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Introduction

• Pipelining becomes universal technique since 1985

– To overlap execution of instructions and improve performance

– To exploit Instruction Level Parallelism (ILP)

• Two largely separable approaches to exploiting ILP: 

– Hardware-based dynamic approaches

– Compiler-based static approaches

• To exploit parallelisms over instructions is equivalent to determine 
dependences over instructions

– Pipeline hazards

• Pipeline CPI =Ideal pipeline CPI + Structural stalls + Data hazard stalls + 
Control stalls

– If 2 instructions are dependent, they must be executed in order or 
partially overlapped (cannot be executed simultaneously).
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Why Exploiting ILP?

• Can we make CPI closer to 1?

– If we have n-cycle latency, then we need n-1 
instructions between a producing instruction and its 
use

• Multi-issue Processor: two or more instructions 
can be issued (or executed) in parallel 

– The goal is to maximize Instruction per Cycle (IPC)

– How to reduce the impact of data and control hazards?

– Basic block ILP
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How to Exploit ILP?

• Two main approaches:
– Hardware-based dynamic approaches

• Hardware locates the parallelism in run-time

• Used in server, desktop processors, tablets, and high-end cell 
phones. Not used as extensively in IOT space.

• Superscalar processors: Pentium 4, Power, Opteron

– Compiler-based static approaches
• Software finds parallelism at compile-time

• Used in DSP processors (Not as successful outside of 
scientific applications)

• VLIW processors: Itanium 2, TI DSP
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Basic Block ILP

• Basic Block (BB) ILP is limited:

– BB: a straight-line code sequence with no branches in except to the 

entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25% 

=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other

• We must exploit ILP across multiple basic blocks

– Using Loop unrolling to exploit loop-level parallelism
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for (i=1; i<=1000, i=i+1)

x[i] = x[i] + y[i]

x[1] = x[1] + y[1]

x[2] = x[2] + y[2]

…

x[1000]=x[1000]+y[1000]

Loop-level

parallelism 



(True) Data Dependence

• Data dependencies are a property of the program 

• Data dependence conveys:

– Possibility of a pipeline hazard

– Order in which results must be calculated (i.e. 
program behavior)

– Upper bound on ILP

• Dependencies that flow through memory 
locations are difficult to detect

– Hardware-based dynamic approach is more attractive  
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Data Dependences Example

•

•
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Overcome Data Dependences

• Maintaining the dependence but avoiding a hazard

– scheduling the code in HW/SW approach

• Eliminating a dependence by transforming the code

– primary by software

• Dependence detection

– by register names: simpler

– by memory locations: more complicated

• Two addresses may refer to the same location but look quite different (e.g. 

100(R4), 20(R6) may be identical)

• The effective address of a load/store may changed from instruction to 

instruction (20(R4), 20(R4) may be different)
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Name Dependence

• Two instructions use the same register but no data 
exchange

– Not a true data dependence, but is a problem when reordering 
instructions or a irregularly pipelined datapath.

– Anti-dependence:  instruction j writes a register that instruction i
reads

• there is an antidependence between fsd and addi on register x1

– Output-dependence:  instruction i and instruction j write the 
same register

• Ordering must be preserved

• Using register renaming to eliminate name dependences
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Register Renaming and WAW/WAR

• DIV.D F0, F2, F4

• ADD.D F6, F0, F8

• S.D F6, 0 (R1)

• SUB.D F8, F10, F14

• MUL.D F6, F10, F8

• DIV.D F0, F2, F4

• ADD.D S, F0, T

• S.D S, 0 (R1)

• SUB.D F8, F10, F14

• MUL.D F6, F10, F8
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 WAW: ADD.D/MUL.D

 WAR: ADD.D/SUB.D, S.D/MUL.D

 RAW: DIV.D/ADD.D, ADD.D/S.D 

SUB.D/MUL.D

RAWs are (must be) still there, 

after register renaming !!



Control Dependence
• x1 in or instruction depends on add or 

sub, relied on the branch is taken or not.

• Violating the control dependence in this 

example might affect the data flow (i.e. the 

program behavior).

• Assume x4 isn’t used after skip. Possible to 

move sub before the branch

• Violate the control dependence might not 

affect the data flow in this example.
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• Example 1:
add x1,x2,x3

beq x4,x0,L

sub x1,x1,x6

L:…

or x7,x1,x8

• Example 2:
add x1,x2,x3

beq x12,x0,skip

sub x4,x5,x6

add x5,x4,x9

skip:

or x7,x8,x9



Preserve Control Dependence?

• The two properties critical to program correctness are

– The exception behavior

– Data flow 

• Branches make data flow dynamic

• Control dependence is not the critical property that must be 
preserved

– We may execute instruction that should not have been executed, thereby 
violating the control dependence, if we can do so without affecting the 
correctness of the program

– Hardware/software speculation

• Control stalls can be eliminated or reduced by a variety of hardware 
and software techniques
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Summary: ILP and Data Dependencies

• HW/SW must preserve program order: 

order instructions would execute in if executed sequentially as determined 

by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a hazard, but actual 

hazard and length of any stall is property of the pipeline

• Importance of the data dependencies

1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program order only where 

it affects the outcome of the program
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Compiler Techniques for Exposing ILP

• Pipeline scheduling

– Separate dependent instructions from the source instruction by the 
pipeline latency (or instruction latency) of the source instruction

• Example:

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;
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Loop: fld f0,0(x1)

fadd.d f4,f0,f2

fsd f4,0(x1)

addi x1,x1,#-8

bne x1,x2,Loop 



Data Dependence Analysis

Loop: fld f0, 0(x1) // f0=array element

fadd.d f4, f0, f2 // add scalar in f2

fsd f4, 0(x1) // store result

addi x1, x1, #-8 // decrement pointer

bne x1, x2, Loop // branch R1!=R2
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• The arrows show the order that must be preserved for correct 

execution.

• If two instructions are data dependent, they cannot execute 

simultaneously or be completely overlapped.



Step 1: Insert Stalls w/wo Scheduleing
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8 C.C/ iteration

Loop: fld f0,0(x1)

stall

fadd.d f4,f0,f2

stall

stall

fsd f4,0(x1)

addi x1,x1,-8

bne x1,x2,Loop

Loop: fld f0,0(x1)

addi x1,x1,-8

fadd.d f4,f0,f2

stall

stall

fsd f4,8(x1) 
bne x1,x2,Loop

7 C.C/ iteration



Step 2: Loop Unrolling wo Scheduling

• Loop unrolling

– Unroll by a factor of 4 (assume # elements is divisible by 4)

– Eliminate unnecessary instructions
Loop: fld f0,0(x1)

fadd.d f4,f0,f2

fsd f4,0(x1) //drop addi & bne

fld f6,-8(x1)

fadd.d f8,f6,f2

fsd f8,-8(x1) //drop addi & bne

fld f0,-16(x1)

fadd.d f12,f0,f2

fsd f12,-16(x1) //drop addi & bne

fld f14,-24(x1)

fadd.d f16,f14,f2

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,Loop
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or 6.5 C.C/ iteration



Step 3: Re-Schedule the Unrolled loop

• Pipeline schedule the unrolled loop:

Loop: fld f0,0(x1)
fld f6,-8(x1)
fld f8,-16(x1)
fld f14,-24(x1)
fadd.d f4,f0,f2
fadd.d f8,f6,f2
fadd.d f12,f0,f2
fadd.d f16,f14,f2
fsd f4,0(x1)
fsd f8,-8(x1)
fsd f12,-16(x1)
fsd f16,-24(x1)
addi x1,x1,-32
bne x1,x2,Loop
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14 C.C/ 4 iterations

or 3.5 C.C/ iteration



Unrolled Loop Detail

• Do not usually know upper bound of loop

• Suppose it is n, and we would like to unroll the loop to make k
copies of the body

• Instead of a single unrolled loop, we generate a pair of 
consecutive loops:
– 1st executes (n mod k) times and has a body that is the original loop

– 2nd is the unrolled body surrounded by an outer loop that iterates 
(n/k) times

– “strip mining” technique

• For large values of n, most of the execution time will be spent 
in the unrolled loop
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5 Loop Unrolling Decisions

1. Determine loop unrolling useful by finding that loop iterations were independent

(except for maintenance code) 

2. Use different registers to avoid unnecessary constraints forced by using same 

registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop termination 

and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by 

observing that loads and stores from different iterations are independent 

• Transformation requires analyzing memory addresses and finding that they do not refer 

to the same address

5. Schedule the code, preserving any dependences needed to yield the same result 

as the original code
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3 Limits to Loop Unrolling

1. Decrease in amount of overhead amortized with each extra 
unrolling

• Amdahl’s Law

2. Growth in code size 

• For larger loops, concern it increases the instruction cache 
miss rate

3. Register pressure (compiler limitation): potential shortfall in 
registers created by aggressive unrolling and scheduling

• If not be possible to allocate all live values to registers, 
may lose some or all of its advantage

• Loop unrolling reduces impact of branches on pipeline; 
another way is branch prediction
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3.7 Exploiting ILP Using Multiple 
Issue and Static Scheduling



Getting CPI below 1

• CPI ≥ 1 if issue only 1 instruction every clock cycle 

• Multiple-issue processors come in 3 flavors: 

1. statically-scheduled superscalar processors,

2. dynamically-scheduled superscalar processors, and 

3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying numbers of instructions 
per cycle 

– use in-order execution if they are statically scheduled, or 

– use out-of-order execution if they are dynamically scheduled 

• VLIW processors, in contrast, issue a fixed number of instructions
formatted either as one large instruction or as a fixed instruction packet 
with the parallelism among instructions explicitly indicated by the 
instruction (Intel/HP Itanium)
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Five Multiple-Issue Processors
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Basic VLIW 

• A VLIW uses multiple, independent functional units

• A VLIW packages multiple operations into one very long instruction

– The burden for choosing and packaging independent operations falls 

on compiler

– HW in a superscalar makes these issue decisions is unnecessary

• VLIW depends on enough parallelism for keeping FUs busy

– Loop unrolling and then code scheduling

– Compiler may need to do local scheduling and global scheduling

• Here we consider a VLIW processor might have instructions that contain 5 

operations, including 1 integer (or branch), 2 FP, and 2 memory references

– 16 to 24 bits per field => 5*16 or 80 bits to 5*24 or 120 bits wide
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Recall: Unrolled Loop that Minimizes Stalls for 
Scalar

•
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Loop: fld f0,0(x1)

fld f6,-8(x1)

fld f8,-16(x1)

fld f14,-24(x1)

fadd.d f4,f0,f2

fadd.d f8,f6,f2

fadd.d f12,f0,f2

fadd.d f16,f14,f2

fsd f4,0(x1)

fsd f8,-8(x1)

fsd f12,-16(x1)

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,Loop

14 clock cycles, or 3.5 per iteration

fld to fadd.d: 1 Cycle

fadd.d to fsd: 2 Cycles



Loop Unrolling in VLIW
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Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.29 clocks per iteration 

23 ops in 9 clocks, average 2.5 ops per clock, about 50% efficiency 

Note: Need more registers in VLIW



VLIW Problems

• Increase in code size

– Ambitious loop unrolling

– Whenever instructions are not full, the unused FUs translate to waste bits 
in the instruction encoding

• An instruction may need to be left completely empty if no operation can be 
scheduled

– Clever encoding or compress/decompress

• Limitations of the lockstep operation

– No hazard-detection hardware at all.

• Binary code compatibility

– Different numbers of functional units and unit latencies require different 
versions of the code

– Need re-compilation

– Solution: Object-code translation or emulation

28

Read the EPIC approach in Appendix H which provides solutions to VLIW problems !!



Intel/HP IA-64 “Explicitly Parallel Instruction 
Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies 
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags) 
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz

– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)

– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process

– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
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Another Possibility: 
Software Pipelining

• Observation: if iterations from loops are independent, then can get 
more ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is 
made from instructions chosen from different iterations of the 
original loop 

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration
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3.3 Reducing Branch Costs with 
Advanced Branch Prediction



Control Hazard Avoidance

• Consider Effects of Increasing the ILP

– Control dependencies rapidly become the limiting factor

– They tend to not get optimized by the compiler

• Higher branch frequencies result

• Plus multiple issue (more than one instructions/sec)  more control 

instructions per sec.

– Control stall penalties will go up as machines go faster

• Amdahl’s Law in action - again

• Branch Prediction: helps if can be done for reasonable cost

– Static by compiler: appendix C (e.g. predict not taken, delay branch)

– Dynamic by HW: this section
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Why Does Branch Prediction Work?

• Underlying algorithm has regularities

• Data that is being operated on has regularities

• Instruction sequence has redundancies that are artifacts of 

way that humans/compilers think about problems

• Is dynamic branch prediction better than static branch 

prediction?

– Seems to be 

– There are a small number of important branches in programs which 

have dynamic behavior
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Dynamic Branch Prediction

• The predictor will depend on the behavior of the branch at run time

• Goals:

– allow the processor to resolve the outcome of a branch early, prevent 

control dependences from causing stalls

• Effectiveness of a branch prediction scheme depends not only on 

the accuracy but also on the cost of a branch 

– BP_Performance = f (accuracy, cost of misprediction)

• Branch History Table (BHT)

– Lower bits of PC address index table of 1-bit values

• No “precise” address check – just match the lower bits

– Says whether or not branch taken last time
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1-bit Dynamic Hardware Prediction
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predict taken predict not-taken

taken

not-taken

taken not-taken

Problem: Loop case

LOOP: LOAD R1, 100(R2)

MUL R6, R6, R1

SUBI R2, R2, #4

BNEZ R2, LOOP

The steady-state prediction 

behavior will mispredict on the 

first and last loop iterations



BHT Prediction
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If two branch instructions with

the same lower bits…

Useful only for the target address is known before CC is decided



Problem with the Simple BHT

• Aliasing

– All branches with the same index (lower) bits reference same BHT entry

• Hence they mutually predict each other

• No guarantee that a prediction is right. But it may not matter anyway

– Avoidance

• Make the table bigger - OK since it’s only a single bit-vector

• This is a common cache improvement strategy as well

– Other cache strategies may also apply

• Consider how this works for loops

– Always mispredict twice for every loop

• One is unavoidable since the exit is always a surprise

• However previous exit will always cause a mis-prediction the first try of every 
new loop entry
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clear benefit is that it’s cheap and understandable



N-bit Predictors

• 2-bit counter implies 4 states
• Statistically 2 bits gets most of the advantage
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idea: improve on the loop entry problem

predict taken

predict not-taken

taken

not-taken

taken

predict not-taken

predict taken

not-taken

not-taken

not-taken

taken

taken

Compiler could hint 11 

init. on loop branches or 

it will go to 11 anyway in 

the 4th iteration

Only the loop exit causes a mispredict

11 10

01 00

A prediction must miss twice 

before it is changed



BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch (accuracy)

– Got branch history of wrong branch when index the table (size)
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4K of BPB with 2-bit entries misprediction rates on SPEC89@IBM Power



To Increase the BHT Size

• 4096 about as good as infinite table

• The hit rate of the buffer is clearly not the limiting factor for an enough-
large BHT size
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The worst case for the 2-bit predictor

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa != bb) {
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addi x3, x1, -2

bnez x3, L1   //branch b1 (aa!=2)

add  x1, x0, x0 //aa=0

L1: addi x3, x2, -2

bnez x3, L2 //branch b2 (bb!=2)

add x2, x0, x0 //bb=0

L2: sub x3, x1, x2 //x3=aa-bb

beqz x3, L3 //branch b3 (aa==bb)

if the first 2 branches are untaken, 

then the 3rd will always be taken

aa and bb are assigned to R1 and R2

 the behavior of branch b3 is correlated with the 

behavior of branches b1 and b2



Improve Accuracy By Correlating Predictors

• Correlating predictors or 2-level (m,n) predictors

– (m,n) predictor means record last m branches to select between 2m

history tables each with n-bit predictor

– Correlation = To record m most recently executed branches as taken or 

not taken, and use that pattern to select the proper branch history 

table

– m-bit shift register keeping T/NT status of last m branches

– n-bit Predictor = To determine which way to go

• Simple 2-bit BHT is just a (0,2) predictor
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2-Level (m, n) BHT

• Use the behavior of the last m branches to choose from 2m branch 
predictors, each of which is an n-bit predictor for a single branch

• Total bits for the (m, n) BHT prediction buffer with p-bit index:

– p bits of buffer index = 2P-entry n-bit BHT

– 2m banks of memory selected by the global branch history (which is 
just a shift register) - e.g. a column address

– Use p bits of the branch address to select row

– Use m-bit shift register to select to select column

– Get the n predictor bits in the entry to make the decision
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2 2m pn 



(2,2) Predictor Implementation
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4 banks = each with 32 2-bit predictor entries

p = 5

m = 2

n = 2

5:32



Example of Correlating Branch Predictors

if (d==0)

d = 1;

if (d==1)

…
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BNEZ R1, L1 ;branch b1 (d!=0)

DAAIU R1, R0, #1        ;d==0, so d=1

L1: DAAIU  R3, R1, #-1

BNEZ R3, L2 ;branch b2 (d!=1)

…

L2:

d is assigned to R1



Example of Correlating Branch Predictors (Cont.)

initial 
value of d

d==0? b1 value of d 
before b2

d==1? b2

0 YES not taken 1 YES not taken

1 NO taken 1 YES not taken

2 NO taken 2 NO taken
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d=? b1 
prediction

b1 action New b1 
prediction

b2 
prediction

b2 action New b2 
prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

1-bit predictor initialized to NT

All the branches are mispredicted !!!



Example of Correlating Branch Predictors (Cont.)
Prediction bits Prediction if last branch 

not taken
Prediction if last branch 

taken

NT/NT NT NT

NT/T NT T

T/NT T NT

T/T T T
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d=? b1 
prediction

b1 action New b1 
prediction

b2 
prediction

b2 action New b2 
prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

Use 1-bit correlation + 1-bit prediction with initialized to NT/NT
(1,1) predictor



Comparison of Different 2-bit Predictors 
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8K bits

8K bits



McFarling’s Gshare Predictor

• The best-known example of a correlating predictor: gshare predictor

– The index is formed by combining the address of the branch and the most recent conditional branch outcomes 
using an exclusive-OR, which essentially acts as a hash of the branch address and the branch history.

– The hashed result is used to index a prediction array of 2-bit counters
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Tournament Predictors

• Recall that the correlator is just a local predictor

• Adaptively combine local and global predictors
– Multiple predictors

• One based on global information: Results of recently executed m 
branches

• One based on local information: Results of past executions of the current 
branch instruction

– Selector to choose which predictors to use
• E.g.: 2-bit saturating counter, incremented whenever the “predicted” 

predictor is correct and the other predictor is incorrect, and it is 
decremented in the reverse situation

• Advantage
– Ability to select the right predictor for the right branch
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Tournament Predictors

• A global predictor uses the most recent branch history to index the predictor

• A local predictor uses the address of the branch as the index.
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State Transition Diagram for Tournament 
Predictor
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Branch Prediction Performance
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Tagged Hybrid Predictors (TAGE)

• Need to have predictor for each branch and history

– Problem: this implies huge tables

– Solution:

• Combine multiple predictors that track whether a prediction is 

likely to be associated with the current branch

• Use hash tables, whose hash value is based on branch address and 

branch history

• Longer histories may lead to increased chance of hash collision, so 

use multiple tables with increasingly shorter histories

• Use PPM (Prediction by Partial Matching) algorithm
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5-component Tagged Hybrid Predictor

• Five prediction tables: P(0), P(1), . . . P(4), where P(i) is accessed using a hash of the PC and the history of the most 
recent i branches (kept in a shift register, h, just as in gshare).

• P(0) always matches because it uses no tags and becomes the default prediction.
• A small tag of 4–8 bits is good enough (100% matches are not required).
• A prediction from P(1), . . . P(4) is used only if the tags match the hash of the branch address and global branch 

history.
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• Compared to gshare, tagged hybrid predictors are more complex to implement and are probably slightly slower 
because of the need to check multiple tags and choose a prediction result. 

• For deeply pipelined processors with large penalties for branch misprediction, the increased accuracy outweighs 
those disadvantages.
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