
Computer Architecture
Lecture 2: Instruction Set
Principles (Appendix A)

Chih-Wei Liu 劉志尉

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

mailto:cwliu@twins.ee.nctu.edu.tw

Instruction Set Architecture (ISA)

• ISA: the portion of the computer visible to the programmer or
compiler writer

• Outline:

– First, we present a taxonomy of instruction set alternatives and give
some qualitative assessment of the advantages and disadvantages of
various approaches.

– Second, we present and analyze some instruction set measurements
that are largely independent of a specific instruction set.

– Third, we address the issue of languages and compilers and their
bearing on instruction set architecture.

– Finally, the “Putting It All Together” section shows how these ideas are
reflected in the RISC-V instruction set, which is typical of RISC
architectures.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 2

Computer Performance

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X X

Organization X X

Technology X

inst count

CPI

Cycle time

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 3

ISA Design Issue

• Where are operands stored?

• How many explicit operands are there?

• How is the operand location specified?

• What type & size of operands are supported?

• What operations are supported?

Before answering these questions, let’s consider more about

• Data operands (source and destination)

• Memory addressing modes

• Operations

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 4

Classifying ISAs

• Type of internal storage in a processor is the most basic differentiation:

– A stack

– An accumulator

– A set of registers

• Operands may be named explicitly or implicitly

– In a stack architecture, all Operands, including two source operands and one
result, are implicit on the top of the stack (TOS).

– In an accumulator architecture, one operand and the result are implicitly the
accumulator and the other is form memory.

– The general-purpose register architectures have only explicit operands—either
registers or memory locations.
• Register-memory architecture

• Memory-memory architecture

• Register-register architecture (load-store architecture)

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 5

Four Classes of ISAs (1/2)

• The arrows indicate whether the operand is an input or the result of the
arithmetic-logical unit (ALU) operation, or both an input and result. Lighter
shades indicate inputs, and the dark shade indicates the result.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 6

Four Classes of ISAs (2/2)

• The code sequence for C = A + B for four classes of instruction sets.

7

Assume that A, B, and C all belong in memory and that the values of A and B cannot be destroyed.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw

Memory Addressing for Data Operand

• Most processors are byte-addressable and provide access for
– Byte or character (8-bit)

– Half-word or short integer (16-bit)

– Integer word or single-precision floating point (32-bit)

– Double-word or long integer or double-precision floating point (64-bit)

• How memory addresses are interpreted and how they are
specified?
– Little Endian or Big Endian

• for ordering the bytes within a larger object within memory

– Alignment or misaligned memory access
• for accessing to an abject larger than a byte from memory

– Addressing modes
• for specifying constants, registers, and locations in memory

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 8

Byte-Order (“Endianness”)

• Little Endian

– The byte order put the byte whose address is “xx…x000” at the least-
significant position in the double word

– E.g. Intel, DEC, …

– The bytes are numbered as

• Big Endian

– The byte order put the byte whose address is “xx…x000” at the most-
significant position in the double word

– E.g. MIPS, IBM, Motorolla, Sun, HP, …

– The bytes are numbered as

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

LSBMSB

LSBMSB

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 9

Little or Big Endian ?
• No absolute advantage for one over the other, but

– Byte order is a problem when exchanging data among computers

• Example

– In C, int num = 0x12345678; // a 32-bit word,

– how is num stored in memory?

– Little Endian ordering fails to match the normal ordering of words when strings

are compared. Strings appear “SDRAWKCAB” (backwards) in the registers.

.

.

56

.

.

34

124n+0

78

4n+1

4n+2

4n+3

Big Endian

.

.

34

.

.

56

784n+0

12

4n+1

4n+2

4n+3

Little Endian

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 10

Data Alignment

• An access to object of size S bytes at byte address A is called

aligned if A mod S = 0.

– The instruction is typically aligned on a word.

• Access to an unaligned operand may require more memory

accesses !!

32

32

32

Mis-aligned word reference

To Processor

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 11

Remarks

• Unrestricted Alignment

– Software is simple

– Hardware must detect misalignment and make more memory accesses

– Expensive logic to perform detection

– Can slow down all references

– Sometimes required for backwards compatibility

• Restricted Alignment

– Software must guarantee alignment

– Hardware detects misalignment access and traps

– No extra time is spent when data is aligned

• Since we want to make the common case fast, having restricted alignment is often
a better choice, unless compatibility is an issue.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 12

Summary: Endians & Alignment

01234567

4

1

Word-aligned word at byte address 4.

Byte-aligned (non-aligned) word, at byte address 1.

2

Halfword-aligned word at byte address 2.

Increasing byte

address

0 (LSB)123 (MSB)

3 (MSB)210 (LSB)

Little-endian byte order

Big-endian byte order

4

4

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 13

Addressing Mode ?

• It answers the question:

– Where can operands/results be located?

• Recall that we have two types of storage in computer :

registers and memory

– A single operand can come from either a register or a memory location

– Addressing modes offer various ways of specifying the specific location

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 14

Addressing Mode Example

Addressing Mode Example Action

1. Register direct Add R1, R2, R3 R1 <- R2 + R3

2. Immediate Add R1, R2, #3 R1 <- R2 + 3

3. Register indirect Add R1, R2,(R3) R1 <- R2 + M[R3]

4. Displacement LD R1, 100(R2) R1 <- M[100 + R2]

5. Indexed LD R1, (R2 + R3) R1 <- M[R2 + R3]

6. Direct LD R1, (1000) R1 <- M[1000]

7. Memory Indirect Add R1, R2, @(R3) R1 <- R2 + M[M[R3]]

8. Auto-increment LD R1, (R2)+ R1 <- M[R2]

R2 <- R2 + d

9. Auto-decrement LD R1, (R2)- R1 <- M[R2]

R2 <- R2 – d

10. Scaled LD R1, 100(R2)[R3] R1 <- M[100+R2+R3*d]

R:Register; M:Memory

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 15

Addressing Modes Visualization (1/2)

immImmediate

Register reg

Instr. Field(s)
Mode

Name
Reg. File Memory

Register

Indirect
reg

Direct addr

Displacement reg imm
+

“base”

address

all your base are belong to us

offset

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 16

Instr. Field(s)
Mode

Name
Reg. File Memory

Indexed reg1 reg2
+

“base”

address

offset

Memory

Indirect
reg

Scaled reg1 reg2 rowsz
+

×

Example row size = 8 locations
Base

address

index

(r1)[r2]

Addressing Modes Visualization (2/2)

17

Summary of Use of Addressing Modes
in Three Programs on VAX Machine

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 18

Note: Old VAX architecture had a richest set of
addressing modes

How Many Addressing Mode ?

• A Tradeoff: complexity vs. instruction count

– Should we add more modes?

• Depends on the application class

• Special addressing modes for DSP/GPU processors

– Modulo or circular addressing, bit reverse addressing, stride or

gather/scatter addressing, …

• Some DSPs rely on hand-coded libraries for using novel addressing modes

• Need to support at least three types of addressing mode

– Displacement, immediate, and register indirect

• For 32-bit fixed-width instruction encoding

– The size of the address for displacement mode is 12—16 bits

– The size of immediate field is 8—16 bits

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 19

Operations in ISA

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 20

Encoding an Instruction Set

• Instructions are generally specified by some “fields.”

• Variable length encoding vs. Fixed-width encoding vs. Hybrid encoding

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 21

Reduced Code Size in RISCs

• Hybrid instruction encoding

– 32-bit normal-mode instruction

– 16-bit narrow-mode instruction

• Support fewer operations, smaller address and immediate fields, fewer
registers, and the two-address format

• Thumb mode in ARM, RV32IC (C standing for compressed)

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 22

• Source and destination registers identical

• Only low registers are used

• Constants are of limited size

• Inline barrel shifter is not used, Conditional
execution is not used, …

• A specification of a standardized programmer-visible interface to hardware, comprises
of:

– A set of instructions

• instruction types

• with associated argument fields, assembly syntax, and machine encoding.

– A set of named storage locations

• registers

• memory

– A set of addressing modes (ways to name locations)

– Often an I/O interface

• memory-mapped

ISA Summary

Instruction Set Architecture

software

hardware

High level language code : C, C++, Java, Fortan,

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

compiler

assembler

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 23

The Role of Compilers

• The structure of recent compiler

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 24

• High-level optimizations are often
done on the source with output
fed to later optimization passes.

• Local optimizations optimize code
only within a straight-line code
fragment (called a basic block by
compiler people).

• Global optimizations extend the
local optimizations across
branches and introduce a set of
transformations aimed at
optimizing loops.

• Register allocation associates
registers with operands.

• Machine-dependent
optimizations attempt to take
advantage of specific
architectural knowledge.

RISC-V Architecture

• A freely licensed open standard,
similar to many of the RISC
architectures.

• RISC-V is the load-store
architecture.

• RISC-V has three base
instructions sets: RV32I, RV32E,
RV64I, and a reserved spot for a
future fourth: RV128I.

• All the extensions extend one of
the base instruction sets, for
example RV64IMAFD (also
known as RV64G, for short), it
refers to the base 64-bit
instruction set with extensions
M, A, F, and D.

25

Registers for RV64IMAFD

• RV64G has 32 64-bit general-purpose registers (GPRs) (or
called integer registers), named x0, x1, … , x31.

• x0 is always 0.

• The extension part of RV64G contains a set of floating point
registers (FPRs), named f0, f1, … , f31. Both single- and
double-precision floating-point operations (32-bit and 64-
bit) are provided.

• FPRs of RV64G are either 32 32-bit registers (which can
hold single-precision FP values) or 32 64-bit registers (when
holding one single precision FP, the other half of the FPR is
unused).

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 26

Addressing Modes for RISC-V Data
Transfers

• RV64G memory is byte addressable with a 64-bit address and uses
Little Endian byte numbering.

• The only data addressing modes for RISC-V are immediate and
displacement, both with 12-bit fields.

• Register indirect is accomplished simply by placing 0 in the 12-bit
displacement field, and limited absolute addressing with a 12-bit
field is accomplished by using register 0 as the base register.

• Embracing zero gives us four effective modes, although only two
are supported in the architecture.

• Memory accesses need not be aligned; however, it may be that
unaligned accesses run extremely slow.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 27

RV64G Operations
• RV64G supports four broad classes of instructions: loads and stores, ALU

operations, branches and jumps, and floating-point operations.

28

RISC-V Instruction Format

• All instructions are 32 bits with a 7-bit primary opcode.

• 4 four major instruction types, providing 12-bit fields for displacement addressing, immediate
constants, or PC-relative branch addresses.

CA-Lec2 cwliu@twins.ee.nctu.edu.tw 29

