59 a. P0,0:read 100 L1 hit returns 0x0010, state unchanged (M)

b. PO0,0: read 128 L1 miss and L2 miss will replace B1 in L1 and B1 in
L2 which has address 108.

L1 will have 128 in B1 (shared), L2 also will have it
(DS, P0,0)

Memory directory entry for 108 will become <DS, C1>
Memory directory entry for 128 will become <DS, CO>|

¢, d, ..., h: follow same approach

5.10 a. PO0,0: write 100 € 80, Write hit only seen by P0,0
b. P0,0: write 108 < 88, Write “upgrade” received by P0,0; invalidate received
by P3,1
c. PO,0: write 118 € 90, Write miss received by PO0,0; invalidate received by P1,0
d. P1,0: write 128 € 98, Write miss received by P1.0.
5.11

CPU read miss
Read miss
Invalidate

Invalid CPU read Shared
Send read message

CPU read hit

Fetch invalidate
Write data back

Send write miss message
O
|
[
=
@
%
)

CPU read miss
CPU write miss
Write data back

CPU write miss

Write data back . Read miss Read miss
Write miss Modified Send data Owned
y CPU write
Send invalidate message
CPU write hit CPU read hit
CPU read hit

Figure S.30 Cache states.

5.12 The Exclusive state (E) combines properties of Modified (M) and Shared (S).
The E state allows silent upgrades to M, allowing the processor to write the block
without communicating this fact to memory. It also allows silent downgrades to I,
allowing the processor to discard its copy with notifying memory. The memory
must have a way of inferring either of these transitions. In a directory-based system,
this is typically done by having the directory assume that the node is in state M and
forwarding all misses to that node. If a node has silently downgraded to I, then it
sends a NACK (Negative Acknowledgment) back to the directory, which then
infers that the downgrade occurred. However, this results in a race with other mes-
sages, which can cause other problems.

Read miss

Invalid Data value reply,
Sharers={P}

Read miss

. Data value reply
Sharers=sharers + {P}
—
o
2> T
E 4
& @
E —~ =~ ™ E
P St Wl ok
0| B= g|s
T2 EfS® 513
T - @ o
= [4}] = =
Sagl =8a =|e
Tc| I|mc
own| SEon oS
© |
oW
Read miss
Fetch

Read miss
Fetch; Data value reply
Sharers=sharers + {P} Owned

Write miss

Fetch invalidate
Data value response
Sharers={P}

Data value response
Sharers=sharers + {P}

Modified

Write miss

Fetch invalidate
Data value response
Sharers={P}

Figure S.31 Directory states.

5.19 The general form for Amdahl’s Law is

5.20

a.

Execution time

Speedup = . .
P P'= Execution time,,.,

all that needs to be done to compute the formula for speedup in this multiproces-
sor case 1s to derive the new execution time.

The exercise states that for the portion of the original execution time that can use
I processors 18 given by F(i,p). If we let Execution time,;; be 1, then the relative
time for the application on p processors is given by summing the times required
for each portion of the execution time that can be sped up using i processors,
where i is between 1 and p. This yields

Execution time,,, = Zp lﬂfop)
I =

Substituting this value for Execution time,,, into the speedup equation makes
Amdahl’s Law a function of the available processors, p.

(i) 64 processors arranged a as a ring: largest number of communication
hops = 32 - communication cost = (100 + 10 X 32) ns = 420 ns.

(i) 64 processors arranged as 8x8 processor grid: largest number of commu-
nication hops = 14 - communication cost = (100 + 10 x 14) ns = 240 ns.

(i) 64 processors arranged as a hypercube: largest number of hops = 6 (log,
64) = communication cost = (100 + 10 X 6) ns = 160 ns.

Base CPI = 0.5 ¢pi

(i) 64 processors arranged a as a ring: Worst case CPI = 0.5 + 0.2/100 X
(420) x 3.3 = 3.272¢pi

(i) 64 processors arranged as 8x8 processor grid: Worst case CPI = 0.5 + 0.2/
100 x (240) x 3.3 = 2.084 cpi

(ili) 64 processors arranged as a hypercube: Worst case CPI CPI = 0.5 + 0.2/
100 x (160) x 3.3 = 1.556 cpi

The average CPI can be obtained by replacing the largest number of communi-
cations hops in the above calculation by /1, the average numbers of communica-
tions hops. That latter number depends on both the topology and the application.

Since the CPU frequency and the number of instructions executed did not
change, the answer can be obtained by the CPI for each of the topologies
(worst case or average) by the base (no remote communication) CPL

5.32

a.

b.

Because flag is written only after A is written, we would expect C to be 2000,
the value of A.

Case 1: If the write to flag reached P2 faster than the write to A.
Case 2: If the read to A was faster than the read to flag.

Ensure that writes by P1 are carried out in program order and that memory
operations execute atomically with respect to other memory operations.

To get intuitive results of sequential consistency using barrier instructions, a
barrier need to be inserted in P1 between the write to A and the write to flag.

