
Computer Architecture
Lecture 5: Compiler Techniques for
ILP & Branch Prediction (Chapter 3)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Introduction

• Pipelining becomes universal technique since 1985

– To overlap execution of instructions and improve performance

– To exploit Instruction Level Parallelism (ILP)

• Two largely separable approaches to exploiting ILP:

– Hardware-based dynamic approaches

– Compiler-based static approaches

• To exploit parallelisms over instructions is equivalent to determine
dependences over instructions

– Pipeline hazards

• Pipeline CPI =Ideal pipeline CPI + Structural stalls + Data hazard stalls +
Control stalls

– If 2 instructions are dependent, they must be executed in order or
partially overlapped (cannot be executed simultaneously).

In
tro

d
u
c
tio

n

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 2

Why Exploiting ILP?

• Can we make CPI closer to 1?

– If we have n-cycle latency, then we need n-1
instructions between a producing instruction and its
use

• Multi-issue Processor: two or more instructions
can be issued (or executed) in parallel

– The goal is to maximize Instruction per Cycle (IPC)

– How to reduce the impact of data and control hazards?

– Basic block ILP

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

In
tro

d
u
c
tio

n

3

How to Exploit ILP?

• Two main approaches:
– Hardware-based dynamic approaches

• Hardware locates the parallelism in run-time

• Used in server, desktop processors, tablets, and high-end cell
phones. Not used as extensively in IOT space.

• Superscalar processors: Pentium 4, Power, Opteron

– Compiler-based static approaches
• Software finds parallelism at compile-time

• Used in DSP processors (Not as successful outside of
scientific applications)

• VLIW processors: Itanium 2, TI DSP

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

In
tro

d
u
c
tio

n

4

Basic Block ILP

• Basic Block (BB) ILP is limited:

– BB: a straight-line code sequence with no branches in except to the

entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25%

=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other

• We must exploit ILP across multiple basic blocks

– Using Loop unrolling to exploit loop-level parallelism

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 5

for (i=1; i<=1000, i=i+1)

x[i] = x[i] + y[i]

x[1] = x[1] + y[1]

x[2] = x[2] + y[2]

…

x[1000]=x[1000]+y[1000]

Loop-level

parallelism

(True) Data Dependence

• Data dependencies are a property of the program

• Data dependence conveys:

– Possibility of a pipeline hazard

– Order in which results must be calculated (i.e.
program behavior)

– Upper bound on ILP

• Dependencies that flow through memory
locations are difficult to detect

– Hardware-based dynamic approach is more attractive

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

In
tro

d
u
c
tio

n

6

Data Dependences Example

•

•

7

Overcome Data Dependences

• Maintaining the dependence but avoiding a hazard

– scheduling the code in HW/SW approach

• Eliminating a dependence by transforming the code

– primary by software

• Dependence detection

– by register names: simpler

– by memory locations: more complicated

• Two addresses may refer to the same location but look quite different (e.g.

100(R4), 20(R6) may be identical)

• The effective address of a load/store may changed from instruction to

instruction (20(R4), 20(R4) may be different)

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 8

Name Dependence

• Two instructions use the same register but no data
exchange

– Not a true data dependence, but is a problem when reordering
instructions or a irregularly pipelined datapath.

– Anti-dependence: instruction j writes a register that instruction i
reads

• there is an antidependence between fsd and addi on register x1

– Output-dependence: instruction i and instruction j write the
same register

• Ordering must be preserved

• Using register renaming to eliminate name dependences

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

In
tro

d
u
c
tio

n

9

Register Renaming and WAW/WAR

• DIV.D F0, F2, F4

• ADD.D F6, F0, F8

• S.D F6, 0 (R1)

• SUB.D F8, F10, F14

• MUL.D F6, F10, F8

• DIV.D F0, F2, F4

• ADD.D S, F0, T

• S.D S, 0 (R1)

• SUB.D F8, F10, F14

• MUL.D F6, F10, F8

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 10

 WAW: ADD.D/MUL.D

 WAR: ADD.D/SUB.D, S.D/MUL.D

 RAW: DIV.D/ADD.D, ADD.D/S.D

SUB.D/MUL.D

RAWs are (must be) still there,

after register renaming !!

Control Dependence
• x1 in or instruction depends on add or

sub, relied on the branch is taken or not.

• Violating the control dependence in this

example might affect the data flow (i.e. the

program behavior).

• Assume x4 isn’t used after skip. Possible to

move sub before the branch

• Violate the control dependence might not

affect the data flow in this example.

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

In
tro

d
u
c
tio

n

11

• Example 1:
add x1,x2,x3

beq x4,x0,L

sub x1,x1,x6

L:…

or x7,x1,x8

• Example 2:
add x1,x2,x3

beq x12,x0,skip

sub x4,x5,x6

add x5,x4,x9

skip:

or x7,x8,x9

Preserve Control Dependence?

• The two properties critical to program correctness are

– The exception behavior

– Data flow

• Branches make data flow dynamic

• Control dependence is not the critical property that must be
preserved

– We may execute instruction that should not have been executed, thereby
violating the control dependence, if we can do so without affecting the
correctness of the program

– Hardware/software speculation

• Control stalls can be eliminated or reduced by a variety of hardware
and software techniques

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 12

Summary: ILP and Data Dependencies

• HW/SW must preserve program order:

order instructions would execute in if executed sequentially as determined

by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a hazard, but actual

hazard and length of any stall is property of the pipeline

• Importance of the data dependencies

1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program order only where

it affects the outcome of the program

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 13

Compiler Techniques for Exposing ILP

• Pipeline scheduling

– Separate dependent instructions from the source instruction by the
pipeline latency (or instruction latency) of the source instruction

• Example:

for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

14

Loop: fld f0,0(x1)

fadd.d f4,f0,f2

fsd f4,0(x1)

addi x1,x1,#-8

bne x1,x2,Loop

Data Dependence Analysis

Loop: fld f0, 0(x1) // f0=array element

fadd.d f4, f0, f2 // add scalar in f2

fsd f4, 0(x1) // store result

addi x1, x1, #-8 // decrement pointer

bne x1, x2, Loop // branch R1!=R2

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 15

• The arrows show the order that must be preserved for correct

execution.

• If two instructions are data dependent, they cannot execute

simultaneously or be completely overlapped.

Step 1: Insert Stalls w/wo Scheduleing

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

16

8 C.C/ iteration

Loop: fld f0,0(x1)

stall

fadd.d f4,f0,f2

stall

stall

fsd f4,0(x1)

addi x1,x1,-8

bne x1,x2,Loop

Loop: fld f0,0(x1)

addi x1,x1,-8

fadd.d f4,f0,f2

stall

stall

fsd f4,8(x1)
bne x1,x2,Loop

7 C.C/ iteration

Step 2: Loop Unrolling wo Scheduling

• Loop unrolling

– Unroll by a factor of 4 (assume # elements is divisible by 4)

– Eliminate unnecessary instructions
Loop: fld f0,0(x1)

fadd.d f4,f0,f2

fsd f4,0(x1) //drop addi & bne

fld f6,-8(x1)

fadd.d f8,f6,f2

fsd f8,-8(x1) //drop addi & bne

fld f0,-16(x1)

fadd.d f12,f0,f2

fsd f12,-16(x1) //drop addi & bne

fld f14,-24(x1)

fadd.d f16,f14,f2

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

 note: no reuse
any of registers

17

26 C.C/ 4 iterations

or 6.5 C.C/ iteration

Step 3: Re-Schedule the Unrolled loop

• Pipeline schedule the unrolled loop:

Loop: fld f0,0(x1)
fld f6,-8(x1)
fld f8,-16(x1)
fld f14,-24(x1)
fadd.d f4,f0,f2
fadd.d f8,f6,f2
fadd.d f12,f0,f2
fadd.d f16,f14,f2
fsd f4,0(x1)
fsd f8,-8(x1)
fsd f12,-16(x1)
fsd f16,-24(x1)
addi x1,x1,-32
bne x1,x2,Loop

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

18

14 C.C/ 4 iterations

or 3.5 C.C/ iteration

Unrolled Loop Detail

• Do not usually know upper bound of loop

• Suppose it is n, and we would like to unroll the loop to make k
copies of the body

• Instead of a single unrolled loop, we generate a pair of
consecutive loops:
– 1st executes (n mod k) times and has a body that is the original loop

– 2nd is the unrolled body surrounded by an outer loop that iterates
(n/k) times

– “strip mining” technique

• For large values of n, most of the execution time will be spent
in the unrolled loop

CA-Lec5 cwliu@twins.ee.nctu.edu.tw

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

19

5 Loop Unrolling Decisions

1. Determine loop unrolling useful by finding that loop iterations were independent

(except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced by using same

registers for different computations

3. Eliminate the extra test and branch instructions and adjust the loop termination

and iteration code

4. Determine that loads and stores in unrolled loop can be interchanged by

observing that loads and stores from different iterations are independent

• Transformation requires analyzing memory addresses and finding that they do not refer

to the same address

5. Schedule the code, preserving any dependences needed to yield the same result

as the original code

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 20

3 Limits to Loop Unrolling

1. Decrease in amount of overhead amortized with each extra
unrolling

• Amdahl’s Law

2. Growth in code size

• For larger loops, concern it increases the instruction cache
miss rate

3. Register pressure (compiler limitation): potential shortfall in
registers created by aggressive unrolling and scheduling

• If not be possible to allocate all live values to registers,
may lose some or all of its advantage

• Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 21

3.7 Exploiting ILP Using Multiple
Issue and Static Scheduling

Getting CPI below 1

• CPI ≥ 1 if issue only 1 instruction every clock cycle

• Multiple-issue processors come in 3 flavors:

1. statically-scheduled superscalar processors,

2. dynamically-scheduled superscalar processors, and

3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying numbers of instructions
per cycle

– use in-order execution if they are statically scheduled, or

– use out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number of instructions
formatted either as one large instruction or as a fixed instruction packet
with the parallelism among instructions explicitly indicated by the
instruction (Intel/HP Itanium)

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 23

Five Multiple-Issue Processors

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 24

Basic VLIW

• A VLIW uses multiple, independent functional units

• A VLIW packages multiple operations into one very long instruction

– The burden for choosing and packaging independent operations falls

on compiler

– HW in a superscalar makes these issue decisions is unnecessary

• VLIW depends on enough parallelism for keeping FUs busy

– Loop unrolling and then code scheduling

– Compiler may need to do local scheduling and global scheduling

• Here we consider a VLIW processor might have instructions that contain 5

operations, including 1 integer (or branch), 2 FP, and 2 memory references

– 16 to 24 bits per field => 5*16 or 80 bits to 5*24 or 120 bits wide

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 25

Recall: Unrolled Loop that Minimizes Stalls for
Scalar

•

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 26

Loop: fld f0,0(x1)

fld f6,-8(x1)

fld f8,-16(x1)

fld f14,-24(x1)

fadd.d f4,f0,f2

fadd.d f8,f6,f2

fadd.d f12,f0,f2

fadd.d f16,f14,f2

fsd f4,0(x1)

fsd f8,-8(x1)

fsd f12,-16(x1)

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,Loop

14 clock cycles, or 3.5 per iteration

fld to fadd.d: 1 Cycle

fadd.d to fsd: 2 Cycles

Loop Unrolling in VLIW

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 27

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.29 clocks per iteration

23 ops in 9 clocks, average 2.5 ops per clock, about 50% efficiency

Note: Need more registers in VLIW

VLIW Problems

• Increase in code size

– Ambitious loop unrolling

– Whenever instructions are not full, the unused FUs translate to waste bits
in the instruction encoding

• An instruction may need to be left completely empty if no operation can be
scheduled

– Clever encoding or compress/decompress

• Limitations of the lockstep operation

– No hazard-detection hardware at all.

• Binary code compatibility

– Different numbers of functional units and unit latencies require different
versions of the code

– Need re-compilation

– Solution: Object-code translation or emulation

28

Read the EPIC approach in Appendix H which provides solutions to VLIW problems !!

Intel/HP IA-64 “Explicitly Parallel Instruction
Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz

– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)

– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process

– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 29

Another Possibility:
Software Pipelining

• Observation: if iterations from loops are independent, then can get
more ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the
original loop

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 30

3.3 Reducing Branch Costs with
Advanced Branch Prediction

Control Hazard Avoidance

• Consider Effects of Increasing the ILP

– Control dependencies rapidly become the limiting factor

– They tend to not get optimized by the compiler

• Higher branch frequencies result

• Plus multiple issue (more than one instructions/sec) more control

instructions per sec.

– Control stall penalties will go up as machines go faster

• Amdahl’s Law in action - again

• Branch Prediction: helps if can be done for reasonable cost

– Static by compiler: appendix C (e.g. predict not taken, delay branch)

– Dynamic by HW: this section

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 32

Why Does Branch Prediction Work?

• Underlying algorithm has regularities

• Data that is being operated on has regularities

• Instruction sequence has redundancies that are artifacts of

way that humans/compilers think about problems

• Is dynamic branch prediction better than static branch

prediction?

– Seems to be

– There are a small number of important branches in programs which

have dynamic behavior

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 33

Dynamic Branch Prediction

• The predictor will depend on the behavior of the branch at run time

• Goals:

– allow the processor to resolve the outcome of a branch early, prevent

control dependences from causing stalls

• Effectiveness of a branch prediction scheme depends not only on

the accuracy but also on the cost of a branch

– BP_Performance = f (accuracy, cost of misprediction)

• Branch History Table (BHT)

– Lower bits of PC address index table of 1-bit values

• No “precise” address check – just match the lower bits

– Says whether or not branch taken last time

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 34

1-bit Dynamic Hardware Prediction

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 35

predict taken predict not-taken

taken

not-taken

taken not-taken

Problem: Loop case

LOOP: LOAD R1, 100(R2)

MUL R6, R6, R1

SUBI R2, R2, #4

BNEZ R2, LOOP

The steady-state prediction

behavior will mispredict on the

first and last loop iterations

BHT Prediction

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 36

If two branch instructions with

the same lower bits…

Useful only for the target address is known before CC is decided

Problem with the Simple BHT

• Aliasing

– All branches with the same index (lower) bits reference same BHT entry

• Hence they mutually predict each other

• No guarantee that a prediction is right. But it may not matter anyway

– Avoidance

• Make the table bigger - OK since it’s only a single bit-vector

• This is a common cache improvement strategy as well

– Other cache strategies may also apply

• Consider how this works for loops

– Always mispredict twice for every loop

• One is unavoidable since the exit is always a surprise

• However previous exit will always cause a mis-prediction the first try of every
new loop entry

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 37

clear benefit is that it’s cheap and understandable

N-bit Predictors

• 2-bit counter implies 4 states
• Statistically 2 bits gets most of the advantage

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 38

idea: improve on the loop entry problem

predict taken

predict not-taken

taken

not-taken

taken

predict not-taken

predict taken

not-taken

not-taken

not-taken

taken

taken

Compiler could hint 11

init. on loop branches or

it will go to 11 anyway in

the 4th iteration

Only the loop exit causes a mispredict

11 10

01 00

A prediction must miss twice

before it is changed

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch (accuracy)

– Got branch history of wrong branch when index the table (size)

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 04-39

4K of BPB with 2-bit entries misprediction rates on SPEC89@IBM Power

To Increase the BHT Size

• 4096 about as good as infinite table

• The hit rate of the buffer is clearly not the limiting factor for an enough-
large BHT size

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 04-40

The worst case for the 2-bit predictor

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa != bb) {

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 41

addi x3, x1, -2

bnez x3, L1 //branch b1 (aa!=2)

add x1, x0, x0 //aa=0

L1: addi x3, x2, -2

bnez x3, L2 //branch b2 (bb!=2)

add x2, x0, x0 //bb=0

L2: sub x3, x1, x2 //x3=aa-bb

beqz x3, L3 //branch b3 (aa==bb)

if the first 2 branches are untaken,

then the 3rd will always be taken

aa and bb are assigned to R1 and R2

 the behavior of branch b3 is correlated with the

behavior of branches b1 and b2

Improve Accuracy By Correlating Predictors

• Correlating predictors or 2-level (m,n) predictors

– (m,n) predictor means record last m branches to select between 2m

history tables each with n-bit predictor

– Correlation = To record m most recently executed branches as taken or

not taken, and use that pattern to select the proper branch history

table

– m-bit shift register keeping T/NT status of last m branches

– n-bit Predictor = To determine which way to go

• Simple 2-bit BHT is just a (0,2) predictor

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 42

2-Level (m, n) BHT

• Use the behavior of the last m branches to choose from 2m branch
predictors, each of which is an n-bit predictor for a single branch

• Total bits for the (m, n) BHT prediction buffer with p-bit index:

– p bits of buffer index = 2P-entry n-bit BHT

– 2m banks of memory selected by the global branch history (which is
just a shift register) - e.g. a column address

– Use p bits of the branch address to select row

– Use m-bit shift register to select to select column

– Get the n predictor bits in the entry to make the decision

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 43

2 2m pn 

(2,2) Predictor Implementation

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 44

4 banks = each with 32 2-bit predictor entries

p = 5

m = 2

n = 2

5:32

Example of Correlating Branch Predictors

if (d==0)

d = 1;

if (d==1)

…

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 45

BNEZ R1, L1 ;branch b1 (d!=0)

DAAIU R1, R0, #1 ;d==0, so d=1

L1: DAAIU R3, R1, #-1

BNEZ R3, L2 ;branch b2 (d!=1)

…

L2:

d is assigned to R1

Example of Correlating Branch Predictors (Cont.)

initial
value of d

d==0? b1 value of d
before b2

d==1? b2

0 YES not taken 1 YES not taken

1 NO taken 1 YES not taken

2 NO taken 2 NO taken

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 46

d=? b1
prediction

b1 action New b1
prediction

b2
prediction

b2 action New b2
prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

1-bit predictor initialized to NT

All the branches are mispredicted !!!

Example of Correlating Branch Predictors (Cont.)
Prediction bits Prediction if last branch

not taken
Prediction if last branch

taken

NT/NT NT NT

NT/T NT T

T/NT T NT

T/T T T

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 47

d=? b1
prediction

b1 action New b1
prediction

b2
prediction

b2 action New b2
prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

Use 1-bit correlation + 1-bit prediction with initialized to NT/NT
(1,1) predictor

Comparison of Different 2-bit Predictors

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 04-48

8K bits

8K bits

McFarling’s Gshare Predictor

• The best-known example of a correlating predictor: gshare predictor

– The index is formed by combining the address of the branch and the most recent conditional branch outcomes
using an exclusive-OR, which essentially acts as a hash of the branch address and the branch history.

– The hashed result is used to index a prediction array of 2-bit counters

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 49

Tournament Predictors

• Recall that the correlator is just a local predictor

• Adaptively combine local and global predictors
– Multiple predictors

• One based on global information: Results of recently executed m
branches

• One based on local information: Results of past executions of the current
branch instruction

– Selector to choose which predictors to use
• E.g.: 2-bit saturating counter, incremented whenever the “predicted”

predictor is correct and the other predictor is incorrect, and it is
decremented in the reverse situation

• Advantage
– Ability to select the right predictor for the right branch

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 50

The most popular one

Tournament Predictors

• A global predictor uses the most recent branch history to index the predictor

• A local predictor uses the address of the branch as the index.

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 51

State Transition Diagram for Tournament
Predictor

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 52

Branch Prediction Performance

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 53

Tagged Hybrid Predictors (TAGE)

• Need to have predictor for each branch and history

– Problem: this implies huge tables

– Solution:

• Combine multiple predictors that track whether a prediction is

likely to be associated with the current branch

• Use hash tables, whose hash value is based on branch address and

branch history

• Longer histories may lead to increased chance of hash collision, so

use multiple tables with increasingly shorter histories

• Use PPM (Prediction by Partial Matching) algorithm

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 54

5-component Tagged Hybrid Predictor

• Five prediction tables: P(0), P(1), . . . P(4), where P(i) is accessed using a hash of the PC and the history of the most
recent i branches (kept in a shift register, h, just as in gshare).

• P(0) always matches because it uses no tags and becomes the default prediction.
• A small tag of 4–8 bits is good enough (100% matches are not required).
• A prediction from P(1), . . . P(4) is used only if the tags match the hash of the branch address and global branch

history.

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 55

• Compared to gshare, tagged hybrid predictors are more complex to implement and are probably slightly slower
because of the need to check multiple tags and choose a prediction result.

• For deeply pipelined processors with large penalties for branch misprediction, the increased accuracy outweighs
those disadvantages.

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 56

