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Data Dependence and Parallelism

e |f 2 instructions are parallel

— they can be executed simultaneously in a pipeline without
causing any stalls (except the structural hazards)

— their execution order can be swapped

e |f 2 instructions are dependent
— they must be executed in order or partially overlapped.

* To exploit parallelisms over instructions is equivalent
to determine dependences over instructions
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Exploit Instruction-Level Parallelism

e Two main approaches:

— Hardware-based dynamic approaches
e Hardware locates the parallelism in run-time

e Used in server and desktop processors (Not used as
extensively in PMP processors)

e Superscalar processors: Pentium 4, IBM Power, AMD
Opteron

— Compiler-based static approaches
e Software finds parallelism at compile-time

e Used in DSP processors (Not as successful outside of
scientific applications)

* VLIW processors: [tanium 2, ITRI PAC
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Why ILP-

e Multi-issue Processor: two or more instructions
can be issued (or executed) in parallel

— The goal is to maximize IPC (instruction per cycle)

— Pipeline CPI =ldeal pipeline CPI + Structural stalls +
Data hazard stalls + Control stalls

— To reduce the impact of data and control hazards
— Basic block ILP

e Can we make CPIl closerto 17

— If we have n-cycle latency, then we need n-1
instructions between a producing instruction and its
use
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Basic Block ILP

e Basic Block (BB) ILP is quite small :

— BB: a straight-line code sequence with no branches in except to the
entry and no branches out except at the exit

— average dynamic branch frequency 15% to 25%
=>4 to 7 instructions execute between a pair of branches

— Plus instructions in BB likely to depend on each other
e We must exploit ILP across multiple basic blocks

Loop-level X[1] = x[1] + y[1]

x[1000]=x[1000]+y[1000]

— Loop unrolling to exploit loop-level parallelism
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Overcome the Data Dependence

 Maintaining the dependence but avoiding a hazard
— scheduling the code in HW/SW approach

e Eliminating a dependence by transforming the code
— primary by software

e Dependence detection
— by register names: simpler

— by memory locations: more complicated

* Two addresses may refer to the same location but look quite different (e.g.
100(R4), 20(R6) may be identical)

* The effective address of a load/store may changed from instruction to
instruction (20(R4), 20(R4) may be different)
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(True) Data Dependence

e Data and Control dependencies are a property of
the program (application)

 Data dependence conveys:
— Possibility of a pipeline hazard

— Order in which results must be calculated (i.e.
program behavior)

— Upper bound on ILP

e Dependencies that flow through memory
locations are difficult to detect

— Hardware-based dynamic approach is more attractive
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Name Dependence

 Two instructions use the same register or memory
location (i.e. the same name) but no flow of
information

— Not a true data dependence, but is a problem when
reordering instructions or a irregularly pipelined datapath.

— Anti-dependence: instruction j writes a register or memory
location that instruction i reads

 |nitial ordering (i before j) must be preserved

— Output-dependence: instruction i and instruction j write
the same register or memory location

* Ordering must be preserved

* To resolve, use renaming techniques
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Register Renaming and WAW/WAR

. DIV.D FO, F2, F4 . DIV.D FO, F2, F4
. ADD.D F6, FO, F8 . ADD.D S, FO, F8
. SD F6, 0 (R1) . SD S, 0 (R1)
« SUB.D F8, F10, F14 .« SUB.D T, F10, F14
. MUL.D F6, F10, F8 . MULD F6, F10, T

» WAW: ADD.D/MUL.D
» WAR: ADD.D/SUB.D, S.D/MUL.D

» RAW: DIV.D/ADD.D, ADD.D/S.D
SUB.D/MUL.D

Register renaming result
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Control Dependence

 Control Dependence

— Ordering of instruction i with respect to a branch
Instruction
 |nstruction control dependent on a branch cannot be

moved before the branch so that its execution is no
longer controller by the branch

e An instruction not control dependent on a branch
cannot be moved after the branch so that its execution
is controlled by the branch
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Control Dependence Ignored

e The method to preserve the control dependence
— Be used in most simple pipeline CPUs
— Simple but inefficient

e Control dependence is not the critical property that must be
preserved

— We may execute instruction that should not have been executed,

thereby violating the control dependence, if we can do so without
affecting the correctness of the program

 The two properties critical to program correctness are
— The exception behavior
— Data flow
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Example 1:

DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R1,R6
L: ...

OR R7,R1,R8

Example 2:

DADDU R1,R2,R3

BEQZ R12,skip

DSUBU R4,R5,R6

DADDU R5,R4,R9
skip:

OR R7,R8,R9

Control Dependence Examples

R1 in OR instruction depends on
DADDU or DSUBU, relied on the
branch is taken or not.

Assume R4 isn’t used after skip

— Possible to move DSUBU before the
branch (this violates the control
dependence but not affects the data
flow)
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Preserve Data Flow Behavior

e The data flow is the actual flow of data among instructions
e Branches make data flow dynamic
e Example

DADDU R1,R2,R3

BEQZ R4)L

DSUBU R1,RS5,R6
W

OR R7, R1, R8

— R1 value depends on the branch is taken or not
— DSUBU cannot be moved above the branch.

— Speculation should take care this problem

* Program order, that determines which predecessor will actually deliver a
data value to the instruction, should be ensured by maintaining the
control dependences
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Com\piler Techniques for Exposing ILP

* Pipeline scheduling

— Separate dependent instruction from the source instruction by the
pipeline latency (or instruction latency) of the source instruction

° Examp|e: Loop: L.D FO,0(R1)
) _ o ADD.D F4,FO,F2
for (I=999,‘ 1>=0; I=I-1) SD F4,0(R1)

x[i] = x[i] +s; DADDUI R1,R1,#-8

BNE R1,R2,Loop

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

CA-Lec5h cwliu@twins.ee.nctu.edu.tw
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Loop:

Data Dependence

L.D FO, O(R1) ;FO=array element
ADD.D F4, FO, F2 -add scalar in F2
S.D Fl4, 0(R1) ;store result
DADDUI R1, R1, #-8 ;decrement pointer
BNE R1, R2, Loop ‘branch R1!1=R2

The arrows show the order that must be preserved for correct
execution.

If two instructions are data dependent, they cannot execute
simultaneously or be completely overlapped.
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Step 1: Insert Pipeline Stalls

Loop: L.D FO,0(R1)
stall
ADD.D  F4,FO,F2 9 C.C/ iteration
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,4#-8
stall (assume integer load latency is 1)

BNE R1,R2,Loop

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

CA-Lec5h cwliu@twins.ee.nctu.edu.tw
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: Step 2: Re-Scheduling

Scheduled code:

Loop:

L.D FO,0(R1)

DADDUI R1,R1,#-8 7 C.C/ iteration

ADD.D F4,FO,F2

stall

stall

S.D F4,8(R1)

BNE R1,R2,Loop
Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
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: Step 3: Loop Unrolling

e Loop unrolling

Loop:

L.D FO,0(R1)

ADD.D F4,FO,F2

S.D F4,0(R1) ;drop DADDUI & BNE
L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE
L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,Loop

CA-Lec5h cwliu@twins.ee.nctu.edu.tw
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Step\4: Re-Schedule the Unrolled loop

e Pipeline schedule the unrolled loop:

Loop:

L.D FO,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)

L.D F14,-24(R1) 14 C.C/ 4 iterations
ADD.D F4,F0,F2 or 3.5 C.C/ iteration
ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2

S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32

S.D F12,16(R1)

S.D F16,8(R1)

BNE R1,R2,Loop

CA-Lec5h cwliu@twins.ee.nctu.edu.tw 19
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" ILP and Data Dependencies

HW/SW must preserve program order:
order instructions would execute in if executed sequentially as determined
by original source program

— Dependences are a property of programs

Presence of dependence indicates potential for a hazard, but actual
hazard and length of any stall is property of the pipeline
Importance of the data dependencies

1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be exploited

HW/SW goal: exploit parallelism by preserving program order only where
it affects the outcome of the program

CA-Lech cwliu@twins.ee.nctu.edu.tw 20



Unrolled Loop Detalil

e Do not usually know upper bound of loop

e Suppose it is n, and we would like to unroll the loop to make k
copies of the body

e |nstead of a single unrolled loop, we generate a pair of
consecutive loops:
— 1st executes (n mod k) times and has a body that is the original loop
— 2nd is the unrolled body surrounded by an outer loop that iterates
(n/k) times
e For large values of n, most of the execution time will be spent
in the unrolled loop

CA-Lec5h cwliu@twins.ee.nctu.edu.tw
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5 Loop Unrolling Decisions

Requires understanding how one instruction depends on another and how the
instructions can be changed or reordered given the dependences:

Determine loop unrolling useful by finding that loop iterations were independent
(except for maintenance code)

Use different registers to avoid unnecessary constraints forced by using same
registers for different computations

Eliminate the extra test and branch instructions and adjust the loop termination
and iteration code

Determine that loads and stores in unrolled loop can be interchanged by
observing that loads and stores from different iterations are independent

e Transformation requires analyzing memory addresses and finding that they do not refer
to the same address

Schedule the code, preserving any dependences needed to yield the same result
as the original code

CA-Lech cwliu@twins.ee.nctu.edu.tw 22
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3 Limits to Loop Unrolling

Decrease in amount of overhead amortized with each extra
unrolling

e Amdahl’s Law
Growth in code size

e For larger loops, concern it increases the instruction cache
miss rate

Register pressure (compiler limitation): potential shortfall in
registers created by aggressive unrolling and scheduling

e |f not be possible to allocate all live values to registers,
may lose some or all of its advantage

Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

CA-Lec5 cwliu@twins.ee.nctu.edu.tw 23
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Getting CPIl below 1

e CPlI=1ifissue only 1 instruction every clock cycle

e  Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors
e 2 types of superscalar processors issue varying numbers of instructions
per clock
— use in-order execution if they are statically scheduled, or
— out-of-order execution if they are dynamically scheduled
e VLIW processors, in contrast, issue a fixed number of instructions
formatted either as one large instruction or as a fixed instruction packet

with the parallelism among instructions explicitly indicated by the
instruction (Intel/HP Itanium)

CA-Lech cwliu@twins.ee.nctu.edu.tw 24



Basic VLIW
(Very Long Instruction Word)

e A VLIW uses multiple, independent functional units

e A VLIW packages multiple independent operations into one very long
instruction

— The burden for choosing and packaging independent operations falls
on compiler

— HW in a superscalar makes these issue decisions is unnecessary
 VLIW depends on enough parallelism for keeping FUs busy
— Loop unrolling and then code scheduling
— Compiler may need to do local scheduling and global scheduling
e Here we consider a VLIW processor might have instructions that contain 5
operations, including 1 integer (or branch), 2 FP, and 2 memory references

— Depend on the available FUs and frequency of operation



VLIW: Very Large Instruction Word

e Each “instruction” has explicit coding for multiple operations
— In IA-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

e Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
e 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

— Need compiling technique that schedules across several branches
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Recall: Unrolled Loop that Minimizes Stalls for

1Loop: L.D
2 L.D
3 L.D
4 L.D
) ADD.D
6 ADD.D
7 ADD.D
8 ADD.D
9 S.D
10 S.D
11 S.D
12 DSUBUI
13 BNEZ
14 S.D

Scalar

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
0(R1),F4
-8(R1),F8
~16(R1),F12
R1,R1,#32
R1,LOOP
8(R1),F16 :

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

8-32 = -24

14 clock cycles, or 3.5 per iteration

CA-Lec5 cwliu@twins.ee.nctu.edu.tw
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DI
Loop Unrolling in VLIW

Memory Memory FP FP Integer
reference 1 reference 2 operation 1 operation 2 operation/branch
L.D FO,0(R1) L.D F6,-8(R1)
L.D F10,-16(RI : 24(R1
L.D F18,-32(R1)  L.D F22,-40(R1)  ADD.D FA,P0,F2  ADD.D F8,F6,F2
L.D F26,-48(R1) ~___—ADD.D F12,F10,F2  ADD.D F16,F14,F2
- — ADD.D F20,F18,F2  ADD.D F24,F22,F2
S.D F4,0(R1) S.D F8,-8(R1) ADD.D F28,F26,F2
S.D F12,-16(R1) 5.D F16,-24(R1) DADDUI R1,RL,#-56
S.D F20,24(R1) S.D F24,16(R1)
S.D F28,8(R1) ~ BNE R1,R2, Loop

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.29 clocks per iteration

23 ops in 9 clocks, average 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW
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VLIW Problems

Increase in code size

— Ambitious loop unrolling

— Whenever instructions are not full, the unused FUs translate to waste
bits in the instruction encoding

e Aninstruction may need to be left completely empty if no operation can
be scheduled

e Clever encoding or compress/decompress
Binary code compatibility

— different numbers of functional units and unit latencies require
different versions of the code

— Need re-compilation
— Solution: Object-code translation or emulation

CA-Lec5 cwliu@twins.ee.nctu.edu.tw
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""" Intel/HP 1A-64 “Explicitly Parallel Instruction
Computer (EPIC)”

e |A-64: instruction set architecture
e 128 64-bit integer regs + 128 82-bit floating point regs
— Not separate register files per functional unit as in old VLIW

 Hardware checks dependencies
(interlocks => binary compatibility over time)

* Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

e [tanium™ was first implementation (2001)
— Highly parallel and deeply pipelined hardware at 800Mhz

— 6-wide, 10-stage pipeline at 800Mhz on 0.18 [ process
e [tanium 2™ is name of 2nd implementation (2005)

— 6-wide, 8-stage pipeline at 1666Mhz on 0.13 [ process
— Caches: 32 KB 1,32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3



Another Possibility:

Software Pipelining

 QObservation: if iterations from loops are independent, then can get
more ILP by taking instructions from different iterations

e Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the

original loop
Iteration
O Tteration .
1 Iteration
2 Iteration
3 Iteration
4
Software-
pipelined
iteration
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Control Hazard Avoidance

e Consider Effects of Increasing the ILP
— Control dependencies rapidly become the limiting factor

— They tend to not get optimized by the compiler
e Higher branch frequencies result

e Plus multiple issue (more than one instructions/sec) = more control
instructions per sec.

— Control stall penalties will go up as machines go faster
e Amdahl’s Law in action - again
e Branch Prediction: helps if can be done for reasonable cost

— Static by compiler: appendix C
e.g. predict not taken, delay branch

— Dynamic by HW: this section

CA-Lech cwliu@twins.ee.nctu.edu.tw
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Dynamic Branch Prediction

e Why does prediction work?
— Underlying algorithm has regularities
— Data that is being operated on has regularities
— Instruction sequence has redundancies that are artifacts of way that
humans/compilers think about problems
e |s dynamic branch prediction better than static branch
prediction?
— Seems to be

— There are a small number of important branches in programs which
have dynamic behavior

CA-Lec5 cwliu@twins.ee.nctu.edu.tw
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Dynamic Branch Prediction

 The predictor will depend on the behavior of the branch at
run time
e @Goals:

— allow the processor to resolve the outcome of a branch early, prevent
control dependences from causing stalls

e Effectiveness of a branch prediction scheme depends not only
on the accuracy but also on the cost of a branch
— BP_Performance = f (accuracy, cost of misprediction)
e Branch History Table (BHT)

— Lower bits of PC address index table of 1-bit values
* No “precise” address check — just match the lower bits

— Says whether or not branch taken last time

CA-Lech cwliu@twins.ee.nctu.edu.tw 34
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1-bit Dynamic Hardware Prediction

taken not-taken

not-taken {\
e .
predict taken predict not-taken
T

taken
Problem: Loop case
LOOP: LOAD R1, 100(R2) o
MUL R6. R6, R1 The st.eady.-stat'e pred'lctlon
SUBI R2. R2, #4 bghawor will mlsp.redlct on the
BNEZ R2, LOOP first and last loop iterations

CA-Lech cwliu@twins.ee.nctu.edu.tw 35
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BHT Prediction

Useful only for the target address is known before CC is decided

[mem if prediction is BHT
e BT enty AT
T —
index )
Branch Target PC ¢

If two branch instructions with
the same lower bits...

CA-Lech cwliu@twins.ee.nctu.edu.tw 36
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Problem with the Simple BHT

clear benefit is that it's cheap and understandable

e Aliasing
— All branches with the same index (lower) bits reference same BHT
entry
e Hence they mutually predict each other
* No guarantee that a prediction is right. But it may not matter anyway
— Avoidance
* Make the table bigger - OK since it’s only a single bit-vector

e This is a common cache improvement strategy as well
— Other cache strategies may also apply

e Consider how this works for loops

— Always mispredict twice for every loop
* One is unavoidable since the exit is always a surprise

 However previous exit will always cause a mis-prediction the first try of
every new loop entry

CA-Lech cwliu@twins.ee.nctu.edu.tw 37
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N-bit Predictors

iIdea: improve on the loop entry problem

e 2-bit counter implies 4 states
e Statistically 2 bits gets most of the advantage

not-taken

e

predict taken
=l

predict taken

[
II Q

~

Q)
‘

Compiler could hint 11 taken

init. on loop branches or

it will go to 11 anyway in tgke
the 4th iteration

not-taken

=

not-takin
< |
taken

A prediction must miss twice not-taken
before it is changed

predict not-taken predict not-taken

‘.'
ab
ab

Only the loop exit causes a mispredict

CA-Lech cwliu@twins.ee.nctu.edu.tw 38
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BHT Accuracy

 Mispredict because either:
— Wrong guess for that branch (accuracy)
— Got branch history of wrong branch when index the table (size)
4K of BPB with 2-bit entries misprediction rates on SPEC89@IBM Power

nasars

matrizxz200

tomcocatw

doduc

SPECBEBY Spice
benchmarks

foppp

0gcc

Espresso

eqntott 18 %

li 10 %6

0% 2% 4 %% G %% 2% 10%0 12 % 14 %% 16 %0 18%

Frequency of mispredictions
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To Increase the BHT Size

e 4096 about as good as infinite table

* The hit rate of the buffer is clearly not the limiting factor for an enough-
large BHT size

nas=ars E 1[]:::

o= H 409E entries: O Unlimited entries:

matrix300 o 2 bits perentnys 2 bits per entry

tomoats - -ID:::

doduc TN -

5%

spice —
b= o
SPECES

b h ks L
snenmar I -

feppp et

I =
g

115

csnresso TN -
F 595

aqrtott | 1

i 1094
! 1094

Ora 2% A% B%a 8% 10%: 129%: 14%5  1B%%: 18%%
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The WOrst case for the 2-bit predictor

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa != bb) {

DSUBUI R3, R1, #2
BNEZ RS3, L1
DADDD R1, R0, R0  ;aa=0
L1: DSUBUI R3, R2, #2
BNEZ RS3, L2
DADDD R2, R0, R0  ;bb=0
L2: DSUBU R3, R1, R2
BEQZ RS3,L3

aa and bb are assigned to R1 and R2

If the first 2 untaken then the
3" will always be taken

;oranch b1(aa!=2

;oranch b2(bb!=

NS
N

INJ

)

;branch b3(aa==bb)

CA-Lech cwliu@twins.ee.nctu.edu.tw
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prove Prediction Strategy By Correlating
Branches

e Consider the worst case for the 2-bit predictor

IT (aa==2) then aa=0; « if the first 2 fail then the 31
1T (bb==2) then bb=0;

) will always be taken
1T (aa '= bb) then whatever

— single level predictors can never get this case

e Correlating or 2-level predictors

— The predictor uses the behavior of other branch(es) to make a
prediction

— Correlation = what happened on the last branch
— Predictor = which way to go
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: Correlating Branches

Two-level predictors
Hypothesis: recently executed branches are correlated

Idea: record m most recently executed branches as taken or not taken,
and use that pattern to select the proper branch history table

In general, (m,n) predictor means record last m branches to select
between 2™ history tables each with n-bit counters

— Old 2-bit BHT is then a (0,2) predictor

Global Branch History: m-bit shift register keeping T/NT status of last m
branches

Each entry in table has m n-bit predictors

CA-Lech cwliu@twins.ee.nctu.edu.tw
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2-Level (m,n) BHT

e Use the behavior of the last m branches to choose
from 2™ branch predictors, each of which is an n-bit
predictor for a single branch

e Total bits for the (m, n) BHT prediction buffer:

Total _memory bits =2" xnx 2"

— p bits of buffer index = 2P bit BHT

— 2™ banks of memory selected by the global branch history
(which is just a shift register) - e.g. a column address

— Use p bits of the branch address to select row
— Get the n predictor bits in the entry to make the decision
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(2,2) Predictor Implementation

p=5
m=2 ™
n=2 ‘
5:32
5 i r'ow
— Jladdr -
index Decoder
from
branch
address

4 banks = each with 32 2-bit predictor entries

=

»
2-bit predictor
for this branch
decision

Note: orthogonal
address model

speeds decode
common use is in DRAMS

CA-Lech cwliu@twins.ee.nctu.edu.tw
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2:4 decoder

¥

¥

2-bit column address

prev-1

prev

clobal branch history
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Example of Correlating Branch Predictors

d is assigned to R1

BNEZ R1, L1

DAAIU R1, RO, #1
L1: DAAIU R3, R1, #-1

BNEZ R3, L2

L2:

;branch b1 (d!
:d==0, so d=1

;branch b2 (d!

=O)
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Example of Correlating Branch Predictors (Cont.)
initial d==0? bl | valueofd | d==1? b2

value of d before b2
0 YES not taken 1 YES not taken |
1 NO taken 1 YES not taken
2 NO taken 2 NO taken

1-bit predictor initialized to NT
d=? bl bl action New bl b2 b2 action | New b2

prediction prediction | prediction prediction

2 NT T T NT T T

0) T NT NT T NT NT

2 NT T T NT T T

0) T NT NT T NT NT

All the branches are mispredicted !!!
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Example of Correlating Branch Predictors (Cont.)

Prediction bits | Prediction if last branch Prediction if last branch
not taken taken
NT/NT NT NT
NT/T NT T
T/NT T NT
T/T T T

(1,1) predictor
Use 1-bit correlation + 1-bit prediction with initialized to NT/NT

d=? bl bl action New b1l b2 b2 action | New b2
prediction prediction | prediction prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T
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omparison: Accuracy of Different 2-bit
Predictors

nasa7zw o< 1 B 4096 entries:
1=6 8K b|tS 2 bits per entry
O<o /[ Unlimited entries:
matrix300 O<o 2 bits per entry
o<o
- 1 1 1024 entries:
- 194 8K bItS {2’2)
tomcatwv e 7
126
5%
doduc 5=c
52
o<
spice o9
SPECS89 5%
benchmarks oo
feppp 9%
5%
1299
gcc 116
11<c
5<c
espresso 524
45
18<c
eqntott 18<c
5%
10%6
li 1026
5%
[0 15 %= 2°% 4S5 5% 8<c 10%c 12 14<c 16<c 18<c

Frequency of mispredictions



Tournament Predictors

The most popular one

e Recall that the correlator is just a local predictor

e Adaptively combine local and global predictors

— Multiple predictors

* One based on global information: Results of recently executed m
branches

e One based on local information: Results of past executions of the current
branch instruction

— Selector to choose which predictors to use

e E.g.: 2-bit saturating counter, incremented whenever the “predicted”
predictor is correct and the other predictor is incorrect, and it is
decremented in the reverse situation

e Advantage
— Ability to select the right predictor for the right branch
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B (]!

tate Transition Diagram for A Tournament

Predictor

Use predictor 1

0/0, 011, 11

1/0 J 0/1

o
Use predictor 2
-

1/0
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Branch Prediction Performance

R . R ]] S

5%

4%

Conditional branch misprediction rate

T ,-"Jé) _K"";""""""'"""'""'"""'""'"""'""'"""'""'"""'""'""""""""""""""'""'""""'"'""""'""'""'""""""

Local 2-bit predictors

B Moo

Correlating predictors

h

Tournament predictors

0%
0

32

I I I
64 96 128 1

60 192 224 256 288 320 352 384 416 448 480 51
Total predictor size

CA-Lech cwliu@twins.ee.nctu.edu.tw 52



pipl. Of ELECIROMC 70 N
EIGINEERING ¢ { P}
list. OF ELECTROIMCS My

High-Performance Instruction Delivery

 For a multiple issue processor, predicting
branches well is not enough

e Deliver a high-bandwidth instruction stream is
necessary (e.g., 4~8 instructions/cycle)
— Branch target buffer
— Integrated instruction fetch unit
— Indirect branch by predicting return address
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Branch Target Buffer/Cache

e To reduce the branch penalty from 1 cycleto 0O
— Need to know what the address is at the end of IF
— But the instruction is not even decoded yet
— So use the instruction address rather than wait for decode
e |f prediction works then penalty goes to 0!

e BTB Idea -- Cache to store taken branches (no need to store untaken)
— Access the BTB during IF stage
— Match tag is instruction address = compare with current PC
— Data field is the predicted PC
 May want to add predictor field
— To avoid the mispredict twice on every loop phenomenon
— Adds complexity since we now have to track untaken branches as well
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BTB -- lllustration

PC of instruction to fetch

Predicted PC
Store predicted-
taken branches
Number of on Iy
entries
in branch-
target
buffer
Mo: instruction is
> not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken
PC should be used as the next PC
Full size (32-bit) Target PCs for
No aliasing allowed predicted-taken branches
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Flowchart for BTB

FC to memory

and ETE
IF
MNO found
in BTE
predicted PC to
memory and BTB Ser;q OU; the
redicted PC
@ YES
A branch?
; Enter branch Mispredict - kill

addr and target

Normal Execution PC into BTB

fetched instruction
restart fetch at other

target, delete entrv

EK from BTHB

CA-Lech cwliu@twins.ee.nctu.edu.tw
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Prediction correct,
continue with no
penalty
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Penalties Using this Approach for 5-Stage MIPS

Instruction in Prediction | Actual Branch |Penalty Cycles
buffer
Yes Taken Taken 0
Yes Taken Not Taken 2
No Taken 2
No Not Taken o)
Note:

e Predict_ wrong =1 CC to update BTB + 1 CC to restart fetching
 Not found and taken = 2CC to update BTB

Note:

For complex pipeline design, the penalties may be higher
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e Given prediction accuracy (for inst. in buffer): 90%

e Given hit rate in buffer (for branches predicted token): 90%
e Assume 60% of the branches are taken

e Determine the total branch penalty=?

Solution

— Probability (branch in buffer, but actually not taken) = percent buffer
hit rate x percent incorrect prediction = 90% x 10% = 0.09

— Probability (branch not in buffer, but actually taken) = 10%
— Hence, we have 2 cycles x (0.09+0.1) = 0.38 cycles

Comparing the delay branch with the penalty = 0.5 cycles/branch
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Integrated Instruction Fetch Units

 Consider the fetch unit as a separate autonomous
unit, not a pipeline stage
* Functions for the integrated instruction fetch unit

— Branch prediction

— Prefetch
» To deliver multiple instructions per cycle

— Instruction memory access and buffering
* may require accessing multiple cache lines
» prefetch may hide the latency for memory access
e buffering may be necessary
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Return Address Predictor

e Indirect jump —jumps whose destination address varies at run time
— indirect procedure call, select or case, procedure return

— SPEC89 benchmarks: 85% of indirect jumps are procedure
returns

 Accuracy of BTB for procedure returns are low

— if procedure is called from many places, and the calls from one
place are not clustered in time

e Use a small buffer of return addresses operating as a stack
— Cache the most recent return addresses
— Push a return address at a call, and pop one off at a return
— If the cache is sufficient large (max call depth) = prefect
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Dynamic Branch Prediction Summary

* Branch prediction scheme are limited by
— Prediction accuracy
— Mis-prediction penalty
* Branch History Table: 2 bits for loop accuracy
 Correlation: Recently executed branches correlated with next branch
 Tournament predictors take insight to next level, by using multiple
predictors

— usually one based on global information and one based on local information,
and combining them with a selector

— In 2006, tournament predictors using = 30K bits are in processors like the
Power5 and Pentium 4

e Branch Target Buffer: include branch address & prediction

 Reduce penalty further by fetching instructions from both the predicted
and unpredicted direction
— Require dual-ported memory, interleaved cache - HW cost
— Caching addresses or instructions from multiple path in BTB
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