
CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-1

5008: Computer
Architecture

5008: Computer 5008: Computer
ArchitectureArchitecture

Chapter 1 Chapter 1 –– Fundamentals of Fundamentals of
Computer DesignComputer Design

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-2

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Processor Performance

• VAX : ~25%/year 1978 to 1986
• RISC + x86: ~52%/year 1986 to 2002

vs. VAX 11/780, as measured by the
SPECint benchmark

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-3

UniProcessor Performance
• Early 1970s, mainframes and minicomputers

– 25%~30% growth per year in performance
• Late 1970, microprocessor

– 35% growth per year in performance
• Early 1980s, Reduced Instruction Set Computer (RISC)

architectures
– 2 critical performance techniques

• ILP (initially through pipelining and later through multiple
instruction issue)

• Cache
– 50% growth per year in performance

• 1998~2000, relative performance
– By technology: 1.35×per year
– By technology + architecture, overall: 1.58 ×per year

Note: 1.58≈1.35×(1+15%), the architecture improvement factor
is 15%

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-4

CISC (Complex Instruction Set Computer)

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-5

RISC (Reduced Instruction Set Computer)

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-6

Preview
• Two key reasons to rapid

improvement in computer
performance since the mid-1980s
– advances in the technology
– innovation in computer design

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-7

Facts
• Since 2002, processor performance

has dropped from about 50% to
about 20% per year
– High power dissipation
– Little ILP left to exploit efficiently
– Almost unchanged memory latency

• Faster uniprocessor or Multiple
processors?

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-8

Outline
• Computer Science at a crossroads
• Computer Architecture vs.

Instruction Set Arch.
• What Computer Architecture brings

to table?

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-9

• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Transistors free

(Can put more on chip than can afford to turn on)
• Old CW: Sufficiently increasing Instruction Level Parallelism via compilers,

innovation (Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” law of diminishing returns on more HW for ILP
• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”

(2X processors per chip / ~ 2 years)
• More simpler processors are more power efficient

Crossroads: Conventional
Wisdom in Comp. Arch

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-10

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Crossroads: Uniprocessor
Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-11

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache
– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM?
– Proximity Communication via capacitive

coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)

• Processor is the new transistor?

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-12

Problems with Sea Change
• Algorithms, Programming Languages, Compilers, Operating

Systems, Architectures, Libraries, … not ready to supply
Thread Level Parallelism or Data Level Parallelism for 1000
CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved just by

computer architects and compiler writers alone, but also
cannot be solved without participation of computer architects

• This edition of textbook--Computer Architecture: A
Quantitative Approach explores shift from Instruction
Level Parallelism to Thread Level Parallelism / Data Level
Parallelism

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-13

Outline
• Computer Science at a Crossroads
• Computer Architecture vs.

Instruction Set Arch.
• What Computer Architecture brings

to table

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-14

Instruction Set Architecture?
“... the attributes of a [computing] system as seen by the programmer,

i.e. the conceptual structure and functional behavior, as distinct
from the organization of the data flows and controls the logic
design, and the physical implementation.”

– Amdahl, Blaauw, and Brooks, 1964

SOFTWARESOFTWARE•Organization of Programmable Storage

•Data Types & Data Structures:
Encodings & Representations

•Instruction Formats

•Instruction (or Operation Code) Set

•Modes of Addressing and Accessing Data Items and Instructions

•Exceptional Conditions

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-15

Instruction Set Architecture

instruction set

software

hardware

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-16

ISA: Critical Interface

• Properties of a good abstraction
– Lasts through many generations

(portability)
– Used in many different ways (generality)
– Provides convenient functionality to

higher levels
– Permits an efficient implementation at

lower levels

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-17

Example: MIPS
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
2^32 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-18

Task of the Computer Designer
• Instruction set design
• Functional organization
• Logic design and implementation

– To design a machine to optimize the tradeoff of the
performance, while staying within cost and power constraints

• “Organization”–including the high-level aspects of computer
design, such as memory system, bus structure, internal CPU
– 2 processors with identical instruction set but very different

organizations
• NEC VR 4122 v.s. NEC VR 5432

• “Hardware” – The detailed logic design and the packaging
technology
– 2 processor with identical instruction set and nearly identical

organizations, but they differ in the hardware implementation
• Pentium II v.s. Celeron

MIPS64 instruction set, but different pipeline and cache organization

different clock rate and different memory system

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-19

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
– Other aspects of computer design called implementation
– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
– Architect’s job much more than instruction set design; technical

hurdles today more challenging than those in instruction set design

• Since instruction set design not where action is, some
conclude computer architecture (using old definition) is not
where action is

– The differences among instruction sets are small and when there are
distinct application areas

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-20

Comp. Arch. is an
Integrated Approach

• What really matters is the functioning of the
complete system
– hardware, runtime system, compiler, operating system,

and application
– In networking, this is called the “End to End argument”

• Computer architecture is not just about
transistors, individual instructions, or particular
implementations
– E.g., Original RISC projects replaced complex

instructions with a compiler + simple instructions

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-21

Computer Architecture
is Design and Analysis

Design

Analysis

An iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

ESL+ Systematic methodology

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-22

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction

Set Arch.
• What Computer Architecture brings

to table

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-23

What Computer Architecture
brings to Table

• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in technology
• Culture of well-defined interfaces that are carefully

implemented and thoroughly checked

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-24

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple tasks/disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up
computing sums from linear to logarithmic in number of
bits per operand

– Multiple memory banks searched in parallel in set-
associative caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

• ILP
• DLP, TLP

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-25

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-26

2) The Principle of Locality
• The Principle of Locality:

– Program access a relatively small portion of the address space at
any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-27

Memory Hierarchy
Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

L2 Cache

Blocks

Upper Level

Lower Level

faster

Larger

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-28

3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent case over

the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it
1st

• Frequent case is often simpler and can be done faster than
the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance improved

by making case faster => Amdahl’s Law

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-29

Amdahl’s Law

enhanced
enhancedold

enhancedold

new

Speedup
1 Fraction timeExecution

)Fraction-(1 timeExecution
timeExecution

××+

×=

enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction)Fraction-(1

1

timeExecution
timeExecution Speedup

+
=

=∴

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-30

Example
Two design alternative for FP square root
1. Add FPSQR hardware

20% of the execution time in benchmark
Speedup factor 10

2. Make all FP instructions faster
50% of the execution time for all FP instructions

1.6 times faster

Answer

Improving the performance of the FP operations overall is slightly better
because of the higher frequency

23.1

6.1
5.0)5.01(

1Speedup

22.1

10
2.0)2.01(

1Speedup

FP

FPSQR

=
+−

=

=
+−

=

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-31

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-32

5) Processor Performance Equation

• Instruction set architecture and compiler technology
• Organization and instruction set architecture
• Hardware technology and organization

Program
Seconds

cycleClock
Seconds

nInstructio
cyclesClock

Program
nsInstructio

timeCycleninstructioper Cyclescountn Instructio timeCPU

=

××=

××=

It is difficult to change one parameter in complete isolation from
others!!

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-33

Aspects of CPU Performance (CPU Law)

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

Inst
Count

CPI

Cycle
Time

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-34

CPI and CPU Time
∑
=

×=
n

1i
ii ICCPIcyclesclock CPU

∑
=

××=
n

1i
ii timecycleclock)ICCPI(timeCPU

ICi = number of time the instruction i is executed in a program

CPIi = average number of clock cycles for instruction i

∑
∑

=

= ×=
×

=
n

1i

i
i

n

1i
ii

countn Instructio
ICCPI

countn Instructio

ICCPI
CPI

Throughput

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-35

Example
We have the following measurements:

Freq. of FP operation (other than FPSQR) = 25%
Average CPI of FP operation = 4
Average CPI of other instructions = 1.33
Freq. of FPSQR = 2%
CPI of FPSQR = 20

Assume we have 2 design alternatives
1. CPI of FPSQR: 20 → 2 , 10 times improve
2. CPI of FP operations: 4 → 2.5, 1.6 times improve

2.00.751.330.254count)n Instructio/IC(CPICPI
n

1i
iioriginal =×+×=×=∑

=

Answer: (Only CPI changes, clock rate, instruction count remains identical)

1.642)-(20 %20.2

)CPICPI(%2CPICPI only FPSQR newFPSQR oldoriginalFPSQR new

=−=

−−=

625.10.751.330.255.2count)n Instructio/IC(CPICPI
n

1i
iiFP new =×+×=×=∑

= Better !!

CA Lecture01 - fundamentals (cwliu@twins.ee.nctu.edu.tw) 1-36

And Some Concluding Remarks …
• Computer Architecture >> instruction sets
• Computer Architecture skill sets are different

– 5 Quantitative principles of design
– Quantitative approach to design
– Solid interfaces that really work
– Technology tracking and anticipation

• Computer Science at the crossroads from
sequential to parallel computing

• Read Chapter 1, then Appendix A

