pipr. OF ELECTROMICS | Yail
ENGINEERING & |
list, Of ELECTROMCS

D

A
5008: Computer

Architecture

Chapter 2 - Instruction-Level
Parallelism and Its Exploitation

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-1

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING o <}
inst. OF ELECIROMICS 2y —

Outline

« ILP

« Compiler techniques to increase ILP
* Loop Unrolling

« Static Branch Prediction

« Dynamic Branch Prediction

« Overcoming Data Hazards with Dynamic
Scheduling

e (Start) Tomasulo Algorithm
e Conclusion

—~

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-2

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Recall from Pipelining Review

Pipeline CPT = Ideal pipeline CPI + Structural Stalls + Data
Hazard Stalls + Control Stalls

- Ideal pipeline CPI: measure of the maximum
performance attainable by the implementation

- Structural hazards: HW cannot support this combination
of instructions

- Data hazards: Instruction depends on result of prior
instruction still in the pipeline

- Control hazards: Caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps)

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-3

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Instruction-Level Parallelism

* The technique of increasing the ability of the
processor to exploit parallelism among
iInstructions.

— To overlap the execution of instructions to improve
performance

- To reduce the impact of data and control hazards
« 2 approaches to exploit ILP

— Rely on hardware to help discover and exploit the
parallelism dynamically :
- depend on the hardware to locate the parallelism
* eg., Pentium 4, AMD Opteron, IBM Power
— Rely on software technology to find parallelism,
statically at compile-time :
- determine the parallelism at compiler time
* e.g., Itanium 2

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-4

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Instruction-Level Parallelism (ILP)
Basic Block (BB) ILP is quite small :

BB: a straight-line code sequence with no branches in except to the
entry and no branches out except at the exit

- average dynamic branch frequency 15% to 25%
=>4 fo 7 instructions execute between a pair of branches

- Plus instructions in BB likely to depend on each other
We must exploit ILP across multiple basic blocks

Loop—leyel X[1] = x[1] + y[1]
for (i=1; i<=1000, i=i+1) parallelism x[2] = x[2] + y[2]

x[i] = x[i] + y[i]

x[1000]=x[1000]+y[1000]

- Loop unrolling to exploit loop-level parallelism
- By compiler, statistically
* By hardware, dynamically

- Vector instructions

+ The lllorl\g latency of each vector instruction can be pipelined and operated in
paralle

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-5

pipt. OF FLECTRONICS 9 % N #T
ENGINEERING 4
inst. OF ELECTROMICS

Data Dependences and Parallelisms

» If 2 instructions are parallel

- they can execute simultaneously in a pipeline
without causing any stalls (except the
structural hazards)

- their execution order can be swapped

+ If 2 instructions are dependent

- they must execute in order or partially
overlapped.

» Exploit parallelism over instructions
=> Determine dependences over instructions

L=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-6

pipt. OF ELECTROMCS 3%
ENGINEERING & -}
st OF ELECIROMICS ™ ¢

3 Types of Data Dependences

* (True) Data dependences
* Name dependences
» Control dependences

—~

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-7

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Data Dependences

- A property of the programs.

» An instruction jis data dependent on instruction /if
either of the following holds

- instruction /produces a result that may be used by
instruction jJ

- instruction jis data dependent on instruction 4, and
instruction kis data dependent on instruction I (a chain of
dependences)

- Data dependent instructions
- indicates the possibility of a pipeline hazard

- determines the program order in which results must be
calculated

- sets an upper bound on how much parallelism can possibly
be exploited

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-8

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Data Dependence Example

Loop: L.D FO\ O(R1) ;FO=array element
ADD.D FZ}L F2 ‘add scalar in F2
S.D F4, 0O(R1) ;store result
DADDUI R1, R1, #-8 ;decrement pointer
BNE R1l, R2, Loop ‘branch R1!1=R2

The arrows show the order that must be preserved for correct
execution.

If two instructions are data dependent, they cannot execute
simultaneously or be completely overlapped.

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-9

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
EIGINEERING ¢ { gtz

ILP and Data Dependencies

HW/SW must preserve program order:
order instructions would execute in if executed sequentially as
determined by original source program

- Dependences are a property of programs
Presence of dependence indicates potential for a hazard, but
actual hazard and length of any stall is property of the pipeline
Importance of the data dependencies

1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be

exploited

HW/SW goal: exploit parallelism by preserving program order
gnly where it affects the outcome of the program

—~

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-10

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Overcome the Data Dependence

* Maintaining the dependence but avoiding a hazard
- scheduling the code in HW/SW approach

+ Eliminating a dependence by transforming the
code

- primary by software

» Dependence detection
- by register names: simpler
- by memory locations: more complicated

- Two addresses may refer to the same location but look
quite different (e.g. 100(R4), 20(R6) may be identical)

* The effective address of a load/store may changed from
instruction to instruction (20(R4), 20(R4) may be different)

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-11

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Recall Data Hazards

* A hazard is created when a dependence between
instructions closed enough

- This affects the outcome of the program, since the
operand access in wrong order

* The possible data hazards
- RAW: the true data dependence
- WAW: the output data dependence
- WAR: the anti-dependence
- RAR: this is not a hazard

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-12

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Nae Dependence: Anti-dependence

Name dependence: when 2 instructions use same register or
memory location, called a name, but no flow of data between
the instructions associated with that name; 2 versions of name
dependence

Instr; writes operand before Instr;reads it

l: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl1,r7

Called an "anti-dependence” by compiler writers.
This results from reuse of the name "r1”

If anti-dependence caused a hazard in the pipeline, called a
Write After Read (WAR) hazard

L=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-13

DiP1. OF FLECTROMCS 5 nesc. N 7T
EGNEERING ¢ { iz}
st OF ELECIROMCS M o

Name Dependence: Output dependence

Instr; writes operand before Instr;writes it.

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul re,rl,r7

Called an "output dependence” by compiler writers
This also results from the reuse of name "r1"

If anti-dependence caused a hazard in the pipeline, called a
Write After Write (WAW) hazard

Instructions involved in a name dependence can execute
simultaneously if name used in instructions is changed so
instructions do not conflict

- Register renaming resolves name dependence for regs

o Either by compiler or by HW
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-14

pipT. OF FLECTROMICS 5 Yaid
ENAINEERNG 11
s, OF ELECIROMICS

Register Renaming and WAW/WAR

. DIV.D FO, F2, F4
. ADD.D F6, FO, F8
. SD F6, 0 (R1)
. SUB.D F8, F10, F14

- MUL.D Fo6, F10, F8

» WAW: ADD.D/MUL.D
» WAR: ADD.D/SUB.D, S.D/MUL.D

» RAW: DIV.D/ADD.D, ADD.D/S.D
SUB.D/MUL.D

DIV.D FO, F2, F4
ADD.D S, FO, F8
S.D S, 0 (R1)

SUB.D T,F10, F14
MUL.D F6, F10, T

Register renaming result

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

04-15

pip1. OF ELECTRONICS 9 onie. N T
ENAINEERMNA ¢
inst. of ELECTROMICS

Control Dependencies

Every instruction is control dependent on
some set of branches, and, in general, these
control dependencies must be preserved to
preserve program order

It pl {

S1;

};

1t p2 {
S2;

}

- S1is control dependent on p1, and S2 is
control dependent on p2 but not on p1.

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-16

pip1 OF FLECIROMC 7 ana :
et @]
if p1{
Control Dependences '
I
» Control dependence is preserved by fwo A
properties in a simple pipeline: if p2 {
- instruction execution in program order }_32

- control/branch hazard detection
- ensure that an instruction that is control dependent on a
branch is not executed until the branch direction is known

+ Branch instructions (branches are conditional...)
- Aninstruction that is control dependent on a branch
cannot be moved before the branch

* We cannot take an instruction from the then portion of an
if statement and move it before the if statement

- Aninstruction that is not control dependent on a branch
cannot be moved after the branch

- We cannot take a statement before the if statement and
move it into the then portion

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-17

(

pipt. OF ELECTROMCS o
ENGINEERING &
nst. OF ELECIROMICS ™,

/(]
Control Dependence Ignored

The method to preserve the control dependence
- Be used in most simple pipeline CPUs
- Simple but inefficient

Control dependence is not the critical property
that must be preserved

- We may execute instruction that should not have been
executed, thereby violating the control dependence, if
we can do so without affecting the correctness of the
program

The two properties critical to program
correctness are

- The exception behavior

- Data flow

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-18

(

DEPT. OF FLECTROIMCS 5% g
ENGINEERING ¢ { <z §
tist. OF ELECIROMCS 2= <

Preserve the Exception Behavior

Control dependences

* Preserving exception behavior
= any changes in instruction execution order must not
change how exceptions are raised in program
(= no new exceptions)

+ Example
DADDU R2,R3, R4 reorder DADDU R2,R3,R4
BEQZ R2,L1 :> LW R1, 0(R2)
LW R1, 0(R2) BEQZ R2,L1
L1: L1:

- LW, BEQZ : control dependence, but not data dependence

- If interchange the order (still preserve the data dependence)

- We must ignore the possible exception (memory protection due to
LW instruction) when the branch is taken

- Speculation technique should take care of this issue

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-19

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Preserve Data Flow Behavior

* The data flow is the actual flow of data among
Instructions

* Branches make data flow dynamic
+ Example

DADDU R1,R2,R3
BEQZ R4)L
DSUBU R1,RS5,R6

I 2
OR R7, R1, R8

— R1 value depends on the branch is taken or not
— DSUBU cannot be moved above the branch.

- Speculation should take care this problem

* Program order, that determines which predecessor will
actually deliver a data value to the instruction, should be
:‘Qn ensured by maintaining the control dependences

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-20

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Outline

« Compiler techniques to increase ILP
* Loop Unrolling

« Static Branch Prediction

« Dynamic Branch Prediction

« Overcoming Data Hazards with Dynamic
Scheduling

e (Start) Tomasulo Algorithm
e Conclusion

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-21

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Software Techniques - Example

+ This code, add a scalar to a vector:
for (1=1000; 1>0; 1=1-1)
x[i] = x[i] + s:
+ Assume following latencies for all examples
- Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles

FP ALU op Another FP ALU op 4 3

FP ALU op Store double 3 2

Load double FP ALU op 1 1

Load double Store double 1 0

Integer op Integer op 1 o)

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-22

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

)

|—|-

for (1=1000; 1>0; i -1
x[1] = x[1] +

- First translate into MIPS code:

+ To simplify, assume 8 is lowest address

* R1is initially the address of the element in the array
with the highest address

« F2 contains the scalar value s

Loop: L.D FO,0(R1) ;FO=array element
ADD.D F4,FO0,F2 ;add scalar from F2
S.D O(R1),F4 ;store result
DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!'=zero

Where are the hazards?

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

(

04-23

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

,§
§

FP Loop Showing Stalls

1 Loop: L.D FO,0(R1) ;FO=array element

2 stall

3 ADD.D ,FO,F2 ;add scalar 1n F2

4 stall

) stall

6 S.D O(R1D), ;store result

7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
8 stall ;assumes can’t forward to branch
9 BNEZ R1,Loop ;branch R1l!=zero

Instruction Instruction Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

9 clock cycles: Rewrite code to minimize stalls? 04-24

pipt. OF ELECTROMCS o
ENGINEERING &
nst. OF ELECIROMICS ™,

D)
Revised FP Loop Minimizing Stalls

1 Loop: L.D FO,O0(R1)
2 DADDUI R1,R1,-8
3 ADD.D ,FO,F2
4 stall

) stall

6 S.D 8(R1),F4;altered offset when move DSUBUI
7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D),
4 for loop overhead:;
How make faster?

pipt. OF ELECTROMCS 3%

SR @lynroll Loop Four Times
(straightforward way)

1 cycle stadll

Loop:L.D FO,0(R1) Rewrite loop to

1
3 ADD.D F4,F0,F2 minimize stalls?
6 S.D O0(R1l),F4 -drop DSUBUI & BNEZ
2
9

L.D F6,-8(R1)
ADD.D F8,F6,F2

12 S.D -8(R1),F8 -drop DSUBUI & BNEZ
13 L.D F10,-16(R1)

15 ADD.D F12,F10,F2

18 S.D -16(R1),F12 :drop DSUBUI & BNEZ
19 L.D F14,-24(R1)

21 ADD.D F16,F14,F2

24 S.D -24(R1),F16

25 DADDUI R1,R1,#-32 :alter to 4*8

27 BNEZ R1,LOOP

27 clock cycles, or 6.75 per iteration

(Assumes R1 is multiple of 4)
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-26

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Unrolled Loop Detail

* Do not usually know upper bound of loop

- Suppose it is n, and we would like to unroll the
loop to make k copies of the body

* Instead of a single unrolled loop, we generate a
pair of consecutive loops:

- 1st executes (n mod k) times and has a body that is the
original loop

- 2nd is the unrolled body surrounded by an outer loop
that iterates (n/k) times
* For large values of n, most of the execution time
will be spent in the unrolled loop

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-27

(

pipt. OF ELECTROMCS 3, %%
ENGINEERING & -}
inst. OF ELECIROMICS 2y —

Unrolled Loop That Minimizes Stalls

1 Loop:L.D FO,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D O(R1),F4

10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 S.D (R1),F16 ;

14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-28

pib1. OF ELECIROMCS
fNGINEERING ¢ gz
tnist. OF ELECIROMICS my

5 Loop Unrolling Decisions

« Requires understanding how one instruction depends on another
and how the instructions can be changed or reordered given the
dependences:

1. Determine loop unrolling useful by finding that loop iterations
were independent (except for maintenance code)

2. Use different registers to avoid unnecessary constraints forced
by using same registers for different computations

3. Eliminate the extra test and branch instructions and adjust the
loop termination and iteration code

4. Determine that loads and stores in unrolled loop can be
interchanged by observing that loads and stores from different
iterations are independent
* Transformation requires analyzing memory addresses and finding that

they do not refer to the same address

Schedule the code, preserving any dependences needed to yield
the same result as the original code

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-29

pib1. OF ELECIROMCS
fNANEERING ¢ g
st OF ELECTROMCS

3 Limits to Loop Unrolling

1. Decrease in amount of overhead amortized with each extra
unrolling

e Amdahl’'s Law
2. Growth in code size

* For larger loops, concern it increases the instruction
cache miss rate

3. Register pressure (compiler limitation): potential shortfall
in registers created by aggressive unrolling and scheduling

« If not be possible to allocate all live values to registers,
may lose some or all of its advantage

« Loop unrolling reduces impact of branches on pipeline;
another way is branch prediction

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-30

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Outline

e Static Branch Prediction
« Dynamic Branch Prediction

« Overcoming Data Hazards with Dynamic
Scheduling

e (Start) Tomasulo Algorithm
e Conclusion

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

(

04-31

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Control Hazard Avoidance

» Consider Effects of Increasing the ILP

- Conftrol dependencies rapidly become the limiting factor

- They tend to not get optimized by the compiler
- Higher branch frequencies result

» Plus multiple issue (more than one instructions/sec) ->
more control instructions per sec.

- Control stall penalties will go up as machines go faster
- Amdahl's Law in action - again
* Branch Prediction: helps if can be done for
reasonable cost
- Static by compiler: appendix A
e.g. predict not taken, delay branch
- Dynamic by HW: this section

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-32

(

DEPT. OF FLECTROIMCS 5% g
ENGINEERING ¢ { gz}
tist. OF ELECIROMCS 2= <

Static Branch Prediction

» Lecture 3 showed scheduling code around delayed branch

» To reorder code around branches, need to predict branch
statically when compile

« Simplest scheme is to predict a branch as taken
— Average misprediction = untaken branch frequency = 34% SPEC

*More accurate 25% 1 22%

scheme predicts g 5, 18%

branches using o — 15%

profile S 15% 129 o 12% m

information S — 11% g0, 10%

collected from @ 10% - 6%

earlier runs, and & 4%

5% -

modify =

prediction based 0% ‘

on last run: & o 5 .
A 3~24% & & LS SECERES &

Q & o
N @Q\ @0\ %Q&Q) X ﬂ& $ 9
% 00 < 2 > < >
Integer Floating Point

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Dynamic Branch Prediction

« Why does prediction work?
— Underlying algorithm has reqgularities
— Data that is being operated on has reqgularities

— Instruction sequence has redundancies that are
artifacts of way that humans/compilers think about
problems

« Is dynamic branch prediction better than static
branch prediction?

— Seems to be

— There are a small number of important branches in
programs which have dynamic behavior

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-34

(

pipT. OF FLECTROMICS 5 Yaid
ENAINEERNG 11
s, OF ELECIROMICS

Dynamic Branch Prediction

* The predictor will depend on the behavior of the
branch at run time

- Goals:
- allow the processor to resolve the outcome of a branch
early, prevent control dependences from causing stalls
- Effectiveness of a branch prediction scheme
depends not only on the accuracy but also on the
cost of a branch
- BP_Performance = f (accuracy, cost of misprediction)

- Branch History Table (BHT)

- Lower bits of PC address index table of 1-bit values
 No "precise” address check - just match the lower bits
- Says whether or not branch taken last time

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-35

(

pipt. OF ELECTROMCS 3%

ENGINEERING 4

s, OF ELECIROMICS

Useful only for the target address is known before CC is decided

Imem

BHT Prediction

if prediction is

wrong then invert
the BHT entry

Branch

offset

mndex

Branch Targel

If two branch instructions with
the same lower hits...

49‘

(

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

(L
-
—

04-36

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

s——
=F

e

C

5;2

Dynamic Hardware Prediction

One-bit prediction scheme

taken not-taken
not-taken
T :
predict taken predict not-taken
<
taken

Problem: Loop caseincorrect predict twice, even if the branch is almost always taken

LOOP: LOAD R1, 100(R2) o
MUL R6. R6, R1 The steady-state prediction
SUBI R2 R2, #4 behavior will mispredict on the
BNEZ R2, LOOP first and last loop iterations

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-37

pipt. OF ELECTROMCS o

wae @ | |
Problem with the Simple BH

clear benefit is that it’'s cheap and understandable

+ Aliasing
- All branches with the same index (lower) bits reference
same BHT entry
- Hence they mutually predict each other

* No guarantee that a prediction is right. But it may not
matter anyway

- Avoidance

* Make the fable bigger - OK since it's only a single bit-
vector

- This is a common cache improvement strategy as well
- Other cache strategies may also apply

» Consider how this works for loops

- Always mispredict twice for every loop
» One is unavoidable since the exit is always a surprise

* However previous exit will always cause a mis-prediction
the first try of every new loop entry

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-38

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

N-bit Predictors

Idea: improve on the loop entry problem

2-bit counter implies 4 states
- Statistically 2 bits gets most of the advantage

taker{\
not-taken 5
jr—

Compiler could hint 11 taken
init. on loop branches not-taken
or it will go to 11 take
anyway in the 4th
iteration not-taken
predlct not-taken : predlct not taken

taken
A prediction must miss

not-taken
fwice before it is changed

Only the loop exit causes a mispredict

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-39

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING o <}
inst. OF ELECIROMICS 2y —

2-Bit Predictor

» The branch prediction buffer (BPB) is a
small special cache

- accessed with the instruction address during
the IF stage

- 2-bit attached to each block in instruction
cache and fetched with the instruction

- No help for 5-stage pipeline processor

» since in the ID stage, both whether the branch is
taken and what the target of the branch is at roughly
the same time

—~

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-40

(

pipt. OF ELECTROMCS
ENGINEERING &
s, OF ELECIROMICS

s—
—

_{yf’w‘ ™

[-

e

-

* Mispredict because either:
- Worong guess for that branch (accuracy)

BHT Accuracy

4K of BPB with 2-bit entries misprediction rates on SPEC89@IBM Power

- 6ot branch history of wrong branch when index the table (size)]

nasars

matrizz200

tomcocatw

doduc

SPECBEBY Spice
benchmarks

fopppR

gcc

ESpresso

eqntott

18 %o

1 %% 16 % 18 %

Frequency of mispredictions

pip1. OF ELECTROMICS 02
fNGINEERING ¢ §
st Of ELECIROMICS

To Increase the BHT Size

4096 about as good as infinite table
» The hit rate of the buffer is clearly not the limiting factor for an }

enough-large BHT size
nasar h s

orh

_ o= B 409E entries: O Unlimited entries:
matrix300 o= 2 bits perentnys 2 bits per entry .

tomoats - -ID:::

doduc TN - ,

5%5
spice I

k=S
SPECES

b h ks L
snenmar I, -

feppp et

I =
g

115

e Ees
F 595

aqrtott | 1

i 1094
! 1094

Ora 2% A% B%a 8% 10%: 129%: 14%5 1B%%: 18%%

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

The worst case for the 2-bit predictor

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa != bb) {

L1:

L2:

DSUBUI R3, R1, #2

BNEZ RS, L1 :branch b1(aa!=2)
DADDD R1, R0, RO ;aa=0

DSUBUI R3, R2, #2

BNEZ R3, L2 ;branch b2(bb!=2)
DADDD R2, R0, R0 ;bb=0

DSUBU R3, R1, R2

BEQZ RS3,L3 ;branch b3(aa==bb)

aa and bb are assigned to R1 and R2

If the first 2 untaken then
the 3" will always be taken

ﬁ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-43

pipT. OF FLECTROMICS 5 Yaid
ENAINEERNG é |
s, OF ELECIROMICS

rove Prediction Strategy By
Correlating Branches

- Consider the worst case for the 2-bit predictor
iIT (aa==2) then aa=0;
1IT (bb==2) then bb=0;
1T (aa = bb) then whatever
- single level predictors can never get this case

< If the first 2 fail then the 3
will always be taken

- Correlating or 2-level predictors

- The predictor uses the behavior of other branch(es) to
make a prediction

- Correlation = what happened on the last branch
- Predictor = which way to go

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-44

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Correlating Branches

Two-level predictors
Hypothesis: recently executed branches are correlated

Idea: record m most recently executed branches as taken
or not taken, and use that pattern to select the proper
branch history table

In general, (m,n) predictor means record last m branches to
select between 2™ history tables each with n-bit counters

- Old 2-bit BHT is then a (0,2) predictor

« Global Branch History: m-bit shift register keeping T/NT
status of last m branches

« Each entry in table has m n-bit predictors

L=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-45

pipt. OF ELECTROMCS 3%

ENAINEERNG
s, OF ELECIROMICS

*Generic (m,n) BHT

* (m,n) predictor

Use the behavior of the last m branches to choose from
2™ branch predictors, each of which is an n-bit predictor
for a single branch

Total bits for the (m, n) BHT prediction buffer:

Total _memory bits =2" xnx 2"

p bits of buffer index = 2P bit BHT

2™ banks of memory selected by the global branch history
(which is just a shift register) - e.g. a column address

Use p bits of the branch address to select row
Get the n predictor bits in the entry to make the decision

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-46

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

(2,2) Predictor Implementation

4 banks = each with 32 2-bit predictor entries

m—

JJ F

:
/ & * &
—,«L row] ‘h 2-bit predictor
* -
Decoder|addr for this branch

} :l';l;:‘:i decision
branch
address

Note: orthogonal L)

address model 2 4Td ; ’_‘

: ecoder
speeds decud_e _ i i 2-bit column address
common use is in DRAMS

prev-1| prev | global branch history

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-47

N\
\

pipt. OF ELECTROMCS 3.

s @l Example of Correlating Branch

s OF ELECIROMCS By

Predictors
if (d==0) BNEZ R1, L1 ;branch b1 (d!=0)
d=1; DAAIU R1, RO, #1 ‘d==0, so d=1
if (d==1) L1: DAAIU R3, R1, #-1
BNEZ R3, L2 -branch b2 (d!=1)

L2:

d is assigned to R1

=2
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-48

pipt. OF ELECTROMCS o

ENGINEERING 4

s, OF ELECIROMICS

e ki #%i]
:%_f |
(1]

|
|

| s 4
|
14
3 | "‘-’zx%%é

Example of Correlating Branch

Predictors (Cont.)

initial d==0? bl value of d d==1? b2
value of d before b2
0 YES not taken 1 YES not ‘rakenl
1 NO taken 1 YES not taken
2 NO taken 2 NO taken
1-bit predictor initialized to NT
d=? bl bl action New bl b2 b2 action| New b2
prediction prediction | prediction prediction
2 NT T T NT T T
0 T NT NT T NT NT
2 NT T T NT T T
0 T NT NT T NT NT
\“ All the branches are mispredicted !l 04-49

pipT. OF FLECTROMICS :i;” |

ENGINEERING 4

s, OF ELECIROMICS

Example of Correlating Branch
Predictors (Cont.)

Prediction Prediction if last Prediction if last branch
bits branch not taken taken
NT/NT NT NT
NT/T NT T
T/NT T NT
T/T T T

(1,1) predictor
Use 1-bit correlation + 1-bit prediction with initialized to NT/NT

d=? bl bl action New bl b2 b2 action| New b2
prediction prediction | prediction prediction
2 NT/NT T T/NT NT/NT T NT/T
0 T/NT NT T/NT NT/T NT NT/T
2 T/NT T T/NT NT/T T NT/T
0 T/NT NT T/NT NT/T NT NT/T
b Ae=?
~@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-50

pipt. OF ELECTROMCS
ENGINEERING 4
st Of ELECTROMCS

.fj

nasarsy

matrix300

tomcatwv

doduc

SPECS89
benchmarks

espresso

eqgntott

li

omparison: Accuracy of Different

2-bit Predictors

[0 557N N B 4096 entries:
126 8K blTS 2 bits per entry
O<o /[Unlimited entries:
O<o 2 bits per entry
O%a
— 1 1 1024 entries:
- 1246 8K bITS (2,2)
(@ 1578
1=
5o
5<2c
52
o<
9%
5%
L= 1o 2N
o°s
5%
12%%6
1126
11<c
5<2c
59
4<%
18<6
18<c
5%
1026
1 0=
52
(@ L5528 2% A4S 5<% 8<% 1 0% 12 14<c 16<c 18<c

Frequency of mispredictions

DiP1. OF FLECTROMCS 5 nesc. N 7T
EIGINEERING ¢ { gtz

Tournament Predictors

The most popular one
- Recall that the correlator is just a local predictor

- Adaptively combine local and global predictors

- Multiple predictors

* One based on global information: Results of recently
executed m branches

* One based on local information: Results of past executions
of the current branch instruction

- Selector to choose which predictors to use

- E.g.: 2-bit saturating counter, incremented whenever the
“predicted” predictor is correct and the other predictor is
incorrect, and it is decremented in the reverse situation

- Advantage

- Ability to select the right predictor for the right
branch

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-52

(

pipt. OF ELECTROMCS o
fNaINEERING ¢ §
nst. OF ELECIROMICS ™,

D) (]l

State Transition Diagram for A
Tournament Predictor

0/0, 011, 11

0/0, 1/0, 1/1

Use predictor 1 Use predictor 2

0/1

Use predictor 1 Use predictor 2

W’ 1/1 0/0, M

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-53

1/0

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Conditional branch
misprediction rate

Misprediction Rate

Comparison

i
Correlating predictors

Tournament predictors

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-54

pipT. OF FLECTROMICS 2 25%
ENGINEERING & 4:
s OF ELECIROMCS By

High-Performance Instruction Delivery

* For a multiple issue processor,
predicting branches well is not
enough

» Deliver a high-bandwidth instruction

stream Is necessary
(e.g., 4~8 instructions/cycle)

- Branch target buffer
- Integrated instruction fetch unit

- Indirect branch by predicting return
address

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-55

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Branch Target Buffer/Cache

To reduce the branch penalty from 1 cycle to O
- Need to know what the address is at the end of IF
- But the instruction is not even decoded yet

- So use the instruction address rather than wait for decode
« If prediction works then penalty goes to O!

BTB Idea -- Cache to store taken branches (no need to
store untaken)

- Access the BTB during IF stage
- Match tag is instruction address - compare with current PC
- Data field is the predicted PC
May want to add predictor field
- To avoid the mispredict twice on every loop phenomenon

- Adds Icl:omplexi‘ry since we now have to track untaken branches
as we

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-56

(

pipt. OF ELECTROMCS
ENGIEERING & 3
st OF ELECIROMICS ™

BTRB -- Illustration

PC of instruction to fetch

Predicted PC
Store predicted-)
taken branches
Number of on Iy
entries
in branch-
target
buffer
MNo: instruction is
- not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken
PC should be used as the next PC
Full size (32-bit) Target PCs for
. No aliasing allowed predicted-taken branches
§ \ 04-57

pipt. OF ELECTROMCS
ENGINEERING ¢ & 2}
tist. OF ELECIROMCS 2= <

Flowchart for BTB

FC to memory

and ETE
IF
NO found YES
W
predicted PC to
memory and ETB Sendd. OUTdtI?Ce
redicte
ID /t\ P
NO Qk? YES
A branch?
; EIItE:l‘])l‘ﬂllf!l Mispredict - kill
Normal Execution 2addrand target goichod instruction Y
PC into BTE restart fetch at other Prediction correct,
. target, delete entrv continue with no
EX from BTB penalty

—4
D “ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-58

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Penalties Using this Approach
for 5-Stage MIPS

Instruction in Prediction | Actual Penalty Cycles
buffer Branch

Yes Taken Taken 0

Yes Taken Not Taken 2

No Taken 2

No Not Taken 0

Note:

 Predict wrong =1 CC to update BTB + 1 CC to restart fetching
 Not found and taken = 2CC to update BTB

Note:

 For complex pipeline design, the penalties may be higher

L=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-59

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Example

Given prediction accuracy (for inst. in buffer): 90%
g(i)vo/en hit rate in buffer (for branches predicted token):
Assume 60% of the branches are taken
Determine the total branch penalty=?

Solution

= Probability (branch in buffer, but actually not taken) = percent

8u6‘;er' hit rate x percent incorrect prediction = 90% x 10% =

- Probability (branch not in buffer, but actually taken) = 10%
- Hence, we have 2 cycles x (0.09+0.1) = 0.38 cycles

Comparing the delay branch with the penalty = 0.5 cycles/branch

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-60

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING o <}
inst. OF ELECIROMICS 2y —

Integrated Instruction Fetch Units

» Consider the fetch unit as a separate
autonomous unit, not a pipeline stage

* Functions for the integrated instruction
fetch unit

- Branch prediction

- Prefetch
» To deliver multiple instructions per cycle

- Instruction memory access and buffering
* may require accessing multiple cache lines
+ prefetch may hide the latency for memory access
+ buffering may be necessary

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

(

04-61

pipt. OF ELECTROMCS
ENGINEERING &
st Of ELECTROMCS

Return Address Predictor

Indirect jump - jumps whose destination address varies at
run time

- indirect procedure call, select or case, procedure return

- SPEC89 benchmarks: 85% of indirect jumps are procedure
returns

» Accuracy of BTB for procedure returns are low

- if procedure is called from many places, and the calls from one
place are not clustered in time

Use a small buffer of return addresses operating as a stack
- Cache the most recent return addresses
- Push a return address at a call, and pop one of f at a return
- If the cache is sufficient large (max call depth) > prefect

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-62

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Dynamic Branch Prediction
Summary

Branch prediction scheme are limited by

- Prediction accuracy

- Mis-prediction penalty

Branch History Table: 2 bits for loop accuracy

Correlation: Recently executed branches correlated with
next branch

e Tournament CFredic’rors take insight to next level, by using
multiple predictors

— usually one based on %I.obal information and one based on local
information, and combining them with a selector

— In 2006, tournament predictors using = 30K bits are in
processors like the Powerb5 and Pentium 4

Branch Target Buffer: include branch address & prediction

Reduce penalty further by fetching instructions from both
the predicted and unpredicted direction

- Require dual-ported memory, interleaved cache > HW cost

=D - Caching addresses or instructions from multiple path in BTB
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-63

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Outline

« Overcoming Data Hazards with Dynamic
Scheduling

e (Start) Tomasulo Algorithm
« Conclusion

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-64

(

pipt. OF FLECTRONICS 9 % N #T
ENGINEERING 4
inst. OF ELECTROMICS

Overcome Data Hazards

* For a simple statically scheduled pipeline
- In-order instruction issue and execution
- fetch an instruction and issue it in program order

- if there is a data dependence that cannot be
hidden (e.g. forwarding logic), then the hazard
detection hardware stalls the pipeline

- No new instructions are fetched or issued until
the dependence is cleared.

- Minimize stalls by software to separate
dependent instructions so that they will not lead
to hazards

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-65

pipT. OF FLECTROMICS 5 |
ENAINEERNG |
s, OF ELECIROMICS

vercome Data Hazards

* For a dynamically scheduling

- the hardware rearranges the instruction
execution to reduce the stalls while maintaining
data flow and exception behavior

- Pros:

* handling some cases when dependences are unknown
at compiler time (e.g. memory reference)

» simplify the compiler

» (Perhaps most importantly) allow code compiled with
one pipeline run on a different pipeline

» will explore hardware speculation

- Cons:

* a cost of significant increase in hardware complexity

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-66

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING o <}
inst. OF ELECIROMICS 2y —

Remarks

* A dynamically scheduled processor cannot
change the data flow

- It tries to avoid stalling when dependences

+ A static pipeline scheduling by compiler

- It tries to minimize stalls by separating
dependent instructions far away from the
other such that they will not lead to hazards.

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-67

pib1. OF ELECIROMCS
fNGINEERING ¢ gz
tnist. OF ELECIROMICS my

Dynamic Scheduling: 000

In classic 5-stage pipeline, both structural and data hazards
could be checked during ID stage

- When an instruction could execute without hazards, it was
lssueid Zr'om ID knowing that all data hazards had been
resolved.

Let separate the ID stage into two parts

- TIssue:

- Decode, check for structural hazard in the manner of in-order
issue

- Read Operands:
 Wait until no data hazards, then read operands

+ Out-of-order (O0OOQO) execution

- It allows the instruction to begin execution as soon as its data
operand is available

- It implies out-of-order completion
- It may introduce WAR, WAW hazards

f . IM ~I— Issue 1’ER€9 ’E DM _Reg

- _ 04-68
| IF ID EX MEM WB

pipt. OF ELECTROMCS
ENGINEERING &
s, OF ELECIROMICS

000 Example

- In-order issue, but allow out-of-order execution
(and thus out-of-order completion)

Example 1 Example 2
DIV.D FRE DIV.D B el =
AR E FIG FO F8 , stalled ADD.D F6, FO, F8 . stalled
SUEEE Bl =0 R SUB B F8, Fltk F14
MUL.D F6, F10, F8
SUB.D has dependence with However, if out-of-order execution is allowed,
neither DIV.D nor ADD.D WAR or WAW hazards could arise
However, it cannot execute if Eliminating WAR and WAW hazards is essential

out-of-order execution is not allowed. to out-of-order execution =
Performance limitation due to hazard...

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-69

pipi. Of HECRONCS 22 N 2T |
ENGINEERING o TN | g
iist. Of ELECIROMICS 1IN

WAR & WAW May Arise When
Dynamic Scheduling

+ Both WAW and WAR hazards can be
solved by

- Scoreboard (Appendix A, used in
CDC6600 first) and

- Tomasulo approach (used in IBM 360/91
Floating-point Unit)

—~

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-70

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Scoreboard

- Tdea:

- to maintain IPC=1 by executing an instruction as early as
possible

- when stalled, other instructions can be issued and

executed if they do not depend on any active or stalled
instruction

* The scoreboard takes full responsibility for
instruction issue and execution, including hazard
detection (centralized control)

» 3 parts to the scoreboard

- Instruction status: indicating the pipeline stage of the
Instruction

- Functional unit status: 9 fields

- Register result status : which FU will write the result to
register

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-71

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ { gz ¥
st OF ELECIROMCS M o

Functional Unit Status in Scoreboard

+ 9 fields:
- Busy
- Op - operation performing (e.g. add, sub)
- Fi - destination register
- Fj, Fk - source register
- QJ, Qk - FU that produces Fj, Fk

- Rj, Rk - flags of Fj, Fk to indicate being read
or not (set to No after operands are read)

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-72

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

'oreboard Example (1/3)

The time that 2nd inst.
is read to write

Instruction status
Instruction Issue Read operands Execution complete Write result
L.D F6,34(R2) ¥ y ¥ V
L.D @45“!3} u V' Read to write

SUB.D F8,F6, (
DIV.D F10,F0,F6 \
ADD.D F6,F8,F2

Issued but stalled for
waiting operands

MIL.D (FOF2)4 /j N\
—

Each instr. has an entry

Functional unit status
Name Busy Op Fi Fi Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Na
Mult] Yes Mult FO F2 F4 (lInteger No Yes
Mult2 No T
Add Yes Sub F8 F6 F2 @ Yes No
Dhvide Yes Div Fl10 FO F6 Mult | Mo Yes
— Each FU has an entry
Register result status
FO F2 F4 Fé6 F8& F10 F12 F30 '3

Multl Integer Add Divide

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

B)|(|
Scoreboard Example (2/3)

The time before the

Add : 2 cycles, Multiply: 10 cycles, Divide: 40 cycles MUL.D goes to write
the result
Instruction status
Instruction Issue Read operands Execution complete Write result
L.D F6,34(R2) v ¥ y v
L.D F2,45(R3) ¥ i v o
muL.D (FolF2,F4 y V y
SUB.D FB,F6,F2 2 y i g
DIV.D FLO(FOLF6 | Out-of-order completion
ADD.D ((FE)F8,F2 N J 7
WAR
Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mult1 Yes Mult FO F2 Fa Mo No
Muli2 No
Add Yes Add F& F& F2 Mo N
Divide Yes Div F10 FO Fb Mult] Mo Yes
H:gi.'-‘tyr(ﬁﬁtntus
FO F2 F4 F6 F8 F10 F12 F30

04-74

FU Mult 1 Add Divide

pipt. OF ELECTROMCS

ENGINEERING 4

st OF ELECIROMICS ™

Scoreboard Example (3/3)

The time that DIV.D
goes to write the result

Instruction status
Instruction Issue Read operands Execution complete Write result
L.D F6,34(R2) N J 3
L.D F2,45(R3) 4 N N N -
MUL.D FOD,F2,F4 A A ! \
SUB.D FB,F6,F2 N + v v
DIV.D F10,F0,F6 v W A
ADD.D F6,F8,F2 y y A v
Functional unit status
Name Busy Op Fi Fj Fk qQj Qk Rj Rk
Integer No
Multl No
Mult2 No
Add Nu
Divide Yeg Div Fl10 FO F& No Mo
Register result status
Q FO F2 F4 F6 F8 F10 F12 F30 04-75

Divide

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Remarks

The scoreboard identifies what requires for each
instruction to advance and bookkeeping action necessary
when the instruction does advance

» The scoreboard records operand specifier information, such
as register number

- Costs and benefits of scoreboard
- The amount of parallelism available among the instructions
* Whether independent instructions can be found ?

- The number of scoreboard entries
 The instrs. window the pipeline can look for independent instr.

- The number and types of FUs
- The presence of anti-dependence and output dependence

» Recently, the dynamic scheduling is motivated by attempts

To issue more instructions per clock and by speculation

—~

XA =
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-76

pipt. OF ELECTROMCS o
ENGIEERING & 3
nst. OF ELECIROMICS ™,

D) (]
Tomasulo's Approach

Goal: High Performance without special compilers

The original idea is for IBM 360/91; to overcome

- limited compiler scheduling (only 4 double-precision FP
registers)

- reduce memory accesses and FP delays
Why study 1966 computer?

- lead to Alpha 21264, HP 8000, MIPS 10000, Pentium IT,
PowerPC 604, ...

Key ideas

- Track data dependences to allow execution as soon as
operands are available = minimize RAW hazards

- Register renaming = avoid WAR and WAW hazards

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-77

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING o <}
inst. OF ELECIROMICS 2y —

Remark

- To solve RAW hazard

- The RAW problem can be avoided for an
instruction only when its operands are available

» To solve WAR and WAW hazards
- These problems arise from name dependence

- By renaming all destination registers, including
those with a pending read or write for an
earlier instruction, the WAR and WAW can be
avoided for out-of-order completion
instructions.

—~

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-78

s @
Register Renaming Example

DIV.D FO, F2, F4 DIV.D FO, F2, F4
ABBYD) - ot S ABEUE & (H0, T
S.D F6, O(R1) S.D S, O(R1)

S0l D) el (FL [F e Register SUB.D T, F10, F14
Wik EAR] - FE (e st ‘ MUL.D F6,F10,T

3 true dependences N9 3 true dependences
2 antidependences 0 antidependence
1 output dependence 0 output dependence

Renaming process can also be done by compiler
Tamasulo’s algorithm can handle renaming across branches
In Tomasulo's algorithm, register renaming is provided by

_ Xp=Xhe reservation station (RS)
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-79

pip1. OF ELECTROMICS ™5
ENGINEERING o 9
s OF ELECIROMCS By

Reservation Station (RS)

To buffer the operands, as soon as it is available,
waiting to issue
- Inorder to eliminate the need to get the operand from
a register (similar to forwarding)
* Pending instructions designate the reservation
station (avoid WAR)

- Operands of pending instructions are provided from RS
rather than from the RF

- Pending operands are renamed to the name of
reservation stations
* When successive writes to a register overlap in
execution, only last one is actually used to update
the register (avoid WAW)

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-80

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

RSs vs. RFs

- Reservation stations serve as extra virtual
registers

+ Hazard detection and execution control are
distributed (distributed control)
- The information of RSs at each FU determine when an
instruction can begin execution at that FU
* Results are passed directly to FUs from the RSs
where they are buffered, rather than going
through the RFs

- This can be done with a common result bus that allows all
FUs waiting for the operand to be loaded simultaneously

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-81

(

pip1. OF ELECTROMICS
ENGINEERING o

UGS HGU

Basic Structure of A Tomasulo-Based
MIPS Processor

From instruction unit

Instruction FP registers ‘
queue
Load-store
operations
A . : Operand
Address unit Fioatng-point bL?sEes
Store buffers operations
_* Load buffers
1]
Operation bus . .
Virtual rpgisters
1 4 . i
4 L 4 L r
3 Y : * 2
2 Reservation ' 1
1 ~—1—I stafions
Data Address Y v Y 7
Memory unit FP adders FP multipliers
04-82
Common data bus (CDB)

pipt. OF ELECTROMCS o % N # _

ENGINEERING & __ |

inst. Of ELECTROMICS ™ '
Ob ti

- The load buffers and store buffers hold data or
addresses coming from and going to memory and
behave like reservation stations

* The FP registers are connected by a pair of buses
to the FUs and by a single bus to the store
buffers

+ All results form the FU and from memory are
sent on the CDB (common data bus), which goes
everywhere except to the load bufer

» All RSs have tag fields, employed by pipeline
control

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-83

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Key Idea

* Each FU has multiple reservation stations (RS)

+ Tssue to reservation stations was in-order (in-
order issue)

RS starts whenever they had collected source
operands from real registers - hence out-of-order
execution

* Reservation stations contain virtual registers (VR)
that remove WAW and WAR induced stalls

- RS fetches operands from RF and stores them into VR

- Since virtual registers can be more than real registers,
the technique can even eliminate hazards arising from
name dependences that could not be eliminated by a
compiler

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-84

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
EGNEERING ¢ { iz}
st OF ELECIROMCS M o

Reservation Station Duties

Each RS holds an instruction that has been issued
and is awaiting execution at a FU, and either the
operand values or the RS names that will provide
the operand values

RS fetches operands from CDB when they appear

When all operands are present, enable the
associated functional unit to execute

Since values are not really written to registers
- No WAW or WAR hazards are possible

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-85

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ { gz}
st OF ELECIROMICS 2

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or -)

Vj, Vk: Value of Source operands
- Store buffers has V field, result to be stored

QJ, Qk: Reservation stations producing source registers (value to

be written) Note: .
- Note: Qj,Qk=0 => ready i Bl
- Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

A: information for memory address calculation for L/S

- Immediate > effective address

Register result status—Indicates which functional unit will write
each register, if one exists. Blank when no pending instructions
that will write that register.

) =20
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-86

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Three Stages of Tomasulo Algorithm

1. TIssue

- Get the next instruction from the head of OP queue
The FIFO instruction queue (in-order issue)

- If noRSis available
Structural hazards = stall the pipeline

- If there is an available RS
- Issue the instruction
If the operands are available in the RFs

- Fetch the operands and buffer them in the RS

- To solve WAR hazards (register renaming)

If the operand is not available in the RFs

- some FU is currently computing it

- Redirect the operand source to that reservation station
- To solve WAW hazards (register renaming)

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-87

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ { gz}
st OF ELECIROMICS 2

Three Stages of Tomasulo Algorithm

2. [Execute

- If one of operands is not available
Monitor and wait for it

When the operand becomes available, it is placed into the
corresponding RS

- If all operands are available
The operation is performed at FU
RAW hazards are avoided !
Several insts. could become ready at the same clock cycle for
the same FU
. Loads and stores require 2-step execution process

Effective address (EA) calculation, L/S buffer for memory
access

L/S are maintained in program order through the EA calculation,
which will help to prevent hazards through memory

. To preserve exception behavior

- No instruction is allowed tfo initiate execution until all
branches that precede it in program order have completed.

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-88

pipt. OF ELECTROMCS 3%
ENGINEERING &
st OF ELECIROMICS ™

Three Stages of Tomasulo Algorithm

3. Whrite result
- When result is available, write it on the CDB
- When both the address and data values are available,
they are sent to the memory unit

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-89

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ { gz}
st OF ELECIROMICS 2

Summary for 3-stages of
Tomasulo algorithm

1. Issue—get instruction from the head of Op Queue (FIFO)

If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)

When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units;
mark reservation station available

Normal data bus: data + destination ("go to" bus)

Common data bus: data + source (“come from" bus)
- 64 bits of data + 4 bits of Functional Unit source address
- Write if matches expected Functional Unit (produces result)
- Does the broadcast

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-90

(

pipt. OF ELECTROMCS o
ENGIEERING & 3
nst. OF ELECIROMICS ™,

D) (]
Example and the Algorithm

L.D F6, 34(R2)
L.D F2, 45(R3)
MUL.D FO\\FZ, F4
SUB.D F8, F2, F6
DIV.D F10, FO, F6
ADD.D F6,F8, F2

o s b=

LD is 1 €C, ADDD/SUBD is 2 CC, MULT is 10 CC, and DIVD is 40 CC
(Execution stage)

L=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-91

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

LD

LD F2
MULTD FO
SuBD F8
DIVD F10
ADDD F6

Reservation Stations:

9]

Instruction stream

nstruction status:
Instruction j
F6 34+

45+
F2
F6
FO
F8

Tomasulo Example

Time Name Busy Op

FU count
down

Register result status:

Clock
/o

Clock cycle

. counter
%& CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

Addl
Add2
Add3
Multl
Mult2

\

Exec Write

k Issue Comp Result Busy Address l
R2 Loadl No
R3 Load?2 No
F4 Load3 No
F2 \ /
Eg 3 Load/Buffers

S1 S2 RS RS

V] Vk Qj Qk
No
No
NG . 3 FP Adder R.S.
NoO 2 FP Mult R.S. ,
No

FO F2 F4 F6 F8 F10 F12 F30

FU

04-92)

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 1

Instruction status: Exec Write
Instruction i k ey Comp Result Sersy—rXuc
LD F6 34+ R2 Load Yes 34+R2
LD F2 45+ R3 Load e
MULTD FO F2 F4 Load3 No

SuBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk

Addl | No

Add2 | No

Add3 | No

Multl | No

Mult2 | No

Register result status:

Clock FO F2 F4 6 F8 F10 F12 ... F3

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-93

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Ll omasulo Example Cycle 2

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address

LD F6 34+ R2 Loadl | Yes 34+R2
LD F2 45+ R3 LoadA| Yes 45+R3 |
MULTD FO F2 F4 Load3 | No

SuBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk

Addl | No

Add2 | No

Add3 | No

Multl | No

Mult2 | No

Register result status:

Clock FO F4 F6 F8 F10 F12 ... F3
2 FU Loadl

Note: Can have multiple loads outstanding

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-94

pipt. OF ELECTROMCS
ENGIEERING & 3
st OF ELECIROMICS ™

omasulo Example Cycle 3
Instruction status: Exec Write
Instruction j k Issue omn Result Busy Address
LD F6 34+ R2 1 a Loadl | Yes 34+R2
LD F2 45+ R3 2 Load2 | Yes 45+R3
MULTD FO F2 F4 3 Load3 | No

SuBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk

Addl | No

Add2 | No

Add3 o
Multl}| Yes MULTD R(F4) Load2
Mult s

Register result status:
Clock = F2 F4 F6 F8 F10 F12 .. F3

3 FUJ| Multl § Load? Loadl

+ Note: registers names are removed (“renamed”) in
Reservation Stations; MULT issued

* Loadl completing; what is waiting for Load1? 04-95

pipt. OF ELECTROMCS
ENGIEERING & 3
st OF ELECIROMICS ™

omasulo Example Cycle 4

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 Loadl | No
LD F2 45+ R3 2 Load2 | Yes 45+R3

MULTD FO F2 F4 Load3 | No
SuBD F8 F6 F2

DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS
Time Name B @ls I . Qi Qk

Add2 | No

Add3 | No

Multl | Yes MULTD R(F4) Load2
Mult2 | No
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3

4 FU | Multl Load2 M(A1) Add1l

* Load2 completing; what is waiting for Load2?

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-96

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 5

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl| No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD FI0 FO F6 5
ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

ime [Name Busy Op V] . Qj Qk
2lAdd1 [Yes SUBD M(AL)] M(A2)
Add2 | No
Add3 | No
10fMultl | Yes MULTR(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 ... F3
5 FU | Multl M(A2) M(A1) Addl Muli2

- Timer starts down for Addl, Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-97

pip1. OF ELECIROMCS 9™ % n
HGINERNG o § 3 (I
st Of ELECIROMICS ™ 4
omasulo Example Cycle 6
Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3 No
SUBD F8 F6 F2 4
DIVD F10 FO F6
ADDD F6 F8 FZ@
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vj Vk Qj Qk

1 Add1 20
Add2]| Yes ADDD |v|(A2) Add1 |
Add3

9 Multl Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F3
6 FU | Multl M(A2) Add2 Addl Muli2
+ Issue ADDD here despite name dependency on F6?
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-98

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 7

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl | No
LD F2 45+ R3 2 4 5 Load2 | No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4
DIVD F10 FO F6 5
ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk

0 Addl | Yes SUBD M(A1l) M(A2)
Add2 | Yes ADDD M(A2) Addil
Add3 | No

8 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F3
7 FU | Multl M(A2) Add2 Addl Mult2

- Addl (SUBD) completing; what is waiting for it?
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-99

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 8

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3 | No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
2 Add2 | Yes ADDD(A2)
Add3 | No
7 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:
Clock FO F2 F4 F6 F8 F10 Fl12 ... F3
8 FU | Multl M(A2) Add2 Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-100

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 9

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
1 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
6 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
9 FU | Multl M(A2) Add2 (M-M) Mult?

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-101

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 10

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
0 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
5 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
10 FU | Multl M(A2) Add2 (M-M) Mult?

- Add2 (ADDD) completing; what is waiting for i1?

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-102

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Bl

omasulo Example Cycle 11

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 415+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Add1l | No
Add2 No
Add3 No
4 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F3
11 FU | Multl M(A2) |v|-|v|) Mult2
- Wprite result of ADDD here?
- All quick instructions complete in this cycle!
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-103

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 12

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
3 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
12 FU | Multl M(A2) (M-M+N (M-M) Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-104

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 13

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
2 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
13 FU | Multl M(A2) (M-M+N (M-M) Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-105

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 14

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
1 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
14 FU | Multl M(A2) (M-M+N (M-M) Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-106

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 15

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load?2 No
MULTD FO F2 F4 3 15 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
0 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1l) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 ... F3
15 FU | Multl M(A2) (M-M+N (M-M) Mult2

* Multl (MULTD) completing; what is waiting for i1?

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-107

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 16

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 15 16 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No

Multl | No

40 Mult2 | Yes DIVD (A1)

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 F3
16 FU M(A2) (M-M+N (M-M) Mult2
» Just waiting for Mult2 (DIVD) to complete
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-108

pib1. OF FLECTROMCS g%, n (“J

EIGINEERING 4 .
nst. OF ELECIROMCS ™, -

A

Faster than light
computation
(skip a couple of cycles)

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-109

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 55

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 15 16 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
1 Mult2 | Yes DIVD M*F4 M(A1)

Register result status:

Clock FO F2 F4 F6 F8 F10 F12 ... F3
55 FU | M*F4 M(A2) (M-M+N (M-M) Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-110

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

omasulo Example Cycle 56

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl No
LD F2 45+ R3 2 4 5 Load2 No
MULTD FO F2 F4 3 15 16 Load3| No
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5 56
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S2 RS RS
Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
0 Mult2 | Yes DIVD M*F4 M(A1)

Register result status:
Clock FO F2 F4 F6 F8 F10 Fl12 ... F3
56 FU | M*F4 M(A2) (M-M+N (M-M) Mult2

+ Mult2 (DIVD) is completing; what is waiting for i1?

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-111

pipt. OF ELECTROMCS
ENGIEERING & 3
st OF ELECIROMICS ™

omasulo Example Cycle 57

Instruction status: Exec Write
Instruction i k Busy Address
LD F6 34+ R2 Loadl | No
LD F2 45+ R3 Load2 | No
MULTD FO F2 F4 Load3 | No
SUBD FS F6 F2
DIVD FI0 FO F6
ADDD F6 F8 F2
Reservation Stations: RS RS

Time Name Busy Op V] Vk Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
Mult2 | Yes DIVD M*F4 M(A1)

Register result status:
Clock FO F2 F4 F6 F8 F10 Fl12 ... F3
57 FU | M*F4 M(A2) (M-M+N (M-M) Result

 Once again: In-order issue, out-of-order execution and out-
of-order completion.

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-112

pipt. OF ELECTROMCS
ENGIEERING & gz |
st OF ELECIROMICS 2

reservation
station 1

reservation
station 2

reservation
station 3

EX
FU1l

\/

O O O O O Write
results

I= Issue

reservation
station 1

N\

EX
FUn

\/

station 2

‘ reservation

Structural hazard: |

delaying the issue RAW data hazard: wait
until there is an at the reservation
empty reservation station until the values
station of the source registers
are available

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-113

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

2 Major Advantages of Tomasulo

» Distribution of the hazard detection logic
- Distributed RS and CDB

- If multiple instructions are waiting on a single result,
and each already has its other operand, then the
instruction can be released simultaneously by the
broadcast on CDB

— If a centralized register file were used, the units would
have to read their results from the registers when
register buses are available

- Elimination of stalls for WAW and WAR

- Rename register using RS
- Store operands into RS as soon as they are available
- For WAW-hazard, the last write will win

2 =22
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-114

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
EIGINEERING ¢ { gtz

Tomasulo Drawbacks

Complexity

— delays of 360/91, MIPS 10000, Alpha 21264,
IBM PPC 620 in CA:AQA 2/e, but not in siliconl

Many associative stores (CDB) at high speed

Performance limited by Common Data Bus

— Each CDB must go to multiple functional units
—high capacitance, high wiring density

— Number of functional units that can complete per cycle
limited to onel

« Multiple CDBs = more FU logic for parallel assoc stores
Non-precise interrupts!
— We will address this later

A=
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-115

(

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Scoreboard Solution

EX
FU1l

IF

Issue

Read

[operands

S

e

EX
FU2

Write

results

Structural hazard:

delaying the issue
WAW data hazard:
delaying the issue

RAW data hazard: wait
until the values of the
source registers are
available in the registers

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

EX
FUn

WAR data hazard:

delaying the write if
a WAR hazard
exists

04-116

DiP1. OF FLECTROMCS 5 nesc. N 7T
ENGINEERING ¢ gz
inst. OF ELECIROMICS 2y —

Tamasulo vs. Scoreboard

« Instruction stall
- Tomasulo stalls only for structural hazards
- Scoreboard stalls for both structural and WAW hazards

* Operand fetch
- Tomasulo uses RS as operand buffers

- Scoreboard uses centralized RF
» No forwarding and WAR hazards are possible

- Write back

- Scoreboard has to stall writes to resolve WAR hazards

- Tamasulo uses renaming register to resolve WAR and
WAW hazards

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-117

(

pipt. OF ELECTROMCS
ENGINEERING &
st Of ELECTROMCS

The Load and Store Problem

Dynamic memory disambiguation
A load and store can safely be done in different order,
provided that they access different addresses
If load and store accesses the same address
- WAR hazard, the load is before the store in program order
- RAW hazard, the store is before the load in program order
- WAW hazard, the store is before the other store

To detect such hazards, data memory address (EA) must be
calculated in program order

We really only need to keep the relative order between
stores and other memory references (Load can be
reordered freely)

- Conflicting stores cannot be reordered with respect to either

HA=7 a load or a store
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-118

(

DiP1. OF FLECTROMCS 5 nesc. N 7T
EIGINEERING o { <
inst. OF ELECIROMICS 2y —

Tomasulo Loop Example

Loop: L.D FO O R1
MUL.D F4 FO F2
S.D F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

+ Assume Multiply takes 4 clocks

- Assume first load takes 8 clocks (cache miss?),
second load takes 4 clocks (hit)

- To be clear, will show clocks for SUBI, BNEZ
* Reality, integer instructions ahead

rne=2?
@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw)

04-119

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle O

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 Loadl |No

MULT F4 FO F2 1 Load2 |[No

SD F4 0 R1 1 Load3 |No Qi

LD FO 0 R1 2 Storel |No

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
0 Multl |No SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

0 80 Qi

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-120

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 1

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 Load2 |No

SD F4 0 R1 1 Load3 |No Qi

LD FO 0 R1 2 Storel |No

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
0O Multl |No SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

1 80 Qi Loadl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-121

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 2

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 Load3 |No Qi

LD FO 0 R1 2 Storel |No

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

2 80 Qi Loadl Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-122

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 3

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 Storel |Yes 80 [Multl

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

3 80 Qi Loadl Multl

* Note: MULTI has no registers names in RS
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-123

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 4

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 Storel |Yes 80 [Multl

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

4 72 Qi Loadl Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-124

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 5

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 Storel |Yes 80 [Multl

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
0 Mult2 |No BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

5 72 Qi Loadl Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-125

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 6

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |Yes @ 72

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 6 Storel |Yes 80 [Multl

MULT F4 FO F2 2 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI |[R1 R1 #8
0 Mult2 |No BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

6 72 Qi Load2 Multl

* Note: FO never sees Loadl result
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-126

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

B)(]l
Loop Example Cycle 7

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |Yes @ 72

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 6 Storel |Yes 80 [Multl

MULT F4 FO F2 2 7 Store2 |[No

SD F4 0 R1 2 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI |[R1 R1 #8
0O Mult2 |[Yes MULTD R(F2) Load?2 BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

7 72 Qi Load2 Mult2

* Note: MULT?2 has no registers names in RS
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-127

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 8

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |Yes 72

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 6 Storel |Yes 80 [Multl

MULT F4 FO F2 2 7 Store2 |Yes 72 |[Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
O Mult2 |Yes MULTD R(F2) Load?2 BNEZ R1 Loop

Regqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

8 72 Qi Load?2 Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-128

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 9

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 Loadl |[Yes 80

MULT F4 FO F2 1 2 Load2 |Yes 72

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 6 Storel |Yes 80 [Multl

MULT F4 FO F2 2 7 Store2 |Yes 72 |[Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
O Multl |[Yes MULTD R(F2) Loadl SUBI R1 R1 #8
O Mult2 |Yes MULTD R(F2) Load?2 BNEZ R1 Loop

Regqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

9 64 Qi Load?2 Mult2

* Loadl completing; what is waiting for it?
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-129

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 10

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 Load2 |Yes 72

SD F4 0 R1 1 3 Load3 |No Qi

LD FO 0 R1 2 6 10 Storel |Yes 80 [Multl

MULT F4 FO F2 2 7 Store2 |Yes 72 |[Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op V] VK Qj Qk Code:

0 Addl |No LD FO O R1
0 Add2 |No MULTF4 FO F2
0 Add3 [No SD F4 0 R1
4 Multl [Yes MULTD M(80) R(F2) SUBI R1 R1 #8
O Mult2 |Yes MULTD R(F2) Load?2 BNEZ R1 Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load2 Mult2

- Load2 completing; what is waiting for it?
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-130

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 11

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |Yes 64 |Qi

LD FO 0 R1 2 6 10 11 |Storel |Yes @ 80 [Multl

MULT F4 FO| F2 2 7 Store2 |Yes 72 |Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
3 Multl [Yes MULTD M(80) R(F2) SUBI |[R1 R1 #8
4 Mult2 |[Yes MULTD M(72) R(F2) BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-131

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 12

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |Yes 64 |Qi

LD FO 0 R1 2 6 10 11 |Storel |Yes @ 80 [Multl

MULT F4 FO| F2 2 7 Store2 |Yes 72 |Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
2 Multl |Yes MULTD M(80) R(F2) SUBI |[R1 R1 #8
3 Mult2 |[Yes MULTD M(72) R(F2) BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-132

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 13

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 Load2 |No

SD F4 0 R1 1 3 Load3 |Yes 64 |Qi

LD FO 0 R1 2 6 10 11 |Storel |Yes @ 80 [Multl

MULT F4 FO| F2 2 7 Store2 |Yes 72 |Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
1 Multl |{Yes MULTD M(80) R(F2) SUBI |[R1 R1 #8
2 Mult2 |Yes MULTD M(72) R(F2) BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Mult2

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-133

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 14

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 14 Load2 |No

SD F4 0 R1 1 3 Load3 |Yes 64 |Qi

LD FO 0 R1 2 6 10 11 |Storel |Yes @ 80 [Multl

MULT F4 FO| F2 2 7 Store2 |Yes 72 |Mult2

SD F4 0 R1 2 8 Store3 |No

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 [No SD |F4 0 R1
O Multl |[Yes MULTD M(80) R(F2) SUBI |[R1 R1 #8
1 Mult2 |Yes MULTD M(72) R(F2) BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Mult2

* Multl completing; what is waiting for it?
CA Lectureu4 - LLP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-134

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 15

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel |Yes 80 [M(80)*R(F
MULT F4 FO F2 2 7 15 Store2 |Yes 72 |Mult2
SD F4 0 R1 2 8 Store3 |No
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:
0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 |[No SD |F4 0 R1
0 Multl |No SUBI |[R1 'R1 #8
0O Mult2 |[Yes MULTD M(72) R(F2) BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Mult2
* Mult2 completing; what is waiting for it?
CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-135

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 16

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel |Yes 80 [M(80)*R(F
MULT F4 FO F2 2 7 15 16 |[Store2 |Yes 72 [M(72)*R(7]
SD F4 0 R1 2 8 Store3 |No
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1

0 Add2 |No MULT F4 |FO F2

0 Add3 |[No SD |F4 0 R1

O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8

0 Mult2 |No BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-136

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 17

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel |Yes 80 [M(80)*R(F
MULT F4 FO F2 2 7 15 16 |[Store2 |Yes 72 [M(72)*R(7]
SD |F4 0 R1 2 8 Store3 |Yes 64 [Multl
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1

0 Add2 |No MULT F4 |FO F2

0 Add3 |[No SD |F4 0 R1

O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8

0 Mult2 |No BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

64 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-137

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 18

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 18 Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel |Yes 80 [M(80)*R(F
MULT F4 FO F2 2 7 15 16 |[Store2 |Yes 72 [M(72)*R(7]
SD |F4 0 R1 2 8 Store3 |Yes 64 [Multl
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1

0 Add2 |No MULT F4 |FO F2

0 Add3 |[No SD |F4 0 R1

O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8

0 Mult2 |No BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

56 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-138

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 19

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 18 19 |Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel [No
MULT F4 FO F2 2 7 15 16 |[Store2 |Yes 72 [M(72)*R(7]
SD |F4 0 R1 2 8 Store3 |Yes 64 [Multl
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:
0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 |[No SD |F4 0 R1
O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8
0 Mult2 |No BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

56 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-139

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 20

Instruction status Execution Write
Instruction | k iteration Issue complete Result Busy Address
LD FO 0 R1 1 1 9 10 |Loadl |No
MULT F4 FO F2 1 2 14 15 |Load2 |No
SD F4 0 R1 1 3 18 19 |Load3 |Yes 64 |Qi
LD FO 0 R1 2 6 10 11 |Storel [No
MULT F4 FO F2 2 7 15 16 |[Store2 |Yes 72 [M(72)*R(7]
SD |F4 0 R1 2 8 20 Store3 |Yes 64 [Multl
Reservation Stations S1 S2 RS for | RS for k
Time Name Busy Op \Y VK Qj Qk Code:
0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 |[No SD |F4 0 R1
O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8
0 Mult2 |No BNEZ R1 |Loop
Reqister result status
Clock R1 FO F2 F4 F6 F8 F10 F12... F30

56 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-140

pipt. OF ELECTROMCS
ENGINEERING &
st OF ELECIROMICS ™

Loop Example Cycle 21

Instruction status Execution Write

Instruction | k iteration Issue complete Result Busy Address

LD FO 0 R1 1 1 9 10 |Loadl |No

MULT F4 FO F2 1 2 14 15 |Load2 [No

SD F4 0 R1 1 3 18 19 |Load3 |Yes 64 |Qi

LD FO 0 R1 2 6 10 11 |Storel [No

MULT F4 FO F2 2 7 15 16 |Store2 |No

SD |F4 0 R1 2 8 20 21 |Store3 |[Yes 64 |Multl

Reservation Stations S1 S2 RS for | RS for k

Time Name Busy Op \Y VK Qj Qk Code:

0 Addl |No LD FO O0R1
0 Add2 |No MULT F4 |FO F2
0 Add3 |[No SD |F4 0 R1
O Multl [Yes MULTD R(F2) Load3 SUBI [R1 R1 #8
0 Mult2 |No BNEZ R1 |Loop

Reqister result status

Clock R1 FO F2 F4 F6 F8 F10 F12... F30

56 Qi Load3 Multl

CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-141

pipt. OF ELECTROMCS 3%
ENGINEERING &
s, OF ELECIROMICS

Tomasulo Summary

Reservations stations: renaming to larger set of registers +
buffering source operands

- Prevents registers as bottleneck

- Avoids WAR, WAW hazards of Scoreboard

- Allows loop unrolling in HW

For one CDB, only one operation can use it at a single clock
cycle

Not limited to basic blocks (integer units gets ahead,
beyond branches)

Lasting Contributions
- Dynamic scheduling
- Register renaming
- Load/store disambiguation

360/91 descendants are Pentium IT; PowerPC 604; MIPS

F=p R10000; HP-PA 8000; Alpha 21264
~@ CA Lecture04 - ILP-dynamic (cwliu@twins.ee.nctu.edu.tw) 04-142

