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Outline
• 11 Advanced Cache Optimizations
• Memory Technology and DRAM Optimizations
• Virtual Machines
• Conclusion
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Why More on Memory Hierarchy?
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Review: 6 Basic Cache Optimizations
• Reducing hit time
1. Giving Reads Priority over Writes 

• E.g., Read complete before earlier writes in write buffer
2. Avoiding Address Translation during Cache Indexing

• Reducing Miss Penalty
3. Multilevel Caches

• Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)
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11 Advanced Cache Optimizations
• Reducing hit time
1. Small and simple 

caches
2. Way prediction
3. Trace caches

• Increasing cache 
bandwidth

4. Pipelined caches
5. Multibanked caches
6. Nonblocking caches

• Reducing Miss Penalty
7. Critical word first
8. Merging write buffers

• Reducing Miss Rate
9. Compiler optimizations

• Reducing miss penalty or 
miss rate via parallelism

10.Hardware prefetching
11.Compiler prefetching
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1. Fast Hit times via Small and Simple Caches
• Index tag memory and then compare takes time
• ⇒ Small cache can help hit time since smaller memory takes less 

time to index
– E.g., L1 caches same size for 3 generations of AMD microprocessors: 

K6, Athlon, and Opteron
– Also L2 cache small enough to fit on chip with the processor avoids 

time penalty of going off chip
• Simple ⇒ direct mapping

– Can overlap tag check with data transmission since no choice
• Access time estimate for 90 nm using CACTI model 4.0

– Median ratios of access time relative to the direct-mapped caches are 
1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches
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2. Fast Hit times via  Way Prediction
• How to combine fast hit time of Direct Mapped and have the lower

conflict misses of 2-way SA cache? 
• Way prediction: keep extra bits in cache to predict the “way,” or 

block within the set, of next cache access. 
– Multiplexor is set early to select desired block, only 1 tag comparison 

performed that clock cycle in parallel with reading the cache data 
– Miss ⇒ 1st check other blocks for matches in next clock cycle

• Accuracy ≈ 85%
• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

– Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty
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3. Fast Hit times via  Trace Cache
• Find more instruction level parallelism?

How avoid translation from x86 to microops? 
• Trace cache in Pentium 4
1. Dynamic traces of the executed instructions vs. static sequences 

of instructions as determined by layout in memory
– Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions
– Decode/translate from x86 to micro-ops on trace cache miss

+ 1. ⇒ better utilize long blocks (don’t exit in middle of block, 
don’t enter at label in middle of block)

- 1. ⇒ complicated address mapping since addresses no longer 
aligned to power-of-2 multiples of word size

- 1. ⇒ instructions may appear multiple times in multiple 
dynamic traces due to different branch outcomes
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4: Increasing Cache Bandwidth by Pipelining

• Pipeline cache access to maintain bandwidth, but 
higher latency

• Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium III 
4: Pentium 4

- ⇒ greater penalty on mispredicted branches 
- ⇒ more clock cycles between the issue of the load 

and the use of the data
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5. Increasing Cache Bandwidth: 
Non-Blocking Caches

• Non-blocking cache or  lockup-free cache allow data cache to 
continue to supply cache hits during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss penalty by working 
during miss vs. ignoring CPU requests

• “hit under multiple miss” or “miss under miss” may further lower 
the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller 

as there can be multiple outstanding memory accesses
– Requires muliple memory banks (otherwise cannot support)
– Penium Pro allows 4 outstanding memory misses
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6: Increasing Cache Bandwidth via 
Multiple Banks

• Rather than treat the cache as a single monolithic 
block, divide into independent banks that can support 
simultaneous accesses
– E.g.,T1 (“Niagara”) L2 has 4 banks

• Banking works best when accesses naturally spread 
themselves across banks ⇒ mapping of addresses to 
banks affects behavior of memory system

• Simple mapping that works well is “sequential 
interleaving”
– Spread block addresses sequentially across banks
– E,g, if there 4 banks, Bank 0 has all blocks whose address 

modulo 4 is 0; bank 1 has all blocks whose address modulo 4 is 
1; …
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7. Reduce Miss Penalty: 
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU
• Early restart—As soon as the requested word of the block 

arrives, send it to the CPU and let the CPU continue execution
– Spatial locality ⇒ tend to want next sequential word, so not clear size 

of benefit of just early restart

• Critical Word First—Request the missed word first from memory 
and send it to the CPU as soon as it arrives; let the CPU continue 
execution while filling the rest of the words in the block
– Long blocks more popular today ⇒ Critical Word 1st Widely used 

block
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8. Merging Write Buffer to 
Reduce Miss Penalty

• Write buffer to allow processor to continue while waiting to 
write to memory

• If buffer contains modified blocks, the addresses can be 
checked to see if address of new data matches the address 
of a valid write buffer entry 

• If so, new data are combined with that entry
• Increases block size of write for write-through cache of 

writes to sequential words, bytes since multiword writes 
more efficient to memory

• The Sun T1 (Niagara) processor, among many others, uses 
write merging
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9. Reducing Misses by Compiler 
Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order 

stored in memory
– Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows
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Merging Arrays Example
/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; improve spatial locality

val key

val key val key val key
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Loop Interchange Example
/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory 
every 100 words; improved spatial locality
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve 
spatial locality

Perform different 
computations on 
the common data in 
two loops fuse 
the two loops
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits
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Snapshot of x, y, z when i=1

White: not yet touched
Light: older access
Dark: newer access Before….
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too?
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The Age of Accesses to x, y, z 

Note in contrast to previous Figure, the smaller number of elements accessed
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Performance Improvement           
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Summary of Compiler Optimizations 
to Reduce Cache Misses (by hand)
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10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra memory bandwidth that can be used 
without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the requested block and the 

next consecutive block. 
– Requested block is placed in instruction cache when it returns, and 

prefetched block is placed into instruction stream buffer
• Data Prefetching

– Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 
different 4 KB pages 

– Prefetching invoked if 2 successive L2 cache misses to a page, 
if distance between those cache blocks is < 256 bytes
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11. Reducing Misses by 
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache 

(MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth
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Compiler Optimization vs. 
Memory Hierarchy Search

• Compiler tries to figure out memory hierarchy 
optimizations

• New approach: “Auto-tuners” 1st run variations of 
program on computer to find best combinations of 
optimizations (blocking, padding, …) and algorithms, 
then produce C code to be compiled for that
computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS), 

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W
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in many CPUs3++

Compiler-controlled 
prefetching

Many prefetch 
instructions; AMD 
Opteron prefetches data

2 instr., 
3 data++

Hardware prefetching of 
instructions and data

Software is a challenge; 
some computers have 
compiler option0+

Compiler techniques to 
reduce cache misses

Widely used with write 
through1+Merging write buffer

Widely used2+
Critical word first and 
early restart

Used in L2 of Opteron 
and Niagara1+Banked caches

Widely used3++Nonblocking caches
Widely used1+–Pipelined cache access
Used in Pentium 43+Trace caches 
Used in Pentium 41+Way-predicting caches 
Trivial; widely used0–+Small and simple caches
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Outline
• 11 Advanced Cache Optimizations
• Memory Technology and DRAM Optimizations
• Virtual Machines
• Conclusion
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Main Memory Background
• Performance of Main Memory: 

– Latency: Cache Miss Penalty
• Access Time: time between request and word arrives
• Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)
• Main Memory is DRAM: Dynamic Random Access Memory

– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– Addresses divided into 2 halves (Memory as a 2D matrix):

• RAS or Row Access Strobe
• CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8, 
Cost/Cycle time: SRAM/DRAM - 8-16
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Main Memory Deep Background

• “Out-of-Core”, “In-Core,” “Core Dump”?
• “Core memory”?
• Non-volatile, magnetic
• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
• Access time 750 ns, cycle time 1500-3000 ns
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DRAM logical organization (4 Mbit)

• Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)
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…
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Quest for DRAM Performance
1. Fast Page mode 

– Add timing signals that allow repeated accesses to row buffer 
without another row access time

– Such a buffer comes naturally, as each array will buffer 1024 
to 2048 bits for each access

2. Synchronous DRAM (SDRAM)
– Add a clock signal to DRAM interface, so that the repeated 

transfers would not bear overhead to synchronize with DRAM 
controller

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the 

DRAM clock signal ⇒ doubling the peak data rate
– DDR2 lowers power by dropping the voltage from 2.5 to 1.8 

volts + offers higher clock rates: up to 400 MHz
– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

• Improved Bandwidth, not Latency
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DRAM name based on Peak Chip Transfers / Sec
DIMM  name based on Peak DIMM MBytes / Sec
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Need for Error Correction!
• Motivation:

– Failures/time proportional to number of bits!
– As DRAM cells shrink, more vulnerable

• Went through period in which failure rate was low enough 
without error correction that people didn’t do correction
– DRAM banks too large now
– Servers always corrected memory systems

• Basic idea: add redundancy through parity bits
– Common configuration: Random error correction

• SEC-DED (single error correct, double error detect)
• One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well
• Organization is multiple DRAMs/DIMM, multiple DIMMs
• Want to recover from failed DRAM and failed DIMM!
• “Chip kill” handle failures width of single DRAM chip
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DRAM Technology
• Semiconductor Dynamic Random Access Memory
• Emphasize on cost per bit and capacity
• Multiplex address lines cutting # of address pins in half

– Row access strobe (RAS) first, then column access strobe (CAS)
– Memory as a 2D matrix – rows go to a buffer
– Subsequent CAS selects subrow

• Use only a single transistor to store a bit
– Reading that bit can destroy the information
– Refresh each bit periodically (ex. 8 milliseconds) by writing back 

• Keep refreshing time less than 5% of the total time
• DRAM capacity is 4 to 8 times that of SRAM
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DRAM Technology (Cont.)
• DIMM: Dual inline memory module

– DRAM chips are commonly sold on small boards called DIMMs
– DIMMs typically contain 4 to 16 DRAMs

• Slowing down in DRAM capacity growth
– Four times the capacity every three years, for more than 20 

years
– New chips only double capacity every two year, since 1998

• DRAM performance is growing at a slower rate
– RAS (related to latency): 5% per year
– CAS (related to bandwidth): 10%+ per year
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RAS improvement 

A performance improvement in RAS of about 5% per year
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SRAM Technology
• Cache uses SRAM: Static Random Access Memory
• SRAM uses six transistors per bit to prevent the 

information from being disturbed when read
no need to refresh

– SRAM needs only minimal power to retain the charge in 
the standby mode good for embedded applications

– No difference between access time and cycle time for 
SRAM

• Emphasize on speed and capacity
– SRAM address lines are not multiplexed

• SRAM speed is 8 to 16x that of DRAM
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ROM and Flash
• Embedded processor memory
• Read-only memory (ROM)

– Programmed at the time of manufacture
– Only a single transistor per bit to represent 1 or 0
– Used for the embedded program and for constant
– Nonvolatile and indestructible

• Flash memory: 
– Nonvolatile but allow the memory to be modified
– Reads at almost DRAM speeds, but writes 10 to 100 

times slower
– DRAM capacity per chip and MB per dollar is about 4 to 

8 times greater than flash
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Improving Memory Performance 
in a Standard DRAM Chip

• Fast page mode: time signals that allow repeated accesses 
to buffer without another row access time

• Synchronous RAM (SDRAM): add a clock signal to DRAM 
interface, so that the repeated transfer would not bear 
overhead to synchronize with the controller
– Asynchronous DRAM involves overhead to sync with controller
– Peak speed per memory module 800—1200MB/sec in 2001

• Double data rate (DDR): transfer data on both the rising 
edge and falling edge of DRAM clock signal 
– Peak speed per memory module 1600—2400MB/sec in 2001
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RAMBUS
• RAMBUS optimizes the interface between DRAM and CPU
• RAMBUS makes a single chip act more like a memory system 

than a memory component
– Each chip has interleaved memory and high-speed interface

• 1st generation RAMBUS: RDAM
– Replace RAS/CAS with a bus that allows other accesses over it 

between the sending of the address and return of the data
– Each chip has four banks, each with their own row buffer
– A chip can return a variable amount of data from a single 

request, and even perform its refresh
– Clock signal and transfer on both edges of its clock
– 300 MHz clock
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RAMBUS (Cont.)
• 2nd generation RAMBUS: direct RDRAM (DRDRAM)

– Offer up to 1.6GB/sec of bandwidth
– Separate row- and column-command buses
– 18-bit data bus; 16 internal banks; 8 row buffers; 400 MHz

• RAMBUS are sold in RIMMs: one RAMBUS chip per RIMM
• RAMBUS vs. DDR SDRAM

– DIMM bandwidth (multiple DRAM chips) is closer to RAMBUS
– RDRAM and DRDRAM have a price premium over traditional 

DRAM
• Larger chips
• In 2001, it is factor of 2


