

• QPX (2010, Blue Gene)

– Four 64b SP or DP FP
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SIMD Implementations Summary

• Intel MMX 1996

– For the x86 architecture (64-bit floating-point registers)

– 8 8-bit or 4 16-bit integer ops

• Streaming SIMD Extensions (SSE) 1999, SSE2/3/4 (2001/2004/2007)

– 128-bit XMM registers

– 16 8-bit, 8 16-bit, or 4 32-bit integer ops

– 4 32-bit, or 2 64-bit single-/double- precision FP ops 

• Advanced Vector Extensions (AVX) 2010

– 256-bit YMM registers

– 4 64-bit dp FP ops

• AVX-512 2017

– 512-bit registers

– 8 64-bit dp FP ops

58



Why SIMD Extensions?

1. Cost little to add to the standard arithmetic unit and easy to 
implement

2. Require scant extra processor state compared to vector 
architectures, which is always a concern for context switch times

3. Need smaller memory bandwidth than vector

4. Use separate data transfer aligned in memory. No need to deal 
with problem in virtual memory (e.g., page fault)

– Vector: single instruction, 64 memory accesses, page fault in the 
middle of the vector likely !!

5. Easy to add new instructions for new media operations

6. No need for sophisticated mechanisms of vector architecture
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RVP: RISC-V SIMD

• RVP stands for “packed“ instruction.

• 256-bit SIMD multimedia instructions

• Add the suffix “4D” on instructions

– Operate 4 double-precision floating-point operands

• Let’s consider DAXPY loop example
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Example RISC-V SIMD Code

• Example DXPY loop:
fld f0,a #Load scalar a

splat.4D f0,f0 #Make 4 copies of a

addi x28,x5,#256 #Last address to load

Loop:fld.4D f1,0(x5) #Load X[i] ... X[i+3]

fmul.4D f1,f1,f0 #aX[i] ... aX[i+3]

fld.4D f2,0(x6) #Load Y[i] ... Y[i+3]

fadd.4D f2,f2,f1 #aX[i]+Y[i]...

#aX[i+3]+Y[i+3]

fsd.4D f2,0(x6) #Store Y[i]... Y[i+3]

addi x5,x5,#32 #Increment index to X

addi x6,x6,#32 #Increment index to Y

bne x28,x5,Loop #Check if done
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Remarks for RISC-V SIMD Example

• The changes were replacing every RISC-V double-precision 

instruction with its 4D equivalent, increasing the increment 

from 8 to 32

• It adds the splat instruction that makes 4 copies of a in the 

256 bits of f0. 

• RISC-V SIMD does get almost a 4 reduction of instruction 

bandwidth: 67 versus 258 instructions executed for RV64G. 

• Note that the RISC-V SIMD code might require an extra strip-

mine loop to handle the case when the loop number is not a 

modulo of 4.
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Challenges of SIMD Architectures

• Scalar processor memory architecture

– Only access to contiguous data

• No efficient scatter/gather accesses

– Significant penalty for unaligned memory access

– May need to write entire vector register

• Limitations on data access patterns

– Limited by cache line

• Conditional execution

– Register renaming does not work well with masked execution

– Always need to write whole register

– Difficult to know when to indicate exceptions

• Register pressure

– Need to use multiple registers
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Roofline Performance Model
• Basic idea:

– Plot peak floating-point throughput as a function of arithmetic 
intensity

– Ties together floating-point performance, memory performance, and 
arithmetic intensity for a target machine

• Arithmetic intensity

– The ratio of floating-point operations per byte of memory read.
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Roofline Model Examples

• The “Roofline” sets an upper bound on performance of a kernel 
depending on its arithmetic intensity.

• Y-axis: attainable fp performance (GFLOPs/sec)
Attainable GFLOPs/sec = (Peak Memory BW × Arithmetic Intensity, Peak Floating Point Perf.)

• X-axis: arithmetic intensity (1/8-to 16 FLOP/DRAM byte accessed)
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Comparisons on Roofline Models

• The dashed vertical lines at an arithmetic intensity of 4 FLOP/byte:  the SX-9 at 
102.4 FLOP/s is 2.4 faster than the Core i7 at 42.66 GFLOP/s. 

• At an arithmetic intensity of 1/4 FLOP/byte: the SX-9 at 40.5 GFLOP/s is 10 faster 
than the Core i7 at 4.1 GFLOP/s.
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History of GPUs

• Early video cards

– Frame buffer memory with address generation for video output

• 3D graphics processing

– Originally high-end computers

– 3D graphics cards for PCs and game consoles

• Graphics Processing Units

– GPUs are graphics accelerators

– Processors oriented to 3D graphics tasks

– Vertex/pixel processing, shading, texture mapping, ray tracing

• This section concentrates on using GPUs for computing.
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Graphical Processing Units

• GPUs have virtually every type of parallelism that can 
be captured by the programming environment: 

– multithreading, MIMD, SIMD, and even instruction-level

• Basic idea of GPUs (NVIDIA):

– Heterogeneous execution model

• CPU is the host, GPU is the device

– Develop a C-like programming language for GPU

– Unify all forms of GPU parallelism as CUDA thread

– Programming model is Single Instruction Multiple Thread 
(SIMT)
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Programming Model

• Challenges for the GPU programmer for good performance
– Well schedule the computation on the system and the GPU

– Efficient transfer of data between system memory and GPU memory

• CUDA design goals: C-like language and programming 
environment
– Similar to OpenCL

– extend a standard sequential programming language, specifically 
C/C++,

• focus on the important issues of parallelism—how to craft efficient parallel 
algorithms—rather than grappling with the mechanics of an unfamiliar and 
complicated language.

– minimalist set of abstractions for expressing parallelism

• highly scalable parallel code that can run across tens of thousands of 
concurrent threads and hundreds of processor cores.
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Programming the GPU

• CUDA Programming Model

– Single Instruction Multiple Thread (SIMT)

• A thread is associated with each data element

• Threads are organized into blocks, called thread block

• Thread blocks are organized into a grid

• GPU hardware handles thread management, not applications or OS

– Given the hardware invested to do graphics well, how can we 
supplement it to improve performance of a wider range of 
applications?
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NVIDIA GPU Architecture

• Similarities to vector machines:

– Works well with data-level parallel problems

– Scatter-gather transfers from memory into local store

– Mask registers

– Large register files

• Differences:

– No scalar processor, scalar integration

– Uses multithreading to hide memory latency

– Has many functional units, as opposed to a few deeply pipelined 
units like a vector processor
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Example

• Multiply two vectors of length 8192

– Code that works over all elements is the grid

– Thread blocks break this down into manageable sizes

• 512 threads per block

– SIMD instruction executes 32 elements at a time

– Thus grid size = 16 blocks

– Block is analogous to a strip-mined vector loop with vector length of 
32

– Block is assigned to a multithreaded SIMD processor by the thread 
block scheduler

– A GPU can have form one to several dozen multithreaded SIMD 
processors

• Pascal P100 system has 56 
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Terminology

• Each thread is limited to 64 registers

• Groups of 32 threads combined into a SIMD thread or “warp”

– Mapped to 16 physical lanes

• Up to 32 warps are scheduled on a single SIMD processor

– Each warp has its own PC

– Thread scheduler uses scoreboard to dispatch warps

– By definition, no data dependencies between warps

– Dispatch warps into pipeline, hide memory latency

• Thread block scheduler schedules blocks to SIMD processors

• Within each SIMD processor:

– 32 SIMD lanes

– Wide and shallow compared to vector processors
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Example

• NVIDIA GPU has 32,768 registers

– Divided into lanes

– Each SIMD thread is limited to 64 registers

– SIMD thread has up to:

• 64 vector registers of 32 32-bit elements

• 32 vector registers of 32 64-bit elements

– Fermi has 16 physical SIMD lanes, each containing 2048 
registers
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GTX570 GPU
Global Memory

1,280MB

Texture Cache
8KB

Constant Cache
8KB

Shared Memory
48KB

L1 Cache
16KB

L2 Cache
640KB

SM 0

Registers
32,768

Shared Memory
48KB

SM 14

Registers
32,768

32 
cores

32
cores

Up to 1536 

Threads/SM
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GPU Threads in SM  (GTX570)

• 32 threads within a block work collectively

 Memory access optimization, latency hiding
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Matrix Multiplication
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Programming the GPU
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Matrix Multiplication

• For a 4096x4096 matrix multiplication

- Matrix C will require calculation of 16,777,216 matrix cells. 

• On the GPU each cell is calculated by its own thread.

• We can have 23,040 active threads (GTX570), which means we can 
have this many matrix cells calculated in parallel.

• On a general purpose processor we can only calculate one cell at a 
time.

• Each thread exploits the GPUs fine granularity by computing one 
element of Matrix C.

• Sub-matrices are read into shared memory from global memory to 
act as a buffer and take advantage of GPU bandwidth.
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Programming the GPU

• Distinguishing execution place of functions: 
 _device_  or _global_ => GPU Device

 Variables declared are allocated to the GPU memory

 _host_ => System processor (HOST)

• Function call
 Name<<dimGrid, dimBlock>>(..parameter list..)

 blockIdx: block identifier

 threadIdx: threads per block identifier

 blockDim: threads per block
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CUDA Program Example

//Invoke DAXPY

daxpy(n,2.0,x,y);

//DAXPY in C

void daxpy(int n, double a, double* x, double* y){

for (int i=0;i<n;i++)

y[i]= a*x[i]+ y[i]

}

//Invoke DAXPY with 256 threads per Thread Block

_host_

int nblocks = (n+255)/256;

daxpy<<<nblocks, 256>>> (n,2.0,x,y);

//DAXPY in CUDA

_device_

void daxpy(int n,double a,double* x,double* y){

int i=blockIDx.x*blockDim.x+threadIdx.x;

if (i<n)

y[i]= a*x[i]+ y[i]

}
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NVIDIA Instruction Set Arch.

• “Parallel Thread Execution (PTX)”

• Uses virtual registers

• Translation to machine code is performed in software

• Example:

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])
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Conditional Branching

• Like vector architectures, GPU branch hardware uses internal masks

• Also uses

– Branch synchronization stack

• Entries consist of masks for each SIMD lane

• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple 
execution paths

• Push on divergent branch

– …and when paths converge

• Act as barriers

• Pops stack

• Per-thread-lane 1-bit predicate register, specified by programmer
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Example

if (X[i] != 0)

X[i] = X[i] – Y[i];

else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1

@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

sub.f64 RD0, RD0, RD2 ; Difference in RD0

st.global.f64 [X+R8], RD0 ; X[i] = RD0

@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1

ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0

ENDIF1: <next instruction>, *Pop ; pop to restore old mask
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NVIDIA GPU Memory Structures

• Each SIMD Lane has private section of off-chip DRAM

– “Private memory”

– Contains stack frame, spilling registers, and private 

variables

• Each multithreaded SIMD processor also has local 

memory

– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU Memory

– Host can read and write GPU memory
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Pascal Architecture Innovations

• Each SIMD processor has
– Two or four SIMD thread schedulers, two instruction dispatch units

– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store units, 4 
special function units

– Two threads of SIMD instructions are scheduled every two clock cycles

• Fast single-, double-, and half-precision

• High Bandwith Memory 2 (HBM2) at 732 GB/s

• NVLink between multiple GPUs (20 GB/s in each direction)

• Unified virtual memory and paging support
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Pascal Multithreaded SIMD Proc.
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Vector Architectures vs GPUs

• SIMD processor analogous to vector processor, both have 
MIMD

• Registers
– RV64V register file holds entire vectors

– GPU distributes vectors across the registers of SIMD lanes

– RV64 has 32 vector registers of 32 elements (1024)

– GPU has 256 registers with 32 elements each (8K)

– RV64 has 2 to 8 lanes with vector length of 32, chime is 4 to 16 cycles

– SIMD processor chime is 2 to 4 cycles

– GPU vectorized loop is grid

– All GPU loads are gather instructions and all GPU stores are scatter 
instructions
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SIMD Architectures vs GPUs

• GPUs have more  SIMD lanes

• GPUs have hardware support for more threads

• Both have 2:1 ratio between double- and single-

precision performance

• Both have 64-bit addresses, but GPUs have smaller 

memory

• SIMD architectures have no scatter-gather support
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Compiler Technology for Loop-Level 
Parallelism

• Loop-carried dependence
– Focuses on determining whether data accesses in later 

iterations are dependent on data values produced in 
earlier iterations

• Loop-level parallelism has no loop-carried dependence

• Example 1:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

• No loop-carried dependence
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Example 2 for Loop-Level Parallelism

• Example 2:
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

• S1 and S2 use values computed by S1 in previous 
iteration
– Loop-carried dependence

• S2 uses value computed by S1 in same iteration
– No loop-carried dependence
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Remarks

• Intra-loop dependence is not loop-carried dependence

– A sequence of vector instructions that uses chaining exhibits 
exactly intra-loop dependence

• Two types of S1-S2 intra-loop dependence

– Circular: S1 depends on S2 and S2 depends on S1

– Not circular: neither statement depends on itself, and although 
S1 depends on S2, S2 does not depend on S1

• A loop is parallel if it can be written without a cycle in the 
dependences

– The absence of a cycle means that the dependences give a 
partial ordering on the statements
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Example 3 for Loop-Level Parallelism (1)

• Example 3

for (i=0; i<100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

• S1 uses value computed by S2 in previous iteration, but 
this dependence is not circular.

• There is no dependence from S1 to S2, interchanging 
the two statements will not affect the execution of S2
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Example 3 for Loop-Level Parallelism (2)

• Transform to 

A[0] = A[0] + B[0];

for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i]; /*S2*/

A[i+1] = A[i+1] + B[i+1]; /*S1*/

}

B[100] = C[99] + D[99];

• The dependence between the two statements is no longer 
loop carried.
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More on Loop-Level Parallelism

for (i=0;i<100;i=i+1)  {

A[i] = B[i] + C[i];

D[i] = A[i] * E[i];

}

• The second reference to A needs not be translated to a load 
instruction.
– The two reference are the same. There is no intervening memory 

access to the same location

• A more complex analysis, i.e. Loop-carried dependence 
analysis + data dependence analysis, can be applied in the 
same basic block to optimize
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Recurrence

• Recurrence is a special form of loop-carried dependence. 

• Recurrence Example:

for (i=1;i<100;i=i+1)  {

Y[i] = Y[i-1] + Y[i];

}

• Detecting a recurrence is important

– Some vector computers have special support for 
executing recurrence

– It my still be possible to exploit a fair amount of ILP
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Compiler Technology for Finding 
Dependences

• To determine which loop might contain parallelism (“inexact”) and to 
eliminate name dependences.

• Nearly all dependence analysis algorithms work on the assumption that 
array indices are affine. 

– A one-dimensional array index is affine if it can written in the form a  i + b (i
is loop index)

– The index of a multi-dimensional array is affine if the index in each dimension 
is affine.

– Non-affine access example: x[ y[i] ]

• Determining whether there is a dependence between two references to 
the same array in a loop is equivalent to determining whether two affine 
functions can have the same value for different indices between the 
bounds of the loop.
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Finding dependencies Example

• Assume:
– Load an array element with index c  i + d and store to a  i

+ b
– i runs from m to n

• Dependence exists if the following two conditions hold
1. Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n
2. a  j + b = c  k + d

• In general, the values of a, b, c, and d are not known at 
compile time
– Dependence testing is expensive but decidable
– GCD (greatest common divisor) test

• If a loop-carried dependence exists, then GCD(c,a) | |db|
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Example

for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;

}

• Solution:

1. a=2, b=3, c=2, and d=0

2. GCD(a, c)=2, |b-d|=3

3. Since 2 does not divide 3, no dependence is possible
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Remarks

• The GCD test is sufficient but not necessary

– GCD test does not consider the loop bounds

– There are cases where the GCD test succeeds but 
no dependence exists

• Determining whether a dependence actually 
exists is NP-complete
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Finding dependencies

• Example 2:
for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

• True dependence: S1->S3 (Y[i]), S1->S4 (Y[i]), but not loop-
carried.

• Antidependence: S1->S2 (X[i]), S3->S4 (Y[i]) (Y[i])
• Output dependence: S1->S4 (Y[i])
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Renaming to Eliminate False (Pseudo) 
Dependences

• Before:

for (i=0; i<100; i=i+1) {

Y[i] = X[i] / c; 

X[i] = X[i] + c; 

Z[i] = Y[i] + c; 

Y[i] = c - Y[i];

}

• After:

for (i=0; i<100; i=i+1) {

T[i] = X[i] / c; 

X1[i] = X[i] + c;

Z[i] = T[i] + c;

Y[i] = c - T[i];

}
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Eliminating Recurrence Dependence

• Recurrence example, a dot product:

for (i=9999; i>=0; i=i-1)

sum = sum + x[i] * y[i];

• The loop is not parallel because it has a loop-carried dependence.

• Transform to…

for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];

for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];
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Not parallel !!



Reduction

• Reductions are common in linear algebra algorithm

• Reductions can be handled by special hardware in a vector 
and SIMD architecture

– Similar to what can be done in multiprocessor 
environment

• Example: To sum up 1000 elements on each of ten processors

for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];

– Assume p ranges from 0 to 9
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Multithreading and Vector Summary

• Explicitly parallel (DLP or TLP) is next step to performance
• Coarse-grained vs. Fine-grained multithreading

– Switch only on big stall vs. switch every clock cycle

• Simultaneous multithreading, if fine grained multithreading 
based on OOO superscalar microarchitecture
– Instead of replicating registers, reuse rename registers

• Vector is alternative model for exploiting ILP
– If code is vectorizable, then simpler hardware, more energy 

efficient, and better real-time model than OOO machines
– Design issues include number of lanes, number of FUs, number 

of vector registers, length of vector registers, exception handling, 
conditional operations, and so on.

• Fundamental design issue is memory bandwidth
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