4.10

4.12

HWS5 Answer

Vector processor requires:

* (200 MB + 100 MB)/(30 GB/s)= 10 ms for vector memory access +
¢ 400 ms for scalar execution.

Assuming that vector computation can be overlapped with memory access, total
time =410 ms.

The hybrid system requires:

* (200 MB + 100 MB)/(150 GB/s) =2 ms for vector memory access +
* 400 ms for scalar execution +
* (200 MB + 100 MB)/(10 GB/s) =30 ms for host /O

Even if host /O can be overlapped with GPU execution, the GPU will require
430 ms and therefore will achieve lower performance than the host.

a. Reads 40 bytes and writes 4 bytes for every 8 FLOPs, thus 8/44 FLOPs/byte.

b. This code performs indirect references through the Ca and Cb arrays, as they are
indexed using the contents of the IDx array, which can only be performed at
runtime. While this complicates SIMD implementation, it is still possible to per-
form the type of indexing using gather-type load instructions. The innermost
loop (iterates on z) can be vectorized: the values for Ex, dH1, dH2, Ca, and
Cb could be operated on as SIMD registers or vectors. Thus. this code is ame-
nable to SIMD and vector execution.

¢. Having an arithmetic intensity of 0.18, if the processor has a peak floating-point
throughout > (30 GB/s) x (0.18 FLOPs/byte) = 5.4 GFLOPs/s, then this code is
likely to be memory-bound, unless the working set fits well within the
processor's cache.

d. The single precision arithmetic intensity corresponding to the edge of the roof is
85/4=21.25 FLOPs/byte.

413 a. 1.5GHz x0.80 x0.85 x0.70 x 10 cores x 32/4 =57.12 GFLOPs/s

b. Option 1:
1.5 GHz % 0.80 x 0.85 x 0.70 x 10 cores x 322 =114.24 GFLOPs/s
(speedup = 114.24/57.12=2)
Option 2:
1.5 GHz x 0.80 % 0.85 x 0.70 x 15 cores x 32/4 =85.68 GFLOPs/s
(speedup =85.68/57.12=1.5)
Option 3:
1.5 GHz x 0.80 % 0.95 x 0.70 x 10 cores x 32/4 =63.84 GFLOPs/s
(speedup =63.84/57.12=1.11)

4.14 a. Using the GCD test, a dependency exists if GCD (2,4) must divide 5 — 4. In this
case, a loop-carried dependency does exist.

b. Output dependencies
S1 and S3 cause through Ali]
Anti-dependencies
S$4 and S3 cause an anti-dependency through C[i]
Re-written code
for (i=0:1<100;1i++) {
TCil=A[i1] *B[i]; /*S1*/
BLil=TL[il+c: /*S2*/
Al[1]1=CL[i]l*c: /*S3*/
CI[i]1=D[1]1 *Al[i]): /*S4 */)

True dependencies
S4 and S3 through Ali]
S2 and S1 through TIi]
c. There is an anti-dependence between iteration i and i+ 1 for array B. This can be
avoided by renaming the B array in S2.

4.15 a. Branch divergence: causes SIMD lanes to be masked when threads follow dif-
ferent control paths.

b. Covering memory latency: a sufficient number of active threads can hide
memory latency and increase instruction issue rate.

c. Coalesced off-chip memory references: memory accesses should be organized
consecutively within SIMD thread groups.

d. Use of on-chip memory: memory references with locality should take advan-
tage of on-chip memory, references to on-chip memory within a SIMD thread
group should be organized to avoid bank conflicts.

4.16 This GPU has a peak throughput of 1.5 x 16 x 16 =384 GFLOPS/s of single-
precision throughput. However, assuming each single precision operation
requires four-byte two operands and outputs one four-byte result, sustaining
this throughput (assuming no temporal locality) would require 12 bytes/
FLOP x 384 GFLOPs/s=4.6 TB/s of memory bandwidth. As such, this
throughput is not sustainable, but can still be achieved in short bursts when
using on-chip memory.

