
CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-1

5008: Computer
Architecture

5008: Computer 5008: Computer
ArchitectureArchitecture

Chapter 4 Chapter 4 –– Multiprocessors and Multiprocessors and
ThreadThread--Level Parallelism Level Parallelism ----IIII

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-2

Review
• Caches contain all information on state of cached

memory blocks
• Snooping cache over shared medium for smaller

MP by invalidating other cached copies on write
• Sharing cached data

⇒ Coherence (values returned by a read),
⇒ Consistency (when a written value will be

returned by a read)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-3

Coherency Misses
1. True sharing misses arise from the

communication of data through the cache
coherence mechanism

• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different

cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the
one being read, is written into

• Invalidation does not cause a new value to be
communicated, but only causes an extra cache miss

• Block is shared, but no word in block is actually shared
⇒ miss would not occur if block size were 1 word

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-4

Example: True vs. False Sharing vs. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11

True, False, Hit? Why?P2P1Time

• Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-5

Outline
• Review
• Directory-based protocols and examples
• Synchronization
• Relaxed Consistency Models
• Conclusion

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-6

A Cache Coherent System Must:
• Provide set of states, state transition diagram, and actions
• Manage coherence protocol

– (0) Determine when to invoke coherence protocol
– (a) Find info about state of block in other caches to determine

action
• whether need to communicate with other cached copies

– (b) Locate the other copies
– (c) Communicate with those copies (invalidate/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-7

Bus-based Coherence
• All of (a), (b), (c) done through broadcast on bus

– faulting processor sends out a “search”
– others respond to the search probe and take necessary action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t scale with p
– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least p network

transactions
• Scalable coherence:

– can have same cache states and state transition diagram
– different mechanisms to manage protocol

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-8

Scalable Approach: Directories
• Every memory block has associated directory

information (may be cached)
– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and

communicate only with the nodes that have copies if
necessary

– in scalable networks, communication with directory and
copies is through network transactions

• Many alternatives for organizing directory
information

Basic Operation of Directory

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state

to shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ...

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-10

Directory Protocol
• Similar to Snoopy Protocol: Three states

– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which processors
have data when in the shared state (usually bit vector, 1 if
processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received and acted upon in order sent

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-11

Directory Protocol
• No bus and don’t want to broadcast:

– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location of an address

resides
– Remote node has a copy of a cache block, whether

exclusive or shared
• Example messages on next slide:

P = processor number, A = address

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-12

Directory Protocol Messages (Fig 4.22)
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and request data

Write miss Local cache Home directory P, A
– Processor P has a write miss at address A;

make P the exclusive owner and request data
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared

Fetch/Invalidate Home directory Remote cache A
– Fetch the block at address A and send it to its home directory;

invalidate the block in the cache
Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)
Data write back Remote cache Home directory A, Data

– Write back a data value for address A (invalidate response)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-13

State Transition Diagram for One Cache
Block in Directory Based System

• States identical to snoopy case; transactions very
similar.

• Transitions caused by read misses, write misses,
invalidates, data fetch requests

• Generates read miss & write miss msg to home
directory.

• Write misses that were broadcast on the bus for
snooping => explicit invalidate & data fetch
requests.

• Note: on a write, a cache block is bigger, so need
to read the full cache block

CPU -Cache State Machine
• State machine

for CPU requests
for each
memory block

• Invalid state
if in memory

Fetch/Invalidate
send Data Write Back message

to home directory

Invalidate

Invalid

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write: Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home directory

CPU read miss: send Data
Write Back message and
read miss to home directory

Shared
(read/only)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-15

State Transition Diagram for Directory

• Same states & structure as the transition
diagram for an individual cache

• 2 actions: update of directory state & send
messages to satisfy requests

• Tracks all copies of memory block
• Also indicates an action that updates the sharing

set, Sharers, as well as sending a message

Directory State Machine
• State machine

for Directory requests
for each
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-17

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value;
only possible requests for that block are:

– Read miss: requesting processor sent data from memory &requestor
made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in

the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

09-18

Example Directory Protocol
• Block is Exclusive: current value of the block is held in the cache

of the processor identified by the set Sharers (the owner) =>
three possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of
block in owner’s cache to transition to Shared and causes owner to
send data to directory, where it is written to memory & sent back to
requesting processor.
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still
has a readable copy). State is shared.

– Data write-back: owner processor is replacing the block and hence
must write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner
causing the cache to send the value of the block to the directory from
which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to identity of new owner, and state of block is
made Exclusive.

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-19

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-20

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-21

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-22

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

A1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-23

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-24

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1A1

A1 and A2 map to the same cache block
(but different memory block addresses A1 ≠ A2)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-25

Implementing a Directory
• We assume operations atomic, but they are not;

reality is much harder; must avoid deadlock when
run out of buffers in network (see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly

to requestor from owner vs. 1st to memory and then
from memory to requestor

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-26

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

09-27

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

09-28

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_S

S

S

09-29

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pARead_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req EW/_

I

E

W/req E

RU/_

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-31

A Popular Middle Ground
• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected

non-hiearchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• SMP on a chip directory + snoop?

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-32

And in Conclusion …
• Caches contain all information on state of cached memory

blocks
• Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write
• Sharing cached data ⇒ Coherence (values returned by a

read), Consistency (when a written value will be returned by
a read)

• Snooping and Directory Protocols similar; bus makes
snooping easier because of broadcast (snooping => uniform
memory access)

• Directory has extra data structure to keep track of state
of all cache blocks

• Distributing directory => scalable shared address
multiprocessor
=> Cache coherent, Non uniform memory access

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-33

Outline
• Review
• Directory-based protocols and examples
• Synchronization
• Relaxed Consistency Models
• Conclusion

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-34

Synchronization
• Why Synchronize? Need to know when it is safe

for different processes to use shared data

• Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory

(atomic operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-35

Uninterruptable Instruction to
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for a
value in memory
0 ⇒ synchronization variable is free
1 ⇒ synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible
• Test-and-set: tests a value and sets it if the value passes

the test
• Fetch-and-increment: it returns the value of a memory

location and atomically increments it
– 0 ⇒ synchronization variable is free

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-36

Uninterruptable Instruction to
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to

same memory location since preceding load) and 0 otherwise
• Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-37

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire, spinning
around a loop trying to get the lock

daddui R2,R0,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;≠ 0 ⇒ not free ⇒ spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-38

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the new
value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the same
as if the accesses of each processor were kept in order and
the accesses among different processors were interleaved
⇒ assignments must be completed before the if statements
are initiated
– SC: delay all memory accesses until all invalidates done

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-39

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not an issue for most programs; they are synchronized

– A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are not
synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since most
programs are synchronized; characterized by their attitude
towards: RAR, WAR, RAW, WAW
to different addresses

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-40

Relaxed Consistency Models:
The Basics

• Key idea: allow reads and writes to complete out of order, but to use
synchronization operations to enforce ordering, so that a synchronized
program behaves as if the processor were sequentially consistent

– By relaxing orderings, may obtain performance advantages
– Also specifies range of legal compiler optimizations on shared data
– Unless synchronization points are clearly defined and programs are synchronized,

compiler could not interchange read and write of 2 shared data items because
might affect the semantics of the program

• 3 major sets of relaxed orderings:
1. W→R ordering (all writes completed before next read)

• Because retains ordering among writes, many programs that operate
under sequential consistency operate under this model, without
additional synchronization. Called processor consistency

2. W → W ordering (all writes completed before next write)
3. R → W and R → R orderings, a variety of models depending on ordering

restrictions and how synchronization operations enforce ordering
• Many complexities in relaxed consistency models; defining precisely what it

means for a write to complete; deciding when processors can see values
that it has written

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-41

Outline
• Review
• Directory-based protocols and examples
• Synchronization
• Relaxed Consistency Models
• Conclusion
• T1 (“Niagara”) Multiprocessor

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-42

T1 (“Niagara”)
• Target: Commercial server applications

– High thread level parallelism (TLP)
• Large numbers of parallel client requests

– Low instruction level parallelism (ILP)
• High cache miss rates
• Many unpredictable branches
• Frequent load-load dependencies

• Power, cooling, and space are major concerns
for data centers

• Metric: Performance/Watt/Sq. Ft.
• Approach: Multicore, Fine-grain multithreading,

Simple pipeline, Small L1 caches, Shared L2

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-43

T1 Architecture
• Also ships with 6 or 4 processors

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-44

T1 Fine-Grained Multithreading
• Each core supports four threads and has its own level one

caches (16KB for instructions and 8 KB for data)
• Switching to a new thread on each clock cycle
• Idle threads are bypassed in the scheduling

– Waiting due to a pipeline delay or cache miss
– Processor is idle only when all 4 threads are idle or

stalled
• Both loads and branches incur a 3 cycle delay that can only

be hidden by other threads
• A single set of floating point functional units is shared by

all 8 cores
– floating point performance was not a focus for T1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-45

Memory, Clock, Power
• 16 KB 4 way set assoc. I$/ core
• 8 KB 4 way set assoc. D$/ core
• 3MB 12 way set assoc. L2 $ shared

– 4 x 750KB independent banks
– crossbar switch to connect
– 2 cycle throughput, 8 cycle latency
– Direct link to DRAM & Jbus
– Manages cache coherence for the 8 cores
– CAM based directory

• Coherency is enforced among the L1 caches by a directory associated with
each L2 cache block

• Used to track which L1 caches have copies of an L2 block
• By associating each L2 with a particular memory bank and enforcing the

subset property, T1 can place the directory at L2 rather than at the
memory, which reduces the directory overhead

• L1 data cache is write-through, only invalidation messages are required; the
data can always be retrieved from the L2 cache

• 1.2 GHz at ≈72W typical, 79W peak power consumption

09-46

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

1.5 MB;
32B

1.5 MB;
64B

3 MB;
32B

3 MB;
64B

6 MB;
32B

6 MB;
64B

L2
 M

is
s

ra
te

TPC-C

SPECJBB

Miss Rates: L2 Cache Size, Block Size

T1

09-47

0

20

40

60

80

100

120

140

160

180

200

1.5 MB; 32B 1.5 MB; 64B 3 MB; 32B 3 MB; 64B 6 MB; 32B 6 MB; 64B

L2
 M

is
s

la
te

nc
y

TPC-C
SPECJBB

Miss Latency: L2 Cache Size, Block Size

T1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-48

CPI Breakdown of Performance

4.80.21 1.65 6.60 SPECWeb99

5.70.18 1.40 5.60 SPECJBB

4.40.23 1.80 7.20 TPC-C

Effective
IPC for
8 cores

Effective
CPI for
8 cores

Per
core
CPI

Per
Thread

CPIBenchmark

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-49

Not Ready Breakdown

• TPC-C - store buffer full is largest contributor
• SPEC-JBB - atomic instructions are largest contributor
• SPECWeb99 - both factors contribute

0%

20%

40%

60%

80%

100%

TPC-C SPECJBB SPECWeb99

Fr
ac

tio
n

of
 c

yc
le

s
no

t r
ea

dy

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-50

Microprocessor Comparison
• Please refer to Fig. 4.32

09-51

Performance Relative to Pentium D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

SPECIntRate SPECFPRate SPECJBB05 SPECWeb05 TPC-like

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 P
en

tiu
m

 D

+Power5 Opteron Sun T1

09-52

Performance/mm2, Performance/Watt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

SPECInt
Rate/

mm
2̂

SPECInt
Rate

/W
att

SPECFP
Rate

/m
m^2

SPECFP
Rate

/W
att

SPECJB
B05

/m
m

2̂
SPECJB

B05
/W

att
TP

C-C
/m

m
2̂

TPC-C
/W

att

Ef
fic

ie
nc

y
no

rm
al

iz
ed

 to
 P

en
tiu

m
 D

+Power5 Opteron Sun T1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 09-53

Niagara 2
• Improve performance by increasing threads supported per

chip from 32 to 64
– 8 cores * 8 threads per core

• Floating-point unit for each core, not for each chip
• Hardware support for encryption standards EAS, 3DES, and

elliptical-curve cryptography
• Niagara 2 will add a number of 8x PCI Express interfaces

directly into the chip in addition to integrated 10Gigabit
Ethernet XAU interfaces and Gigabit Ethernet ports.

• Integrated memory controllers will shift support from
DDR2 to FB-DIMMs and double the maximum amount of
system memory.

