pip1. OF ELECTROMNC 9% N #7
ENameeRNg a _
Ingt. OF ELECTROMICS * - L

Computer Architecture
Lecture 2: Instruction Set
Principles (Appendix A)

Chih-Wei Liu %] % &t
National Chiao Tung University
cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Instruction Set Architecture (ISA)

e |SA: the portion of the computer visible to the programmer or
compiler writer

e Qutline:

— First, we present a taxonomy of instruction set alternatives and give
some qualitative assessment of the advantages and disadvantages of
various approaches.

— Second, we present and analyze some instruction set measurements
that are largely independent of a specific instruction set.

— Third, we address the issue of languages and compilers and their
bearing on instruction set architecture.

— Finally, the “Putting It All Together” section shows how these ideas are
reflected in the RISC-V instruction set, which is typical of RISC
architectures.

pib1 OF ELECIROMC 9 nsse. N 77
ENGINEERING ¢ 4
st ©f ELECTROMICS 2

CPI

Computer Performance A

inst count Cycle time
CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle
Inst Count| CPlI | Clock Rate

Program X

Compiler X (X)

Inst. Set. X X X

Organization X X

Technology X

CA-Lec2 cwliu@twins.ee.nctu.edu.tw

ISA Design Issue

 Where are operands stored?

* How many explicit operands are there?

* How is the operand location specified?
 What type & size of operands are supported?

* What operations are supported?

Before answering these questions, let’s consider more about
* Data operands (source and destination)
e Memory addressing modes

* QOperations

CA-Lec2 cwliu@twins.ee.nctu.edu.tw

Classifying ISAs

* Type of internal storage in a processor is the most basic differentiation:

— A stack
— An accumulator
— A set of registers

* Operands may be named explicitly or implicitly
— In a stack architecture, all Operands, including two source operands and one
result, are implicit on the top of the stack (TOS).
— In an accumulator architecture, one operand and the result are implicitly the
accumulator and the other is form memory.
— The general-purpose register architectures have only explicit operands—either

registers or memory locations.
* Register-memory architecture
* Memory-memory architecture
* Register-register architecture (load-store architecture)

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 5

Four Classes of ISAs (1/2)

* The arrows indicate whether the operand is an input or the result of the
arithmetic-logical unit (ALU) operation, or both an input and result. Lighter
shades indicate inputs, and the dark shade indicates the result.

Processor

(A) Stack (B) Accumulator (C) Register-memory (D) Register-register/ 6
load-store

Four Classes of ISAs (2/2)

The code sequence forC = A + B for four classes of instruction sets.

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R3,R1,B Load RZ,B
Add Store C Store R3,C Add R3,R1,RZ
Pop C Store R3,C

Assume that 2, B, and C all belong in memory and that the values of A and B cannot be destroyed.

Maximum number

Number of memory of operands
addresses allowed Type of architecture Examples
0 3 Load-store ARM, MIPS, PowerPC, SPARC, RISC-V
| 2 Register-memory IBM 360/370, Intel 80x86, Motorola
68000, TT TMS320C54x
2 2 Memory-memory VAX (also has three-operand formats)
Memory-memory VAX (also has two-operand formats)

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 7

Memory Addressing for Data Operand

* Most processors are byte-addressable and provide access for
— Byte or character (8-bit)
— Half-word or short integer (16-bit)
— Integer word or single-precision floating point (32-bit)
— Double-word or long integer or double-precision floating point (64-bit)

* How memory addresses are interpreted and how they are
specified?
— Little Endian or Big Endian
e for ordering the bytes within a larger object within memory

— Alignment or misaligned memory access
* for accessing to an abject larger than a byte from memory

— Addressing modes
* for specifying constants, registers, and locations in memory

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 8

Byte-Order (“Endianness”)

e Little Endian

— The byte order put the byte whose address is “xx...x000” at the least-
significant position in the double word

— E.g. Intel, DEC, ...
— The bytesarenumberedas 7 6 5 4 3 2 1 0

MSB LSB
* Big Endian

— The byte order put the byte whose address is “xx...x000” at the most-
significant position in the double word
— E.g. MIPS, IBM, Motorolla, Sun, HP, ...

— The bytesarenumberedas g 1 2 3 4 5 ¢ 7

MSB LSB

Little or Big Endian ?

* No absolute advantage for one over the other, but

— Byte order is a problem when exchanging data among computers

« Example
— InC,int num = 0x12345678; // a 32-bit word,

— how is num stored in memory?

4n+3 78 4n+3 12

4n+2 56 4n+2 34
4n+1 34 4an+l o6
4n+0 12 4n+0 78

Big Er.1dian Little Endian

— Little Endian ordering fails to match the normal ordering of words when strings
are compared. Strings appear “SDRAWKCAB” (backwards) in the registers.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 10

Data Alighment

An access to object of size S bytes at byte address A is called
aligned if Amod S = 0.

— The instruction is typically aligned on a word.

Access to an unaligned operand may require more memory
accesses !l

Mis-aligned word reference

32 32
$32

To Processor

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 11

Remarks

Unrestricted Alignment
— Software is simple
— Hardware must detect misalignment and make more memory accesses
— Expensive logic to perform detection
— Can slow down all references
— Sometimes required for backwards compatibility
Restricted Alignment
— Software must guarantee alignment
— Hardware detects misalignment access and traps
— No extra time is spent when data is aligned

Since we want to make the common case fast, having restricted alignment is often
a better choice, unless compatibility is an issue.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 12

Summary: Endians & Alignment

Increasing byte

CA-Lec2 cwliu@twins.ee.nctu.edu.tw

address
7 | 6 | 5 | 4 3 [2 | 1 0
4
1]
Word-aligned word at byte address 4.
2
- 000
Halfword-aligned word at byte address 2.
1
I
Byte-aligned (non-aligned) word, at byte address 1.
4
3(MSB)[2 | 1 [0(LSB) | Little-endian byte order
4
o(sB) | 1 [2 [3(MSB)] Big-endian byte order

13

Addressing Mode ?

It answers the question:

— Where can operands/results be located?

Recall that we have two types of storage in computer :
registers and memory

— A single operand can come from either a register or a memory location

— Addressing modes offer various ways of specifying the specific location

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 14

Addressing Mode Example

Addressing Mode
1. Register direct

2. Immediate

3. Register indirect
4. Displacement

5. Indexed

6. Direct

7. Memory Indirect
8. Auto-increment

9. Auto-decrement

10. Scaled

Example
Add R1,
Add R1,
Add R1,
LD R1,
LD R1,
LD R1,
Add R1,
LD R1,

LD R1,

LD R1,

R2, R3
R2, #3
R2, (R3)
100 (R2)
(R2 + R3)
(1000)
R2, @(R3)
(R2) +

(R2) -

100 (R2) [R3]

R:Register; M:Memory

Action

R1
R1
R1
R1
R1
R1
R1
R1
R2
R1
R2
R1

R2 + R3
R2 + 3

R2 + M[R3]
M[100 + R2]
M[R2 + R3]
M[1000]

R2 + M[M[R3]]
M[R2]

R2 + d

M[R2]

R2 - d
M[100+R2+R3*d]

Addressing Modes Visualization (1/2)

Mode

Name Instr. Field(s) Reg. File Memory

P —

Immediate (\imm

TS

Register g ~—g

Direct addr-

Register req-

[
|

Indirect
. ’/\ ___ “base”
Displacement | /€9 | MM 1 address
K —1"offset

all your base are belong to us

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 16

Addressing Modes Visualization (2/2)

Mode

Instr. Field(s)

Reg. File

Name

Indexed

Memory
Indirect

Scaled
(rD[r2]

reél

reg2-,

reg

Memory

“base”

1 address
— Yoffset

regl

reg2

—

Base
address

Example row size = 8 locations

:EQE\F =

Index

|

\/

Summary of Use of Addressing Modes
in Three Programs on VAX Machine

Memory indirect

Scaled

Register indirect

Immediate

Displacement

Tex

spice
gcc
TexX
spice
gcc

Tex
spice
gcc
Tex
spice

gce |

Tex
spice
gcc

Note: Old VAX architecture had a richest set of

1% addressing modes
6%
| 1%
0%
16%
B 6%
24%

3%

I 11%
43%
17%
I 30
32%
55%

R, 40%
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

CA-Lec2 cwliu@twins.ee.nctu.edu.tw

18

How Many Addressing Mode ?

A Tradeoff: complexity vs. instruction count
— Should we add more modes?
* Depends on the application class
* Special addressing modes for DSP/GPU processors

— Modulo or circular addressing, bit reverse addressing, stride or
gather/scatter addressing, ...

* Some DSPs rely on hand-coded libraries for using novel addressing modes
Need to support at least three types of addressing mode
— Displacement, immediate, and register indirect
For 32-bit fixed-width instruction encoding
— The size of the address for displacement mode is 12—16 bits

— The size of immediate field is 8—16 bits

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 19

Operations in ISA

Operator type Examples
Arithmetic and Integer arithmetic and logical operations: add, subtract, and, or,
logical multiply, divide
Data transfer Loads-stores (move mnstructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

_ System Operating system call, virtual memory management instructions
Floating point Floating-point operations: add, multiply, divide, compare
Decimal Decimal add, decimal multiply, decimal-to-character conversions
String String move, string compare, string search
Graphics Pixel and vertex operations, compression/decompression operations

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 20

Encoding an Instruction Set

e Instructions are generally specified by some “fields.”
e \Variable length encoding vs. Fixed-width encoding vs. Hybrid encoding

Operation and | Address Address Address Address
no. of operands | specifier 1 | field 1 specifier n field n

(A) Variable (e.g., Intel 80x86, VAX)

Operation Address Address Address
field 1 field 2 field 3

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb?2)

31

Reduced Code Size in RISCs

Hybrid instruction encoding

— 32-bit normal-mode instruction

— 16-bit narrow-mode instruction

* Support fewer operations, smaller address and immediate fields, fewer
registers, and the two-address format

 Thumb mode in ARM, RV32IC (C standing for compressed)

0

ADDS 2,12, #1

32-bit ARM instruction

ADD 2, #1

* Source and destination registers identical
* Onlylow registers are used
* Constants are of limited size

* |nline barrel shifter is not used, Conditional
execution is not used, ...

16-bit Thumb 1nstruction

22

ISA Summary

A specification of a standardized programmer-visible interface to hardware, comprises
of:

— A et of instructions
* instruction types
* with associated argument fields, assembly syntax, and machine encoding.
— A set of named storage locations
* registers
* memory
— A set of addressing modes (ways to name locations)
— Often an I/O interface
* memory-mapped

High level language code : C, C++, Java, Fortan,
; compiler
Assembly language code: architecture specific statements

i assembler
Machine language code: architecture specific bit patterns

software

hardware

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 23

The Role of Compilers

_ _ done on the source with output
Dependencies Function .. .
Language dependent; Front end per Transform language to fed to later optimization passes.

machine independent common intermediate form

language * Local optimizations optimize code

only within a straight-line code
For example, loop fragment (called a basic block by

transformations and .
procedure inlining compller people)-

Intermediate
representation

Somewhat language
dependent; largely machine
independent

High-level
optimizations

(also called _ * Global optimizations extend the
procedure integration) o .
Small language dependencies; Including global and local local optlmlzatlons across
machine dependencies slight Global optimizations +register branches and introduce a set of
(e.g., register counts/types) optimizer allocation

transformations aimed at
optimizing loops.
Highly machine dependent: Detailed instruction selection e Register allocation associates
language independent Code generator I and machine-dependent] .

optimizations; may include registers with operands.
or be followed by assembler

Machine-dependent
optimizations attempt to take
advantage of specific
architectural knowledge.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 24

RISC-V Architecture

Name of base
or extension

Functionality

RV321 Base 32-bit integer instruction set with 32 registers

RV32E Base 32-bit instruction set but with only 16 registers; intended for
very low-end embedded applications

RV6dl Base 64-bit instruction set; all registers are 64-bits, and instructions
to move 64-bit from/to the registers (LD and SD) are added

M Adds integer multiply and divide instructions

A Adds atomic instructions needed for concurrent processing; see
Chapter 5

F Adds single precision (32-bit) IEEE floating point, includes 32 32-
bit floating point registers, instructions to load and store those
registers and operate on them

D Extends floating point to double precision, 64-bit, making the
registers 64-bits, adding instructions to load, store, and operate on
the registers

Q Further extends floating point to add suppornt for quad precision,
adding 128-bit operations

L Adds support for 64- and 128-bit decimal floating point for the
IEEE standard

C Defines a compressed version of the instruction set intended for
small-memory-sized embedded applications. Defines 16-bit
versions of common RV32I instructions

V A future extension to support vector operations (see Chapter 4)

B A future extension to support operations on bit fields

T A future extension to support transactional memory

P An extension to support packed SIMD instructions: see Chapter 4

RVI128I1 A future base instruction set providing a 128-bit address space

A freely licensed open standard,
similar to many of the RISC
architectures.

RISC-V is the load-store
architecture.

RISC-V has three base
instructions sets: RV32l, RV32E,
RV64l, and a reserved spot for a
future fourth: RvV128I.

All the extensions extend one of
the base instruction sets, for
example RV64IMAFD (also
known as RV64G, for short), it
refers to the base 64-bit
instruction set with extensions
M, A, F, and D.

25

Registers for RV64IMAFD

RV64G has 32 64-bit general-purpose registers (GPRs) (or
called integer registers), named x0, x1, ..., x31.

X0 is always 0.

The extension part of RV64G contains a set of floating point
registers (FPRs), named fO, f1, ..., f31. Both single- and
double-precision floating-point operations (32-bit and 64-
bit) are provided.

FPRs of RV64G are either 32 32-bit registers (which can
hold single-precision FP values) or 32 64-bit registers (when
holding one single precision FP, the other half of the FPR is
unused).

Addressing Modes for RISC-V Data
Transfers

RV64G memory is byte addressable with a 64-bit address and uses
Little Endian byte numbering.

The only data addressing modes for RISC-V are immediate and
displacement, both with 12-bit fields.

Register indirect is accomplished simply by placing 0 in the 12-bit
displacement field, and limited absolute addressing with a 12-bit
field is accomplished by using register O as the base register.

Embracing zero gives us four effective modes, although only two
are supported in the architecture.

Memory accesses need not be aligned; however, it may be that
unaligned accesses run extremely slow.

RV64G Operations

RV64G supports four broad classes of instructions: loads and stores, ALU
operations, branches and jumps, and floating-point operations.

Instruction type/opcode

Instruction meaning

Example instruction

Instruction name

Data transfers

Tb, Thu, sb
Th, Thu, sh

Tw, Twu, sw
1d, =d

Move data between registers and memory, or between the integer and FP;
only memory address mode ix 12-bit displacement + contents of a GPR
Load byte, load byte unsigned. store byte (toffrom integer registens)

Load half word, load half word unsigned, stome half word (loffrom integer
registers)

Load wond, store wond (to/from inleger registers)

Load doubleword, stone doublew ond

ArnithmeticAogical

add, addi, addw, addiw, sub,
subi, subw, subiw

s1t, sTtu, sTti, sltiu

and, or, xor, andi, ori, xori
Tui

auipc

s11, srl, sra, s111., srli,
srat, 11w, 5111w, srli,
srliw, srai, sraiw

mul, mulw, mulh, mulhsu,
mulhu, div,divw, divu, rem,
remu, remw, renuw

Operations on data in GPRs. Word versions ignore upper 32 bits

Add and subtract, with both word and immediate versions

set-less-than with signed and unsigned, and immediate

and. or, xor, both register-register and register- mme diate

Load upper immediate: loads bits 31..12 of a register with the immediate
value, Upper 32 bits are set to 0

Sums an immediate and the upper 20-bits of the PC into a register: used for
building a banch to any 32-bit address

Shifts: logical shift left and right and arithmetic shift right. both immediate
and wornd versions (wond versions leave the upper 32 bit untouched)

Integer multiply, divide, and remainder, signed and unsigned with support for
6d-hit products in two instructions, Also word versions

Control

beqg, bne, b1t, bge, bltu, bgeu

jal,jalr

Comditiomal branches and jumps; PC-relative or through register

Branch based on compans of two registers, equal. not equal, less than, greater
or equal, signed and msigned

Jump and hink address relative to a register or the PC

Floating point

flw, f1d, faw, fad

fadd, fsub, fmult, fiv, fagrt,
Tmadd, fTmsub, fnmadd, frmsub,
fmin, fmax, fsgn, fsanj, fsjnx

feg, f1t, fle

fmv.x.*, fmv.*. x

All FP operation appear in dowuble precision (.d) and single {_s)

Load, store, word (single precision), doubleword (double precision)

Add, subtract, multiply. divide, square root, multi plyv-add. multiply-subtmact,
negate multiply-add. negate multiply-subtract, maximum, minimum, and
instructions to replace the sign bit. For single precision, the opoode is
followed by: .5 for double precision: .d. Thus fadd s, fadd.d

Compare two floating point registers; result is 0 or 1 stored into a GFR
Muowve between the FP mgister abd GPR, “*7 is s or d

Converts between a FP register and integer register, where **7 15 § or D for
single or double precision. Signed and unsigned versions and word,
doubleword versions

1d x1,80(x2)

Load doubleword

Tw x1,60(x2)

Load word

Twu x1,60(x2)

Load word unsigned

1b x1,40(x3)

Load byte

1bu x1,40(x3)

Load byte unsigned

Th x1,40(x3)

Load half word

flw f0,50(x3)

Load FP single

f1d £0,50(x2)

Load FP double

sd x2,400(x3)

Store double

sw x3,500(x4)

Store word

fsw f0,40(x3)

Store FP single

fsd £0,400x3)

Store FP double

sh x3,502(x2)

Store half

sb x2,41(x3)

Store byte

Example

instrucmtion Instruction name

add x1,x2,x3 Add

addi x1,x2,3 Add immediate
unsigned

Tui x1,42 Load upper
immediate

sl x1,x2.,5

Shift left logical

st x1,x2,x3

Set less than

Example instruction

Instruction name

jal x1,offset

Jump and link

jalr x1,x2,0ffset

Jump and link register

beq x3,x4,o0ffset

Branch equal zero

bgt x3,x4,name

Branch not equal zero

28

RISC-V Instruction Format

31) 25 24 20 19 15 14 12 11 76 0
| funct? | rs2 | rs1 |funct3| rd | opcode | R-type
| imm[11:0] | rs1 |funct3 | rd | opcode | I-type
imm[11:5] rs2 rs1 funct3 | imm[4:0] opcode S-type
imm[31:12] rd opcode U-type

All instructions are 32 bits with a 7-bit primary opcode.
4 four major instruction types, providing 12-bit fields for displacement addressing, immediate

constants, or PC-relative branch addresses.

Instruction
fokmat Primary use rd rsi rs2 Immediate
R-type Register-register Destination First source Second source
ALU instructions
I-type ALU immediates Destination First source base Value
Load register displacement
S-type Store Base register first Data source to Displacement
Compare and source store second offset
branch source
U-type Jump and link Register Target address for Target address
Jump and link destination for jump and link for jump and link
register return PC register

