Computer Architecture
HW#2 Solution

Exercises

B.1
a.

(1-5%)x1+(5%)x 105=6.2 cycles

b.

64KB
256MB

(0.00025) x1+(1-0.00025)*105=104.974 cycles

=0.00025

C.
latency without cache : 100 cycles

cache &% [7£ data A locality £ HERIFE - LIZDZE /I memory access latency A CERI D E

EZH mem BOREL

d.
(1-miss) x(T-G)+(miss) x(T+L) >T

miss > —— =0.951923
G+L

= miss rate>0.952 - t5HF cache

B.3
LRU FIFO Random
a 104 100 100
b 104 101 100
c 44 40 40
d 24 21 20
e 26 25 25
i 50 45 45
g 30 26 25
h.

LRU : (1-5%)x26+(5%-3%)x50+3%x30=26.6 units

FIFO : (1-5%)x25+(5%-3%)x45+3%x 26=25.43 units

Random : (1-5%)x25+(5%-3%)%45+3%x25=25.4 units

B.4
a.

10+5x([£ 1-1) =10 cycle

b.

a line is 32 byte : 10+5x([1—2 1-1) =25 cycle
C.

total write 8 times, so : 8x(10+5x([g]1-1)) =80 cycle

o

= B —1{Elcache lineB#B3E 3 KRB AL KENY - FFBwrite back & ELER &

€.

Answers vary, but one scenario where the write-through cache will be superior
is when the line (all of whose words are updated) is replaced out and back

to the cache several times (due to cache contention) in between the different
updates. In the worst case if a the line is brought in and out eight times and a
single word is written each time, then the write-through cache will require

8 x 10 = 80 CPU cycles for writes, while the write-back cache will use 8 x

25 =200 CPU cycles.

ZOSWmIER LEEER 2.write through® tbwrite back

B.5
a.

L1<->L2 : 15ns+(32byte+128bit) x1+266MHZ=15+2x3.75=22.5 ns

L2<->Mem : 60ns+(64byte +128bit) x1+133MHZ=60+4%7.5=90 ns

0.02x22.5+0.02x (1-0.8) x90+0.02x (1-0.8) x0.5x90=0.99 ns
b.

L1<->L2 : 15ns+1+266MHZ=15+3.75=18.75 ns

L2<->Mem : 60ns+(64byte +128bit) x1+133MHZ=60+4%7.5=90 ns

0.05x18.75+0.05x (1-0.8) x90+0.05x (1-0.8) x0.5x90=2.2875 Nns
C.

L1<->L2 : 15ns+1+266MHZ=15+3.75=18.75 ns

L2<—>Mem : 60ns+(64byte+128bit) x1+133MHZ=60+4x7.5=90 ns

0.05x18.75+0.05x (1-0.8) x90+0.05x(1-0.8) x0.5x90=2.2875 ns
d.
CPI+IF+DR+DW=0.7+(0.99+0.2x2.2875+0.05x 2.2875) * 1.1 =2.4180625

Case Study

2.1
a.

64byte +8byte=8 elements

(in metrix elements + out metrix elements) x byte per element

= (8x8+8x8) x8Byte=1Kbyte
b.
The blocked version only has to fetch each input and output element once. The unblocked
version will have one cache miss for every 64B/8B = 8 row elements. Each column requires
64Bx256 of storage, or 16KB. Thus, column elements will be replaced in the cache before they
can be used again. Hence the unblocked version will have 9 misses (1 row and 8 columns) for
every 2 in the blocked version.
C.
for (i=0; i < 256; i=i+B) {

for (j =0; j <256; j=j+B) {
for(m=0; m<B; m++) {
for(n=0; n<B; n++) {
output[j+n][i+m] = input[i+m][j+n];

MEREEZER :
1. operation# {TRIZERE

FafEcycle—RES

a. cache fetchA9Z€E & b. cache conflict
L2 2{Elcyclen] UEE—EIE S & BERIFEZE16cycle BEET
b. ##1En way-set(8 B ZE5K)
& Z & (in matrix & out matrix) B A& (conflict) &g - T Z2way-set
write array’®s 2 2 $9 A9 i% Biprefetch> BB 21 RinFout[E iF 55 25K IE? OK!I-> B4cyclea] Al
2wayB128E &R - ol PUmE(kRAB0 1531476379~ 95 111 ~ 127)

ZRread arrayZ {EcyclerE—E1E - RFEZ1waymiso 1

e.
You should be able to determine the level-1 cache size by varying the block size. The ratio
of the blocked and unblocked program speeds for arrays that do not fit in the cache in
comparison to blocks that do is a function of the cache block size, whether the machine has
out-of-order issue, and the bandwidth provided by the level-2 cache. You may have
discrepancies if your machine has a write-through level-1 cache and the write buffer
becomes a limiter of performance.

2.2

Since the unblocked version is too large to fit in the cache, processing eight 8B elements
requires fetching one 64B row cache block and 8 column cache blocks. Since each iteration
requires 2 cycles without misses, prefetches can be initiated every 2 cycles, and the number
of prefetches per iteration is more than one, the memory system will be completely
saturated with prefetches. Because the latency of a prefetch is 16 cycles, and one will start
every 2 cycles, 16/2 = 8 will be outstanding at a time.

Exercises

2.8
a.

direct : 0.862540203138
2-way : 1.12056746501

4-way : 1.3713953042

b.

16KB : 1.26889227474

32KB : 1.34885567595

64KB : 1.3713953042

C.
Direct 2-way 4-way 8-way

miss/ins. 0.00664| 0.00366| 0.000987| 0.000266
ref./ins 0.3 0.3 0.3 0.3
miss rate 0.022133 0.0122] 0.00329| 0.000887
access time 0.8625402| 1.1205675| 1.3713953| 2.0352199
cycle time 0.504086| 0.5095251| 0.8290499| 0.7895929
cycle hit 2 3 2 3
mem access time 10 10 10 10
cycle time 0.504086| 0.5095251| 0.8290499| 0.7895929
miss penalty 20 20 13 13
avg. access cycle 2.3984 3.2074| 2.03619] 3.008867
avg. access time 1.209] 1.634251| 1.688103| 2.37578

2.9

a. (1-0.00329) x(0.8x2+0.2x3)+ 0.00329x20=2.258562 cycles=1.138509484332 ns

b. 0.8290499/0.504086=1.644659641 higher

C. (1-0.00329) x(0.8x2+0.2x15)+ 0.00329%20=4.650666 cycles=2.344335621276 ns

d.

Cycle time | Aggressive | Conservative
Normal 1.753767 1.918825
Serial 2.409613 2.48130

2.409613/1.7537677 = 1.373964 slower (or 2.48130/1.918825 = 1.293135 slower)

2.12

a. 16Byte, same as write bandwidth

b. merging : 16Byte will fill in 2 cycle & 4 cycle to write->16Byte/4cycle

nin-merging : 8Byte per 4 cycle—>8Byte/Acycle =2 times speed up

C.

blocking : when miss, those misses are frozen in the write buffer until write finished.

non-blocking : we will need more entries in write buffers for it can be process in write buffer.

2.14

a.

This is similar to the scenario given in the figure, but tRCD and CL are

both 5. In addition, we are fetching two times the data in the figure. Thus it
requires 5+ 5+ 4 x 2 = 18 cycles of a 333MHz clock, or 18 x (1/333MHz) =
54.0ns.

b.

The read to an open bank requires 5 + 4 = 9 cycles of a 333MHz clock, or
27.0ns. In the case of a bank activate, this is 14 cycles, or 42.0ns. Including
20ns for miss processing on chip, this makes the two 42 + 20 = 62ns and

27.0 + 20 = 47ns. Including time on chip, the bank activate takes 62/47 = 1.32
or 32% longer.

