
 

 

July 2012 

Image Denoising 

Alexander Kharlamov 
akharlamov@nvidia.com 

Victor Podlozhnyuk 

vpodlozhnyuk@nvidia.com 

mailto:akharlamov@nvidia.com
mailto:vpodlozhnyuk@nvidia.com


  

    

 

 

July 2012 

Document Change History 

Version Date Responsible Reason for Change 

0.9 04/16/2007 akharlamov Initial release 

1.0 05/16/2007 vpodlozhnyuk Edited CUDA-specific parts 

    

    

 

 

 

 



 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

  

Abstract 

Image denoising algorithms may be the oldest in image processing. Many methods, 
regardless of implementation, share the same basic idea – noise reduction through image 
blurring.  Blurring can be done locally, as in the Gaussian smoothing model or in anisotropic 
filtering; by calculus of variations; or in the frequency domain, such as Weiner filters. 
However a universal “best” approach has yet to be found. 
 

 



  

    

 

 

July 2012 

Motivation 

White noise is one of the most common problems in image processing. Even a high-
resolution photo is bound to have some noise in it. For a high-resolution photo a simple box 
blur may be sufficient, because even a tiny features like eyelashes or cloth texture will be 
represented by a large group of pixels. Unfortunately, this is not the case with video where 
real-time noise reduction is still a subject of many researches. However, current DirectX 10 
class hardware allows us to implement high quality filters that run at acceptable frame rates. 
Starting from GeForce 8 series graphic cards we can also benefit from using CUDA – a 
general purpose GPU programming system. Features such as shared memory and sync 
points combined together with flexible thread control allow us to speed up algorithms 
considerably.  

  



  

    

 

 

July 2012 

How It Works 

The main idea of any neighborhood filter is to calculate pixel weights depending on how 
similar their colors are. We describe two such methods: the K Nearest Neighbors and Non 
Local Means filters 

K Nearest Neighbors Filter 
The K Nearest Neighbors filter was designed to reduce white noise and is basically a more 
complex Gaussian blur filter. Let u(x) be the original noisy image, and KNNh,ru(x) be the 
result produced by the KNN filter with parameters h and r. Let Ω(p) be the spatial 
neighborhood of a certain size surrounding pixel p. We will consider it to be a block of 
pixels of size NxN, where N = 2M + 1 – so that p is the central pixel of Ω(p). Then let 

KNNh,ru(x) = yy
x

xyxy

xΩ

dee)(u
)(C

h

|)(u)(u|

r

||

)(

2

2

2

2

1








 where C(x) is the normalizing 

coefficient. 

  

   

Figure 1. Original, Noisy and KNN Restored Picture 

Non Local Means Filter 
The Non Local Means filter is a more complex variation of the KNN filter. Using the same 
notation as for KNN, let NLMh,r,Bu(x) be the restored image, Let B(q) be the spatial 

neighborhood of a certain size surrounding pixel q. We will consider it to be a block of 

pixels of size KxK, where K = 2L + 1 – so that q is the central pixel of B(q). Then let  

NLMh,r,Bu(x) = yy
x

xy

xΩ

dee)(u
)(C

h

nceColorDista

r

||

)(

22

2

1
B(y))(B(x),






   



  

    

 

 

July 2012 

 

where C(x) is the normalizing coefficient, and 

αααxy
B

yBxB
xB

d|)(u))((u|
)(S

))(),(nce(ColorDista
)(

21
    

where S(B) is B’s area. Thus ColorDistance(B(x),B(y)) 

represents a normalized sum of the absolute differences between blocks 
around pixel u(x) and around pixel u(y). 

 

   

Figure 2. Original, Noisy and NLM Restored Picture. 

Note: NLM can even fix some flaws in original images (Figure 4) 

      

Figure 3. Original and NLM Restored Picture. 

Speeding up NLM. 
Whereas KNN runs in real-time ( ~500 fps on 8800 GTX ) NLM is much slower. The main 
reason for that is the great amount of texture fetches: 

o For every pixel N2 number of weights need to be count where (N = 2M + 1 then 

M = Window Radius).  



  

    

 

 

July 2012 

o To calculate each weight additional K2 number of weights need to be count where 

(K = 2L + 1 then L = Block Radius) texture fetches are done to calculate 

ColorDistance() function.  

Basically an O(N2 * K2) number of fetches is done and only reducing that number will 

increase performance.  

The proposed solution is to assume that within every block weights do not change. Thus we 
calculate weights for central pixel only and use these weights as convolution coefficients. 
That way the number of texture fetches is reduced to O(K2). Considering that the most 

common values for N = 7 we make 49 times fewer texture fetches. 

The assumption that weights are uniform within a block is fairly true. Most smooth areas are 
restored with no visual difference from original NLM. However areas with edges can be 
restored with artifacts. 

  

  

Original NLM Image Quick NLM Image 

Figure 5. Difference between NLM and quick NLM method. 

Quick NLM can be used in combination with KNN. The combination of their results will be 
more accurate than the individual results, and still faster than the original NLM 
implementation.  

Choosing Parameters 
There is always the question of choosing the best parameters for KNN and NLM. As 
evident from the previous equations the weights for surrounding pixels depend on the 
following parameters 



  

    

 

 

July 2012 

 r – can be considered to be a traditional Gaussian blur coefficient. If then 

KNN transforms into Gaussian blur. As with Gaussian blur r should be  

equal to N. 

 h – is a lot more tricky to choose. In fact, the best way to select h is to make it 

user defined as estimation of quality of the image is highly subjective. 

 The size of Ω depends on the size of the image, but good visual results are 
usually achieved with a 5x5 or 7x7 blocks of pixels. We have chosen 7x7 for our 
CUDA implementation. 

 NLM has one additional parameter – the size of B. We have chosen 7x7 for our 

CUDA implementation. 

 Quick NLM has one additional parameter – the block of pixels that share 
weights. This parameter is crucial in speeding NLM. We have chosen to share 
weights among a block of 8x8 pixels. This approach increases performance by 
almost 18 times but introduces some minor artifacts. 

Implementation Details 
Both methods can be easily implemented on CUDA. The noisy picture is loaded as a texture 
and the filter is implemented in a CUDA kernel. The restored image is rendered into a PBO. 
Quick NLM (NLM2) uses shared memory to precompute pixel weights. Every thread 
calculates a single weight and stores it into a shared array. After all threads are synced, they 
use the same weights to average pixels within the block.  

Running the Sample 
KNN has the following parameters that can be altered by the user: 

 Noise Level corresponds to h in the formula for KNNh,ru(x) and 

NLMh,r,Bu(x). 

 Gaussian Sigma is a traditional Gaussian blur coefficient. It corresponds to r in 
the formula for KNNh,ru(x) and NLMh,r,Bu(x). 

 Lerp Coefficient, Weight Threshold and Counter Threshold are used in a simple 
modification: 

After the weight of a pixel is calculated, it can be compared to 
KNN_WEIGHT_THRESHOLD. The percentage of weights that are greater than 

KNN_WEIGHT_THRESHOLD is accumulated into the fCount variable. The 

working range for KNN_WEIGHT_THRESHOLD is (0.66f, 0.95f). 

Once all the weights are calcualated, and a restored pixel has been computed, we 
blend between the original and restored pixels. The blending quotient lerpC, 

has working range [0.00, 0.33]. A simple check determines if the block is 
“smooth”: if fCount exceeds KNN_LERP_THRESHOLD (having typical 

value of 66%), the block is considered to be smooth enough, so filtered pixel 
value should have more weight in the output than the original (noisy) input pixel 
value. Otherwise the block is presumed to contain edges or small features, and in 
order to give more weight to the original input pixel value in the output and 
retain important visual image properties, lerpC is reverted. 



  

    

 

 

July 2012 

float lerpQ = (fCount > KNN_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC; 

clr.x = lerpf(clr.x, clr00.x, lerpQ); 

clr.y = lerpf(clr.y, clr00.y, lerpQ); 

clr.z = lerpf(clr.z, clr00.z, lerpQ); 

      

 Window Radius determines the size of Ω. If Ω is a block of pixels of size NxN, 

where N = 2M + 1 then M = Window Radius.  

NLM has one additional parameter: 

 Block Radius determines the size of B. If B is a block of pixels of size KxK, 

where K = 2L + 1 then L = Block Radius. 

Performance 
Traditionally, image filtering is much faster on the GPU than on the CPU. Both KNN and 
NLM are not exceptions.  

On a sample 320 x 408 image on GeForce 8800GTX all the three modifications run in real 
time:  

 KNN: 500 fps;  

 NLM: 26 fps; much slower than KNN, due to increased texture fetch pressure. 

 Quick NLM (NLM2): ~470 fps, almost as fast as KNN. 

The computational complexity of all the three modifications grows proportionally to the 
image size. 

 

  

Original Image Noisy Image 



  

    

 

 

July 2012 

Figure 6. Noise in an Image 

 

  

Image restored with KNN, runs at ~ 500 FPS with 
Window Radius = 3 

Image restored with NLM, runs at ~ 26 FPS with 
Window Radius = 3 and Block Radius = 3 

Figure 7. Restored Images 

 
 

References 

[1] A. Buades, B. Coll, and J. Morel. “Neighborhood Filters and PDE’s”. Technical Report 2005-
04, CMLA, 2005. 

[2] L. Yaroslavsky. “Digital Picture Processing - An Introduction”. Springer Verlag, 1985. 

 

 



  

    

 

 

July 2012 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or 
registered trademarks of NVIDIA Corporation in the United States and other countries. Other 
company and product names may be trademarks of the respective companies with which they 
are associated. 

 

Copyright 

© 2007-2012 NVIDIA Corporation. All rights reserved.  


	Alexander Kharlamov akharlamov@nvidia.com
	Victor Podlozhnyuk
	vpodlozhnyuk@nvidia.com
	Document Change History

	Abstract
	Motivation
	How It Works
	K Nearest Neighbors Filter
	Non Local Means Filter
	Speeding up NLM.
	Choosing Parameters
	Implementation Details
	Running the Sample
	Performance

	References

