
CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-1

5008: Computer
Architecture

5008: Computer 5008: Computer
ArchitectureArchitecture

Chapter 4 Chapter 4 –– Multiprocessors and Multiprocessors and
ThreadThread--Level ParallelismLevel Parallelism

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-2

On SMT…
• “Simultaneous Multithreading: A Platform for

Next-generation Processors,” Susan J. Eggers et al,
IEEE Micro, 1997

• What were worse options than SMT for 1B
transistors?

• What is the main extra hardware resource that
SMT requires?

• What is “Vertical” and “Horizontal” waste?
• How does SMT differ from Multithreading?
• What unit is the bottleneck for SMT

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-3

On SMT… (con’t)
• How many instructions fetched per clock cycle?

From how many threads?
• How did it do priority?
• What assumption made about computer

organization before add SMT?
– When did they think it would ship?
– How compare to slide 06-47?
– What was memory hierarchy?

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-4

Outline
• Review
• MP Motivation
• SISD v. SIMD v. MIMD
• Centralized vs. Distributed Memory
• Challenges to Parallel Programming
• Consistency, Coherency, Write Serialization
• Write Invalidate Protocol
• Example
• Conclusion

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

3X

Trend?
“… today’s processors … are nearing an impasse as technologies

approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)

⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor
8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-7

Other Factors ⇒ Multiprocessors
• Growth in data-intensive applications

– Data bases, file servers, …
• Growing interest in servers, server performance.
• Increasing desktop performance less important
• Improved understanding in how to use

multiprocessors effectively
– Especially server where significant natural TLP

• Advantage of leveraging design investment by
replication
– Rather than unique design

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-8

Flynn’s Taxonomy
• Flynn classified by data and control streams in 1966

• SIMD ⇒ Data Level Parallelism
• MIMD ⇒ Thread Level Parallelism
• MIMD popular because

– Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Multiple Instruction
Multiple Data MIMD
(Clusters, SMP servers)

Multiple Instruction Single
Data (MISD)
(????)

Single Instruction Multiple
Data SIMD
(single PC: Vector, CM-2)

Single Instruction Single
Data (SISD)
(Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-9

Back to Basics
• “A parallel computer is a collection of processing elements

that cooperate and communicate to solve large problems
fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:
1. Centralized Memory Multiprocessor

• < few dozen processor chips (and < 100 cores) in 2006
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1.
• BW demands ⇒ Memory distributed among processors

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-10

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory Distributed Memory

Scale

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-11

Centralized Memory Multiprocessor
• Also called symmetric multiprocessors (SMPs)

because single main memory has a symmetric
relationship to all processors

• Large caches ⇒ single memory can satisfy
memory demands of small number of processors

• Can scale to a few dozen processors by using a
switch and by using many memory banks

• Although scaling beyond that is technically
conceivable, it becomes less attractive as the
number of processors sharing centralized
memory increases

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-12

Distributed Memory Multiprocessor
• Pro: Cost-effective way to scale memory

bandwidth
• If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors
more complex

• Con: Must change software to take advantage of
increased memory BW

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-13

2 Models for Communication
and Memory Architecture

1. Communication occurs by explicitly passing messages among
the processors:
message-passing multiprocessors

2. Communication occurs through a shared address space (via
loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared address,

centralized memory MP
• NUMA (Non Uniform Memory Access time multiprocessor) for

shared address, distributed memory MP
• In past, confusion whether “sharing” means sharing physical

memory (Symmetric MP) or sharing address space

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-14

Challenges of Parallel Processing
• First challenge is % of program inherently

sequential

• Suppose 80X speedup from 100 processors.
What fraction of original program can be
sequential?
a. 10%
b. 5%
c. 1%
d. <1%

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-15

Amdahl’s Law Answers

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1
100

Fraction
 Fraction 180

100
Fraction

 Fraction 1

1 08

Speedup
Fraction Fraction 1

1 Speedup

parallel

parallelparallel

parallel
parallel

parallel
parallel

enhanced

enhanced
enhanced

overall

==

×−×=

=⎥
⎦

⎤
⎢
⎣

⎡
+−×

+−
=

+−
=

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-16

Challenges of Parallel Processing
• Second challenge is long latency to remote memory

• Suppose 32 CPU MP, 2GHz, 200 ns remote memory,
all local accesses hit memory hierarchy and base
CPI is 0.5. (Remote access = 200/0.5 = 400 clock
cycles.)

• What is performance impact if 0.2% instructions
involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-17

CPI Equation
• CPI = Base CPI +

Remote request rate x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3
• No communication (the MP with all local reference)

is 1.3/0.5 or 2.6 faster than 0.2% instructions
involve local access

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-18

Challenges of Parallel Processing
1. Application parallelism ⇒ primarily via new

algorithms that have better parallel performance
2. Long remote latency impact ⇒ both by architect

and by the programmer
• For example, reduce frequency of remote

accesses either by
– Caching shared data (HW)
– Restructuring the data layout to make more accesses

local (SW)

(Today’s lecture on HW to help latency via caches)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-19

Symmetric Shared-Memory
Architectures

• From multiple boards on a shared bus to multiple
processors inside a single chip

• Caches both
– Private data are used by a single processor
– Shared data are used by multiple processors

• Caching shared data
⇒ reduces latency to shared data, memory bandwidth for
shared data, and interconnect bandwidth
⇒ cache coherence problem

08-20

Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
• Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses to

different locations issued by a given process
– to preserve orders among accesses to same location by

different processes
• Coherence is not enough!

– pertains only to single location

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-22

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues
1. Coherence defines values returned by a read
2. Consistency determines when a written value will be

returned by a read
• Coherence defines behavior to same location, Consistency

defines behavior to other locations

• Reading an address should
return the last value
written to that address
– Easy in uniprocessors,

except for I/O

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-23

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to location

X that follows a write by P to X, with no writes of X by
another processor occurring between the write and the
read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to location
X that follows a write by another processor to X returns
the written value if the read and write are sufficiently
separated in time and no other writes to X occur between
the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors
– If not, a processor could keep value 1 since saw as last write
– For example, if the values 1 and then 2 are written to a

location, processors can never read the value of the location
as 2 and then later read it as 1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-24

Write Consistency
• For now assume
1. A write does not complete (and allow the next

write to occur) until all processors have seen the
effect of that write

2. The processor does not change the order of any
write with respect to any other memory access

⇒ if a processor writes location A followed by
location B, any processor that sees the new value
of B must also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-25

Basic Schemes for Enforcing
Coherence

• Program on multiple processors will normally have copies of the
same data in several caches
– Unlike I/O, where its rare

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches
– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and used there
in a transparent fashion
– Reduces both latency to access shared data that is allocated

remotely and bandwidth demand on the shared memory
• Replication – for shared data being simultaneously read, since

caches make a copy of data in local cache
– Reduces both latency of access and contention for read shared

data

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-26

2 Classes of Cache
Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

2. Snooping — Every cache with a copy of data also
has a copy of sharing status of block, but no
centralized state is kept
• All caches are accessible via some broadcast medium (a

bus or switch)
• All cache controllers monitor or snoop on the medium to

determine whether or not they have a copy of a block
that is requested on a bus or switch access

to track the sharing status

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-27

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on the shared
medium (bus or switch)
– relevant transaction if for a block it contains
– take action to ensure coherence

• invalidate, update, or supply value
– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-28

Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium BW
⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7 Exclusive access ensures that no
other readable or writable copies
of an data exist when the write
occurs

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-29

Architectural Building Blocks
• Cache block state transition diagram

– FSM specifying how disposition of block changes
• invalid, valid, dirty

• Broadcast Medium Transactions (e.g., bus)
– Fundamental system design abstraction
– Logically single set of wires connect several devices
– Protocol: arbitration, command/addr, data
⇒ Every device observes every transaction

• Broadcast medium enforces serialization of read or write
accesses ⇒ Write serialization
– 1st processor to get medium invalidates others copies
– Implies cannot complete write until it obtains bus
– All coherence schemes require serializing accesses to same

cache block
• Also need to find up-to-date copy of cache block

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-30

Locate Up-to-date Copy of Data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW
• Write-back harder

– Most recent copy can be in a cache
• Can use same snooping mechanism

1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache block, it

provides it in response to a read request and aborts the memory
access

– Complexity from retrieving cache block from a processor cache,
which can take longer than retrieving it from memory

• Write-back needs lower memory bandwidth
⇒ Support larger numbers of faster processors
⇒ Most multiprocessors use write-back

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-31

Cache Resources for WB Snooping
• Normal cache tags can be used for snooping
• Valid bit per block makes invalidation easy
• Read misses easy since rely on snooping
• Writes ⇒ Need to know if know whether any

other copies of the block are cached
– No other copies ⇒ No need to place write on bus for WB
– Other copies ⇒ Need to place invalidate on bus

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-32

Cache Resources for WB Snooping
• To track whether a cache block is shared, add

extra state bit associated with each cache block,
like valid bit and dirty bit
– Write to Shared block ⇒ Need to place invalidate on bus

and mark cache block as private (if an option)
– No further invalidations will be sent for that block
– This processor called owner of cache block
– Owner then changes state from shared to unshared (or

exclusive)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-33

Cache Behavior in Response to Bus
• Every bus transaction must check the cache-address tags

– could potentially interfere with processor cache accesses
• A way to reduce interference is to duplicate tags

– One set for caches access, one set for bus accesses
• Another way to reduce interference is to use L2 tags

– Since L2 less heavily used than L1
⇒ Every entry in L1 cache must be present in the L2 cache, called

the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate for the

L1 cache to update the state and possibly retrieve the data,
which usually requires a stall of the processor

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-34

Example Protocol
• Snooping coherence protocol is usually implemented by

incorporating a finite-state controller in each node
• Logically, think of a separate controller associated with

each cache block
– That is, snooping operations or cache requests for different

blocks can proceed independently
• In implementations, a single controller allows multiple

operations to distinct blocks to proceed in interleaved
fashion
– that is, one operation may be initiated before another is

completed, even through only one cache access or one bus
access is allowed at time

Write-through Invalidate Protocol
• 2 states per block in each cache

– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that cache
• Writes invalidate all other cache copies

– can have multiple simultaneous readers of
block,but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-36

Is 2-state Protocol Coherent?
• Processor only observes state of memory system by issuing memory

operations
• Assume bus transactions and memory operations are atomic and a one-

level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing

next
– with one-level cache, assume invalidations applied during bus

transaction
• All writes go to bus + atomicity

– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so

determines whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus

or enter directly in bus order

• Let’s understand other ordering issues

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-37

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though

shared-medium (bus) will order read misses too
– any order among reads between writes is fine,

as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-38

Example: Write Back Snoopy Protocol
• Invalidation protocol, write-back cache

– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block in

response to the read request and aborts the memory access
• Each memory block is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus
• Writes to clean blocks are treated as misses

CPU Read hit

Write-Back State Machine - CPU
• State machine

for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss (?)
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine- Bus Request

• State machine
for bus requests
for each

cache block
Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Block-replacement

• State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Place read miss
on bus

Write-back State Machine-III

• State machine
for CPU requests
for each
cache block and
for bus requests
for each

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-43

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-44

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-45

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-46

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-47

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-48

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-49

Concluding Remark (1/2)
• 1 instruction operates on vectors of data
• Vector loads get data from memory into big

register files, operate, and then vector store
• E.g., Indexed load, store for sparse matrix
• Easy to add vector to commodity instruction set

– E.g., Morph SIMD into vector

• Vector is very effecient architecture for
vectorizable codes, including multimedia and many
scientific codes

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-50

Concluding Remark (2/2)
• “End” of uniprocessors speedup => Multiprocessors
• Parallelism challenges: % parallalizable, long latency to

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP
• Message Passing vs. Shared Address

– Uniform access time vs. Non-uniform access time
• Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write
• Sharing cached data ⇒ Coherence (values returned by a

read), Consistency (when a written value will be returned by a
read)

• Shared medium serializes writes
⇒ Write consistency

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-51

Implementation Complications
• Write Races:

– Cannot update cache until bus is obtained
• Otherwise, another processor may get bus first,

and then write the same cache block!
– Two step process:

• Arbitrate for bus
• Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
• Bus transaction is not atomic:

can have multiple outstanding transactions for a block
• Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
• Must track and prevent multiple misses for one block

• Must support interventions and invalidations

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-52

Implementing Snooping Caches
• Multiple processors must be on bus, access to both

addresses and data
• Add a few new commands to perform coherency,

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update
• Since every bus transaction checks cache tags,

could interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPU
– solution 2: L2 cache already duplicate,

provided L2 obeys inclusion with L1 cache
• block size, associativity of L2 affects L1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-53

Limitations in Symmetric Shared-Memory
Multiprocessors and Snooping Protocols

• Single memory accommodate all CPUs
⇒ Multiple memory banks

• Bus-based multiprocessor, bus must support both
coherence traffic & normal memory traffic
⇒ Multiple buses or interconnection networks
(cross bar or small point-to-point)

• Opteron
– Memory connected directly to each dual-core chip
– Point-to-point connections for up to 4 chips
– Remote memory and local memory latency are similar,

allowing OS Opteron as UMA computer

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-54

Performance of Symmetric Shared-
Memory Multiprocessors

• Cache performance is combination of
1. Uniprocessor cache miss traffic
2. Traffic caused by communication

– Results in invalidations and subsequent cache
misses

• 4th C: coherence miss
– Joins Compulsory, Capacity, Conflict

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-55

Coherency Misses
1. True sharing misses arise from the

communication of data through the cache
coherence mechanism

• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different

cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the
one being read, is written into

• Invalidation does not cause a new value to be
communicated, but only causes an extra cache miss

• Block is shared, but no word in block is actually shared
⇒ miss would not occur if block size were 1 word

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-56

Example: True vs. False Sharing vs. Hit?

Read x25

Write x24

Write x13

Read x22

Write x11

True, False, Hit? Why?P2P1Time

• Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-57

MP Performance 4 Processor
Commercial Workload: OLTP, Decision Support
(Database), Search Engine

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 MB 2 MB 4 MB 8 MB
Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• True sharing and
false sharing
unchanged going
from 1 MB to 8 MB
(L3 cache)

• Uniprocessor
cache misses
improve with
cache size increase
(Instruction,
Capacity/Conflict,
Compulsory)

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

CA Lecture08 - multiprocessors and TLP (cwliu@twins.ee.nctu.edu.tw) 08-58

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

• True sharing,
false sharing
increase going
from 1 to 8 CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

(M
em

or
y)

 C
yc

le
s

pe
r I

ns
tr

uc
tio

n

