HW1 solution

a. Phoenix:

$$
\begin{gathered}
\text { Dies per wafer }=\left(\pi \times(45 / 2)^{2}\right) / 2-(\pi \times 45) / \mathrm{sqrt}(2 \times 2)=795-70.7=724.5=724 \\
\text { Yield }=1 /(1+(0.04 \times 2))^{14}=0.340 \\
\text { Profit }=724 \times 0.34 \times 30=\$ 7384.80
\end{gathered}
$$

b. Red Dragon:

Dies per wafer $=\left(\pi \times(45 / 2)^{2}\right) / 2-(\pi \times 45) / \mathrm{sqrt}(2 \times 1.2)=1325-91.25=1234$

$$
\begin{gathered}
\text { Yield }=1 /(1+(0.04 \times 1.2))^{14}=0.519 \\
\text { Profit }=1234 \times 0.519 \times 15=\$ 9601.71
\end{gathered}
$$

c. Phoenix chips: $25,000 / 724=34.5$ wafers needed

Red Dragon chips: $50,000 / 1234=40.5$ wafers needed
1.4 a. Energy: 1/8. Power: Unchanged.
b. Energy: Energy ${ }_{\text {new }} /$ Energy $_{\text {old }}=(\text { Voltage } \times 1 / 8)^{2} /$ Voltage $^{2}=0.0156$

Power: Power $_{\text {new }} /$ Power $_{\text {old }}=0.0156 \times($ Frequency $\times 1 / 8) /$ Frequency $=0.00195$
c. Energy: Energy ${ }_{\text {new }} /$ Energy $_{\text {old }}=(\text { Voltage } \times 0.5)^{2} /$ Voltage $^{2}=0.25$

Power: Power $_{\text {new }} /$ Power $_{\text {old }}=0.25 \times($ Frequency $\times 1 / 8) /$ Frequency $=0.0313$
d. 1 core $=25 \%$ of the original power, running for 25% of the time.

$$
0.25 \times 0.25+(0.25 \times 0.2) \times 0.75=0.0625+0.0375=0.1
$$

1.5 a. Amdahl's law: $1 /(0.8 / 4+0.2)=1 /(0.2+0.2)=1 / 0.4=2.5$
b. 4 cores, each at $1 /(2.5)$ the frequency and voltage

Energy: Energy ${ }_{\text {quad }} /$ Energy $_{\text {single }}=4 \times(\text { Voltage } \times 1 /(2.5))^{2} /$ Voltage $^{2}=0.64$
Power: Power ${ }_{\text {new }} /$ Power $_{\text {old }}=0.64 \times($ Frequency $\times 1 /(2.5)) /$ Frequency $=0.256$
c. 2 cores +2 ASICs vs. 4 cores

$$
(2+(0.2 \times 2)) / 4=(2.4) / 4=0.6
$$

1.9
a. 60%
b. $0.4+0.6 * 0.2=0.52$, which reduces the energy to 58% of the original energy
c. $0.8^{*} 0.8+0.6=0.384$
d. $0.4+0.3 * 2=0.46$, which reduces the energy to 46% of the original energy
1.13 a. old execution time $=0.5$ new $+0.5 \times 10$ new $=5.5$ new
b. In the original code, the unenhanced part is equal in time to the enhanced part (sped up by 10), therefore:
$(1-x)=x / 10$
$10-10 x=x$
$10=11 x$
$10 / 11=x=0.91$
1.14 a. $1 /(0.8+0.20 / 2)=1.11$
b. $1 /(0.7+0.20 / 2+0.10 \times 3 / 2)=1.05$
c. fp ops: $0.1 / 0.95=10.5 \%$, cache: $0.15 / 0.95=15.8 \%$
1.15 a. $1 /(0.5+0.5 / 22)=1.91$
b. $1 /(0.1+0.90 / 22)=7.10$
c. $41 \% \times 22=9$. A runs on 9 cores. Speedup of A on 9 cores: $1 /(0.5+0.5 / 9)=$ 1.8 Overall speedup if 9 cores have 1.8 speedup, others none: $1 /(0.6+0.4 / 1.8)$ $=1.22$
d. Calculate values for all processors like in c. Obtain: 1.8, 3, 1.82, 2.5, respectively.
e. $1 /(0.41 / 1.8+0.27 / 3+0.18 / 1.82+0.14 / 2.5)=2.12$
1.16 a. $1 /(0.2+0.8 / N)$
b. $1 /(0.2+8 \times 0.005+0.8 / 8)=2.94$
c. $1 /(0.2+3 \times 0.005+0.8 / 8)=3.17$
d. $1 /(.2+\log N \times 0.005+0.8 / N)$
e. $d / d N(1 /((1-P)+\log N \times 0.005+P / N)=0)$

