HW4 Answer

5.1
Cx.y is cache line y in core x.
a. CO: R AC20 — C0.0: (S, AC20, 0020), returns 0020

b. CO: W AC20 80 — C0.0: (M, AC20, 0080)
C3.0: (I, AC20, 0020)

c. C3: WAC20—-80 — (C3.0: (M, AC20, 0080)
d. CI1: R AC10 — C1.2: (S, AC10, 0010) returns 0010

e. CO: W ACO8«- 48 » CO.1 (M, ACO08, 0048)
C3.1: (I, ACO8, 0008)

f. CO: WAC30—78 — (C0.2: (M, AC30, 0078)
M: AC10+ 0030 (write-back to memory)

g. C3: WAC30—~78 — (C3.2:(M, AC30, 0078)

5.2

a. CO: R AC20 Read miss, satisfied by memory
CO: R AC28 Rcad miss, satisfied by C1's cache
CO0: R AC20 Read miss, satisfied by memory, write-back 110
Implementation 1: 100 + 40+ 10 + 100 + 10 = 260 stall cycles
Implementation 2: 100 + 130 + 10 + 100 + 10 = 350 stall cycles

b. CO: R ACO0 Read miss, satisfied by memory
CO: W ACO8 «— 48 Write hit, sends invalidate
CO: W AC20 — 78 Write miss, satisfied by memory, write back 110
Implementation 1: 100 + 15 + 10 + 100 = 225 stall cycles
Implementation 2: 100 + 15 + 10 + 100 = 225 stall cycles

¢. Cl: R AC20 Read miss, satisfied by memory
Cl: R AC28 Read hit
Cl: R AC20 Read miss, satisfied by memory
Implementation 1: 100 + 0 + 100 = 200 stall cycles
Implementation 2: 100 + 0 + 100 = 200 stall cycles

d. CI: R ACO0 Read miss, satisfied by memory
Cl: W ACO8 — 48 Write miss, satisfied by memory, write back AC28
Cl1: W AC20 — 78 Write miss, satisfied by memory
Implementation 1: 100 + 100 + 10 + 100 = 310 stall cycles
Implementation 2: 100 + 100 + 10 + 100 = 310 stall cycles

5.3

CPU read miss
Write-Dack block
Place read miss on bus
(>= one copy In anoler cache)

CPU write miss:
Write-dack block
Place write miss on bus
-} i
HEEH
2| (3§
HERE
Sed
CPU readiwrite ht g sg
CPU read mss
Wrte-dack block
Plce read mss on bus
(m0 copy In ancther cache)

54 a. CO: R AC00, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
CO: W ACO0 « 40 MSI: send invalidate, MESI: silent transition from E to M
MSI: 100 + 15 = 115 stall cycles
MESI: 100 + 0 = 100 stall cycles

b. CO: R AC20, Read miss, satisfied in memory, sharers both to S
CO: W AC20 « 60 both send invalidates
Both: 100 + 15 = 115 stall cycles
¢. CO: R ACO0, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
CO: R AC20, Read miss, memory, silently replace 120 from S or E
Both: 100 + 100 = 200 stall cycles, silent replacement from E

d. CO: R AC00, Read miss, satisfied in memory, no sharers MSIL: S, MESI: E
Cl: W ACO0 « 60, Write miss, satisfied in memory regardless of protocol
Both: 100 + 100 = 200 stall cycles, don’t supply data in E state (some
protocols do)

e. CO: R AC0O0, Read miss, satisfied in memory, no sharers MSI: S, MESI: E
CO: W ACO0 « 60, MSI: send invalidate, MESI: silent transition from Eto M
Cl: W ACO0 — 40, Write miss, CO's cache, write-back data to memory
MSIL: 100 + 15 + 40 + 10 = 165 stall cycles
MESL 100 + 0 + 40 + 10 = 150 stall cycles

5.16

Pl: P2:

A=1; B=1;
A=2; While (A <> 1);
While (B == 0); B =2;

Without an optimizing compiler the threads, SC will allow different orderings.
Depending on the relative speeds of P1 and P2, “While (A <> 1);” may be legit-
imately executed

a. Zero times:
B=1; - A=1;— While (A <> 1);— B=2; — A=2; While (B == 0);
B will be set to 2

b. Infinite number of times:
B=1;,— A=1;— A=2; - While (A <> 1);
B will be set to 1

c. A few times (A is initially 0)
B=1; — While (A <> 1);—A=1;—B=2;— A=2;
B will be set to 2

An optimizing compiler might decide that the assignment “A =1;" is extraneous
(because A is not read between the two assignments writing to it) and remove it.
In that case, “while A ..” will loop forever.

Ca b
The general form for Amdahl’s Law 1s¢

Execution time,;4
Speedup = - - =T/t
Execution time,,,,,

To compute the formula for speedup we need to derive the new execution time. The
exercise states that for the portion of the original execution time that can use .
processors 1s given by «

E(, p). The time for running the application on p processors 1s given by summing the
times required for each portion of the execution time that can be sped up using i

processors, where i 1s between one and p. This vields«

P
-, N fGp)
t=T z P

The new speedup formula is then 1/X%_, fGp)
b.¢
New run time for 8 processors =T1(0.2/1 +0.2/2+0.1/4 + 0.05/6 + 0.45/8) =0.39 *T

U T U N
(speeaup = 2.5/)¢

c.¥

New run time for 32 processors =T(0.2/1 +0.2/2+0.1/4 + 0.05/6 + 0.15/8 + 0.2/16 +
0.1/32) =0.369 *T (speedup = 2.72)«

(c) New runtime for infinite processors = T(0.2/1 + 0.2/2+ 0.1/4 + 0.05/6 + 0.15/8 +
0.2/16 + 0.1/128) = 0.365 *T (speedup = 2.74)«

5.22

i. 64 processors arranged as a ring—largest number of communication hops = 32
100+10x32=420 ns

ii. 64 processors arranged as a 8x8 grid—largest number of communication hops = 14
100+10x14=240 ns

iii. 64 processors arranged as a hypercube—largest number of communication hops = 6

(log64)
100+10x6=160 ns

b.

i. Worst case CPI=10.75+0.2/100x(420)x2.0 = 2.43

ii. Worst case CPI=0.75+0.2/100x(240)x2.0 = 1.71

iii. Worst case CP1 = 0.75+0.2/100x(160)x2.0 = 1.39

5.23

To keep the figures from becoming cluttered, the coherence protocol is split into
two parts. Figure S.3 presents the CPU portion of the coherence protocol, and

Figure S.4 presents the bus portion of the protocol.

Shared
(read only)

CPU
read

CPU write
Invalidate block

CPU read
hit or write

Figure S.3 CPU portion of the simple cache coherency protocol for write-through
caches.

Write miss Shared
Invalidate block | (read only)

A

Write miss
Invalidate block

Read miss

Figure S.4 Bus portion of the simple cache coherency protocol for write-through

caches. '
The major change introduced in moving from a write-back to write-through cache
is the elimination of the need to access dirty blocks in another processor’s caches.
As a result, in the write-through protocol it is no longer necessary to provide the
hardware to force write back on read accesses or to abort pending memory
accesses. As memory is updated during any write on a write-through cache, a pro-
cessor that generates a read miss will always retrieve the correct information from
memory. It is not possible for valid cache blocks to be incoherent with respect to
main memory in a system with write-through caches.

