3.1

3.2

The baseline performance (in cycles, per loop iteration) of the code sequence in
Figure 3.48, if no new instruction’s execution could be initiated until the previ-
ous instruction’s execution had completed, is 40. See Figure S.2. Each instruc-
tion requires one clock cycle of execution (a clock cycle in which that
instruction, and only that instruction, is occupying the execution units; since
every instruction must execute, the loop will take at least that many clock
cycles). To that base number, we add the extra latency cycles. Don’t forget the
branch shadow cycle.

Loop: LD F2,0(Rx) 1+4
DIVD F8,F2,F0 1+12
MULTD F2,F6,F2 1+5
LD F4,0(Ry) 1+4
ADDD F4,F0,F4 1+1
ADDD F10,F8,F2 1+1
ADDI Rx,Rx,#8 1
ADDI Ry,Ry,#8 1
SD F4,0(Ry) 1+1
SUB R20,R4,Rx 1
BNZ R20, Loop 1+1
cycles per loop iter 40

Figure 5.2 Baseline performance (in cycles, per loop iteration) of the code sequence
in Figure 3.48.

How many cycles would the loop body in the code sequence in Figure 3.48
require if the pipeline detected true data dependencies and only stalled on those,
rather than blindly stalling everything just because one functional unit is busy?
The answer is 25, as shown in Figure S.3. Remember, the point of the extra
latency cycles is to allow an instruction to complete whatever actions it needs, in
order to produce its correct output. Until that output is ready, no dependent
instructions can be executed. So the first LD must stall the next instruction for
three clock cycles. The MULTD produces a result for its successor, and therefore
must stall 4 more clocks, and so on.

Loop: Lo F2,0(Rx) 1+4
<stall>
<stall>
<stall>
<stall>
DIvVD 2,F0 1+12
MULTD Fe¢,F6,F2 1+5
Lo J0(Ry) 1+4

<stall due to LD latency>

<stall due to LD |atency>

<stall due to LD latency>

<stall due to LD latency>

ADDD F4,F0,F4 141
<stall due to ADDD|latency>

<stall due to DIVD |latency>

<stall due to DIVD |atency>

<stall due to DIVD latency>

<stall due to DIVD latency>

ADDD F10,F8,F2 1+1
ADDI x.'B 1
ADDI Ry.Ry,#8 1
50 F4,0(Ry) 141
suB R20,R4,Rx 1
BNZ R20, Loop 1+1

<stall branch delay slot>

cycles per loop iter 25

Figure S.3



3.3 Consider a multiple-issue design. Suppose you have two execution pipelines, each
capable of beginning execution of one instruction per cycle, and enough fetch/
decode bandwidth in the front end so that it will not stall your execution. Assume
results can be immediately forwarded from one execution unit to another, or to itself.
Further assume that the only reason an execution pipeline would stall is to observe a
true data dependency. Now how many cycles does the loop require? The answer
is 22, as shown in Figure S.4. The LD goes first, as before, and the DIVD must wait
for it through 4 extra latency cycles. After the DIVD comes the MULTD, which can run
in the second pipe along with the DIVD, since there’s no dependency between them.
(Note that they both need the same input, F2, and they must both wait on F2’s readi-
ness, but there is no constraint between them.) The LD following the MULTD does not
depend on the DIVD nor the MULTD, so had this been a superscalar-order-3 machine,

Execution pipe 0 Execution pipe 1
Loop: LD F2,0(Rx) 3 <nop>
<stall for LD latency=> ;  <nop>
<stall for LD latency=> ;  <nop>
<stall for LD latency> ;  <nop>
<stall for LD latency> ;  <nop>
DIVD F8,F2,F0 ;  MULTD F2,F6,F2
LD F4,0(Ry) ;  <nop>
<stall for LD latency> ;  <nop>
<stall for LD latency> ;  <nop>
<stall for LD latency> ;  <nop>
<stall for LD latency=> ;  <nop>
ADD F4,F0,F4 ;  <nop=
<stall due to DIVD latency> ;  <nop>
<stall due to DIVD latency> ;  <nop>
<stall due to DIVD latency> ;  <nop>
<stall due to DIVD latency> ;  <nop>
<stall due to DIVD latency> ;  <nop>
<stall due to DIVD latency> ;  <nop>
ADDD F10,F8,F2 :  ADDI Rx,Rx,#8
ADDI Ry,Ry,#8 : SD F4,0(Ry)
SuUB R20,R4,Rx :  BNZ R20, Loop
<nop> ; <stall due to BNZ>
cycles per loop iter 22

Figure S.4 Number of cycles required per loop.

that LD could conceivably have been executed concurrently with the DIVD and the
MULTD. Since this problem posited a two-execution-pipe machine, the LD executes in
the cycle following the DIVD/MULTD. The loop overhead instructions at the loop’s
bottom also exhibit some potential for concurrency because they do not depend on
any long-latency instructions.



3.4 Possible answers:

1. If an interrupt occurs between N and N + 1, then N + | must not have been
allowed to write its results to any permanent architectural state. Alternatively,
it might be permissible to delay the interrupt until N + 1 completes.

2. If Nand N + 1 happen to target the same register or architectural state (say,
memory), then allowing N to overwrite what N + 1 wrote would be wrong.

3. N might be a long floating-point op that eventually traps. N + | cannot be
allowed to change arch state in case N is to be retried.

Long-latency ops are at highest risk of being passed by a subsequent op. The

DIVD instr will complete long after the LD F4,0(Ry), for example.

3.5 Figure S.5 demonstrates one possible way to reorder the instructions to improve the
performance of the code in Figure 3.48. The number of cycles that this reordered
code takes is 20.

Execution pipe 0 Execution pipe 1

e

Loop: LD F2,0(Rx) LD F4,0(Ry)
<stall for LD Tatency= <stall for LD latency>

wa

<stall for LD Tatency= <stall for LD latency>

T

<stall for LD latency= <stall for LD latency=

e

<stall for LD Tatency= <stall for LD latency>
DIVD F8,F2,F0 ADDD F4,F0,F4
MULTD F2,F6,F2 H <stall due to ADDD latency=>

wa

T

<stall due to DIVD latency=> : sD F4,0(Ry)
<stall due to DIVD Tatency= H <nop= #ops: 11
<stall due to DIVD Tatency= H <nop= #nops: (20x2)—11=29

ADDI Rx,Rx, #8
ADDI Ry,Ry, #8

wa

<stall due to DIVD latency=
<stall due to DIVD Tatency=

T

<stall due to DIVD Tatency= H <nop=
<stall due to DIVD latency=> H <nop=
<stall due to DIVD Tatency= H <nop=
<stall due to DIVD Tatency= H <nop=
<stall due to DIVD latency=> H <nop=

<stall due to DIVD latency=> SUB R20,R4,Rx
ADDD F10,F8,F2 BNZ R20,Loop
<nop> H <stall due to BNZ>

e

-

cycles per loop iter 20

Figure 5.5 Number of cycles taken by reordered code.

3.6 a. Fraction of all cycles, counting both pipes, wasted in the reordered code
shown in Figure S.5:

11 ops out of 2x20 opportunities.
1-11/40=1-0.275
=0.725

b. Results of hand-unrolling two iterations of the loop from code shown in Figure S.6:
exec time w/o enhancement

exec time with enhancement

Speedup = 20/ (22/2)
=1.82

C. Speedup =




Execution pipe 0 Execution pipe 1

Loop:

LD F2,0(Rx) LD F4,0(Ry)
LD F2,0(Rx) ; LD F4,0(Ry)
<stall for LD Tatency=

e

<stall for LD latency=

<s5tall for LD latency= <stall for LD latency=

e

<s5tall for LD latency=
DIVD F8,F2,F0

<stall for LD latency=
ADDD F4,F0,F4

e

DIVD F8,F2,F0 ;: ADDD F4,F0,F4
MULTD F2,F0,F2 HEE | F4,0(Ry)
MULTD F2,F6,F2 ; SD F4,0(Ry)

<nop>
ADDI  Rx,Rx,#16
ADDI  Ry,Ry,#16

e

<stall due to DIVD latency=
<stall due to DIVD latency=
=<stall due to DIVD Tatency=

e

we

<stall due to DIVD latency= ;3 <nop=

<stall due to DIVD latency= 3 <nop=

=<stall due to DIVD Tatency= ;3 <nop=

<stall due to DIVD latency= ;3 <nop=

<stall due to DIVD latency= 3 <nop=

=<stall due to DIVD Tatency= ;3 <nop=

<stall due to DIVD latency= ;3 <nop=

ADDD F10,F8,F2 ;  SUB R20,R4,Rx
ADDD F10,F8,F2 ; BNZ R20,Loop
<nop> ; =stall due to BNZ>

cycles per loop iter 22

Figure S.6 Hand-unrolling two iterations of the loop from code shown in Figure 5.5.

3.10

An example of an event that, in the presence of self-draining pipelines, could dis-
rupt the pipelining and yield wrong results is shown in Figure S.10.

aluo alut st /st br
ADDI R11, R3, #2 LW(Ra)) 0(R0)

ADDI R2, R2, #16|ADDI R20, RO+ ¥#2| LU(R1)0(R0) | LW RS, 8(R1)
L LW 5, 8(R1)

1
2
3
4[ADDI RIO, R4, #1 | —
5
6
7

Clock
cycle

ADDI R10, Fra,'&l SW R7, O(RE) SW R9, 8(R8)
SUB R4, R3, R2 SW R7, O(R&) SW R9, 8(RB)

BNZ R4, Loop

Figure 5.10 Example of an event that yields wrong results. What could go wrong
with this? If an interrupt is taken between clock cycles 1 and 4, then the results of the LW
at cycle 2 will end up in R1, instead of the LW at cycle 1. Bank stalls and ECC stalls will
cause the same effect—pipes will drain, and the last writer wins, a classic WAW hazard.
All other “intermediate” results are lost.



3.1

Loop:

LW R3,0(RO)
LW R1,0(R3)
ADDI R1,R1,#1
SUB R4,R3,R2
SW R1,0(R3)
BNZ R4, Loop
LW R3,0(R0)

See Figure S.11. The convention is that an instruction does not enter the execution
phase until all of its operands are ready. So the first instruction, LW R3,0(R0),
marches through its first three stages (F, D, E) but that M stage that comes next
requires the usual cycle plus two more for latency. Until the data from a LD is avail-
able at the execution unit, any subsequent instructions (especially that ADDI R1, R1,
#1, which depends on the 2nd LW) cannot enter the E stage, and must therefore stall
at the D stage.

Loop length
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16| 17 18 19
F D E M - - H
F O - - - E M - — H
F - - - D - - - E M H
F - - - D E M ¥
F D E M - —|H
F D E - - M H
- F D
(2.11a) 4 cycles lost to branch overhead
-

(2.11b) 2 cycles lost with static predictor

{2.11c) No cycles lost with correct dynamic prediction

Figure 5.11 Phases of each instruction per clock cycle for one iteration of the loop.



3.14

(a)
a. See Figure S.18.

Clock cycle Unscheduled code Scheduled code

1 DADDIU R4,R1,#800 DADDIU R4,R1,#800

2 L.D F2,0(R1) L.D F2,0(R1)

3 stall L.D F6,0(R2)

4 MUL.D F4,F2,F0 MUL.D F4,F2,F0

5 L.D F6,0(R2) DADDIU R1,R1,#8

6 stall DADDIU R2,R2,#8
stall DSLTU R3,R1,R4
stall stall
stall stall

7 ADD.D F6,F4,F6 ADD.D F6,F4,F6
stall stall

9 stall stall

10 stall BNEZ R3,foo

11 S.D F6,0(R2) S.D F6,-8(R2)

12 DADDIU R1,R1,#8

13 DADDIU R2,R2,#8

14 DSLTU R3,R1,R4

15 stall

16 BNEZ R3,foo

17 stall

Figure 5.18 The execution time per element for the unscheduled code is 16 clock
cycles and for the scheduled code is 10 clock cycles. This is 60% faster, so the clock
must be 60% faster for the unscheduled code to match the performance of the sched-
uled code on the original hardware.



3.14
(b)
b. See Figure S.19.

Clock cycle Scheduled code
1 DADDIU R4,R1,#800
2 L.D F2,0(R1)
3 L.D F6,0(R2)
+ MUL.D F4,F2,FO0

Figure S.19 The code must be unrolled three times to eliminate stalls after
scheduling.

5 L.D F2,8(R1)

6 L.D F10,8(R2)

7 MUL.D F8,F2,F0

8 L.D F2,8(R1)

9 L.D F14,8(R2)
10 MUL.D F12,F2,F0
11 ADD.D F6,F4,Fb

12 DADDIU R1,R1,#24
13 ADD.D F10,F8,F10
14 DADDIU R2,RZ,#24
15 DSLTU R3,R1,R4

16 ADD.D F14,F12,F14
17 S.D F6,-24(R2)
18 S.D F10,-16(R2)
19 BNEZ R3,foo

20 S.D F14,-8(R2)

Figure S.19 Continued



3.14

(c)
¢. See Figures S.20 and S.21.
Unrolled 6 times:
Memory Memory Integer opera-
Cycle reference 1 reference 2 FP operation 1 FP operation 2 tion/branch
1 L.D F1,0(R1) L.D F2,8(R1)
2 L.D F3,16(R1) L.D F4,24(R1)
3 L.D F5,32(R1) L.D F6,40(R1) MUL.D F1,F1,F0 MUL.D F2,F2,F0
4 L.D F7,0(R2) L.D F8,8(R2) MUL.D F3,F3,FO MUL.D F4,F4,FO0
5 L.D F9,16(R2) L.D F10,24(R2)  MUL.D F5,F5,F0 MUL.D F6,F6,F0
6 L.D F11,32(R2) L.D F12,40(R2)
7 DADDIU
R1,R1,48
8 DADDIU
R2,R2,48

Figure 5.20 15 cycles for 34 operations, yielding 2.67 issues per clock, with a VLIW efficiency of 34 operations

for 75 slots = 45.3%. This schedule requires 12 floating-point registers.

9 ADD.D F7,F7,F1
10 ADD.D F9,F9,F3
11 ADD.D F11,F11,F5
12

13 S.D F7,-48(R2) S.D F8,-40(R2)
14 S.D F9,-32(R2) S.D F10,-24(R2)
15 S.D F11,-16(R2) S.D F12,-8(R2)

ADD.D F8,F8,F2
ADD.D F10,F10,F4
ADD.D F12,F12,F6

DSLTU
R3,R1,R4

BNEZ R3,foo

Figure S.20 Continued



Unrolled 10 times:

Memory Memory Integer
Cycle reference 1 reference 2 FP operation 1 FP operation 2 operation/branch
1 L.D F1,0(R1) L.D F2,8(R1)
2 L.D F3,16(R1) L.D F4,24(R1)
3 L.D F5,32(R1) L.D F6,40(R1) MUL.D F1,F1,FO MUL.D F2,F2,F0
4 L.D F7,48(R1) L.D F8,56(R1) MUL.D F3,F3,F0 MUL.D F4,F4,F0
5 L.D F9,64(R1) L.D F10,72(R1) MUL.D F5,F5,F0 MUL.D F6,F6,F0
6 L.D F11,0(R2) L.D F12,8(R2) MUL.D F7,F7,F0 MUL.D F8,F8,F0
7 L.D F13,16(R2) L.D F14,24(R2) MUL.D F9,F9,F0 MUL.D F10,F10,FO  DADDIU R1,R1,48
8§ L.D F15,32(R2) L.D F16,40(R2) DADDIU R2,R2,48
9 L.D F17,48(R2) L.D F18,56(R2) ADD.D F11,F11,F1 ADD.D F12,F12,F2
10 L.D F19,64(R2) L.D F20,72(R2) ADD.D F13,F13,F3 ADD.D F14,F14,F4
11 ADD.D F15,F15,F5 ADD.D F16,F16,F6
12 ADD.D F17,F17,F7 ADD.D F18,F18,F8 DSLTU  R3,R1,R4
13 S.D F11,-80(R2) S.D F12,-72(R2) ADD.D F19,F19,F9 ADD.D F20,F20,F10
14 S.D F13,-64(R2) S.D F14,-56(R2)
15 S.D F15,-48(R2) S.D F16,-40(R2)
16 S.D F17,-32(R2) S.D F18,-24(R2)
17 S.D F19,-16(R2) S.D F20,-8(R2) BNEZ R3,foo
Figure S.21 17 cycles for 54 operations, yielding 3.18 issues per clock, with a VLIW efficiency of 54 operations for

85 slots = 63.5%. This schedule requires 20 floating-point registers.



